Merge pull request #9406 from Cartucho:update_core_tutorials

pull/9623/head
Vadim Pisarevsky 7 years ago
commit bc09d1ba3b
  1. 85
      doc/tutorials/core/adding_images/adding_images.markdown
  2. 287
      doc/tutorials/core/basic_geometric_drawing/basic_geometric_drawing.markdown
  3. 260
      doc/tutorials/core/discrete_fourier_transform/discrete_fourier_transform.markdown
  4. 75
      doc/tutorials/core/mat-mask-operations/mat_mask_operations.markdown
  5. 6
      doc/tutorials/core/table_of_content_core.markdown
  6. 3
      samples/cpp/tutorial_code/core/AddingImages/AddingImages.cpp
  7. 21
      samples/cpp/tutorial_code/core/Matrix/Drawing_1.cpp
  8. 24
      samples/cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp
  9. 51
      samples/java/tutorial_code/core/AddingImages/AddingImages.java
  10. 186
      samples/java/tutorial_code/core/BasicGeometricDrawing/BasicGeometricDrawing.java
  11. 109
      samples/java/tutorial_code/core/discrete_fourier_transform/DiscreteFourierTransform.java
  12. 51
      samples/java/tutorial_code/core/mat_mask_operations/MatMaskOperations.java
  13. 35
      samples/python/tutorial_code/core/AddingImages/adding_images.py
  14. 115
      samples/python/tutorial_code/core/BasicGeometricDrawing/basic_geometric_drawing.py
  15. 80
      samples/python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py
  16. 26
      samples/python/tutorial_code/core/mat_mask_operations/mat_mask_operations.py

@ -1,13 +1,16 @@
Adding (blending) two images using OpenCV {#tutorial_adding_images}
=========================================
@prev_tutorial{tutorial_mat_operations}
@next_tutorial{tutorial_basic_linear_transform}
Goal
----
In this tutorial you will learn:
- what is *linear blending* and why it is useful;
- how to add two images using @ref cv::addWeighted
- how to add two images using **addWeighted()**
Theory
------
@ -28,33 +31,83 @@ eh?)
Source Code
-----------
@add_toggle_cpp
Download the source code from
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/core/AddingImages/AddingImages.cpp).
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/core/AddingImages/AddingImages.cpp).
@include cpp/tutorial_code/core/AddingImages/AddingImages.cpp
@end_toggle
@add_toggle_java
Download the source code from
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/java/tutorial_code/core/AddingImages/AddingImages.java).
@include java/tutorial_code/core/AddingImages/AddingImages.java
@end_toggle
@add_toggle_python
Download the source code from
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/python/tutorial_code/core/AddingImages/adding_images.py).
@include python/tutorial_code/core/AddingImages/adding_images.py
@end_toggle
Explanation
-----------
-# Since we are going to perform:
Since we are going to perform:
\f[g(x) = (1 - \alpha)f_{0}(x) + \alpha f_{1}(x)\f]
We need two source images (\f$f_{0}(x)\f$ and \f$f_{1}(x)\f$). So, we load them in the usual way:
@add_toggle_cpp
@snippet cpp/tutorial_code/core/AddingImages/AddingImages.cpp load
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/AddingImages/AddingImages.java load
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/AddingImages/adding_images.py load
@end_toggle
We used the following images: [LinuxLogo.jpg](https://raw.githubusercontent.com/opencv/opencv/master/samples/data/LinuxLogo.jpg) and [WindowsLogo.jpg](https://raw.githubusercontent.com/opencv/opencv/master/samples/data/WindowsLogo.jpg)
@warning Since we are *adding* *src1* and *src2*, they both have to be of the same size
(width and height) and type.
Now we need to generate the `g(x)` image. For this, the function **addWeighted()** comes quite handy:
@add_toggle_cpp
@snippet cpp/tutorial_code/core/AddingImages/AddingImages.cpp blend_images
@end_toggle
\f[g(x) = (1 - \alpha)f_{0}(x) + \alpha f_{1}(x)\f]
@add_toggle_java
@snippet java/tutorial_code/core/AddingImages/AddingImages.java blend_images
@end_toggle
We need two source images (\f$f_{0}(x)\f$ and \f$f_{1}(x)\f$). So, we load them in the usual way:
@snippet cpp/tutorial_code/core/AddingImages/AddingImages.cpp load
@add_toggle_python
@snippet python/tutorial_code/core/AddingImages/adding_images.py blend_images
Numpy version of above line (but cv2 function is around 2x faster):
\code{.py}
dst = np.uint8(alpha*(img1)+beta*(img2))
\endcode
@end_toggle
**warning**
since **addWeighted()** produces:
\f[dst = \alpha \cdot src1 + \beta \cdot src2 + \gamma\f]
In this case, `gamma` is the argument \f$0.0\f$ in the code above.
Since we are *adding* *src1* and *src2*, they both have to be of the same size (width and
height) and type.
Create windows, show the images and wait for the user to end the program.
@add_toggle_cpp
@snippet cpp/tutorial_code/core/AddingImages/AddingImages.cpp display
@end_toggle
-# Now we need to generate the `g(x)` image. For this, the function @ref cv::addWeighted comes quite handy:
@snippet cpp/tutorial_code/core/AddingImages/AddingImages.cpp blend_images
since @ref cv::addWeighted produces:
\f[dst = \alpha \cdot src1 + \beta \cdot src2 + \gamma\f]
In this case, `gamma` is the argument \f$0.0\f$ in the code above.
@add_toggle_java
@snippet java/tutorial_code/core/AddingImages/AddingImages.java display
@end_toggle
-# Create windows, show the images and wait for the user to end the program.
@snippet cpp/tutorial_code/core/AddingImages/AddingImages.cpp display
@add_toggle_python
@snippet python/tutorial_code/core/AddingImages/adding_images.py display
@end_toggle
Result
------

@ -1,19 +1,21 @@
Basic Drawing {#tutorial_basic_geometric_drawing}
=============
@prev_tutorial{tutorial_basic_linear_transform}
@next_tutorial{tutorial_random_generator_and_text}
Goals
-----
In this tutorial you will learn how to:
- Use @ref cv::Point to define 2D points in an image.
- Use @ref cv::Scalar and why it is useful
- Draw a **line** by using the OpenCV function @ref cv::line
- Draw an **ellipse** by using the OpenCV function @ref cv::ellipse
- Draw a **rectangle** by using the OpenCV function @ref cv::rectangle
- Draw a **circle** by using the OpenCV function @ref cv::circle
- Draw a **filled polygon** by using the OpenCV function @ref cv::fillPoly
- Draw a **line** by using the OpenCV function **line()**
- Draw an **ellipse** by using the OpenCV function **ellipse()**
- Draw a **rectangle** by using the OpenCV function **rectangle()**
- Draw a **circle** by using the OpenCV function **circle()**
- Draw a **filled polygon** by using the OpenCV function **fillPoly()**
@add_toggle_cpp
OpenCV Theory
-------------
@ -42,86 +44,217 @@ Point pt = Point(10, 8);
Scalar( a, b, c )
@endcode
We would be defining a BGR color such as: *Blue = a*, *Green = b* and *Red = c*
@end_toggle
@add_toggle_java
OpenCV Theory
-------------
For this tutorial, we will heavily use two structures: @ref cv::Point and @ref cv::Scalar :
### Point
It represents a 2D point, specified by its image coordinates \f$x\f$ and \f$y\f$. We can define it as:
@code{.java}
Point pt = new Point();
pt.x = 10;
pt.y = 8;
@endcode
or
@code{.java}
Point pt = new Point(10, 8);
@endcode
### Scalar
- Represents a 4-element vector. The type Scalar is widely used in OpenCV for passing pixel
values.
- In this tutorial, we will use it extensively to represent BGR color values (3 parameters). It is
not necessary to define the last argument if it is not going to be used.
- Let's see an example, if we are asked for a color argument and we give:
@code{.java}
Scalar( a, b, c )
@endcode
We would be defining a BGR color such as: *Blue = a*, *Green = b* and *Red = c*
@end_toggle
Code
----
@add_toggle_cpp
- This code is in your OpenCV sample folder. Otherwise you can grab it from
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/core/Matrix/Drawing_1.cpp)
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/core/Matrix/Drawing_1.cpp)
@include samples/cpp/tutorial_code/core/Matrix/Drawing_1.cpp
@end_toggle
@add_toggle_java
- This code is in your OpenCV sample folder. Otherwise you can grab it from
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/java/tutorial_code/core/BasicGeometricDrawing/BasicGeometricDrawing.java)
@include samples/java/tutorial_code/core/BasicGeometricDrawing/BasicGeometricDrawing.java
@end_toggle
@add_toggle_python
- This code is in your OpenCV sample folder. Otherwise you can grab it from
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/python/tutorial_code/core/BasicGeometricDrawing/basic_geometric_drawing.py)
@include samples/python/tutorial_code/core/BasicGeometricDrawing/basic_geometric_drawing.py
@end_toggle
Explanation
-----------
-# Since we plan to draw two examples (an atom and a rook), we have to create two images and two
windows to display them.
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp create_images
-# We created functions to draw different geometric shapes. For instance, to draw the atom we used
*MyEllipse* and *MyFilledCircle*:
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp draw_atom
-# And to draw the rook we employed *MyLine*, *rectangle* and a *MyPolygon*:
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp draw_rook
-# Let's check what is inside each of these functions:
- *MyLine*
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp myline
As we can see, *MyLine* just call the function @ref cv::line , which does the following:
- Draw a line from Point **start** to Point **end**
- The line is displayed in the image **img**
- The line color is defined by **Scalar( 0, 0, 0)** which is the RGB value correspondent
to **Black**
- The line thickness is set to **thickness** (in this case 2)
- The line is a 8-connected one (**lineType** = 8)
- *MyEllipse*
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp myellipse
From the code above, we can observe that the function @ref cv::ellipse draws an ellipse such
that:
- The ellipse is displayed in the image **img**
- The ellipse center is located in the point **(w/2, w/2)** and is enclosed in a box
of size **(w/4, w/16)**
- The ellipse is rotated **angle** degrees
- The ellipse extends an arc between **0** and **360** degrees
- The color of the figure will be **Scalar( 255, 0, 0)** which means blue in BGR value.
- The ellipse's **thickness** is 2.
- *MyFilledCircle*
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp myfilledcircle
Similar to the ellipse function, we can observe that *circle* receives as arguments:
- The image where the circle will be displayed (**img**)
- The center of the circle denoted as the Point **center**
- The radius of the circle: **w/32**
- The color of the circle: **Scalar(0, 0, 255)** which means *Red* in BGR
- Since **thickness** = -1, the circle will be drawn filled.
- *MyPolygon*
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp mypolygon
To draw a filled polygon we use the function @ref cv::fillPoly . We note that:
- The polygon will be drawn on **img**
- The vertices of the polygon are the set of points in **ppt**
- The total number of vertices to be drawn are **npt**
- The number of polygons to be drawn is only **1**
- The color of the polygon is defined by **Scalar( 255, 255, 255)**, which is the BGR
value for *white*
- *rectangle*
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp rectangle
Finally we have the @ref cv::rectangle function (we did not create a special function for
this guy). We note that:
- The rectangle will be drawn on **rook_image**
- Two opposite vertices of the rectangle are defined by *\* Point( 0, 7*w/8 )*\*
andPoint( w, w)*\*
- The color of the rectangle is given by **Scalar(0, 255, 255)** which is the BGR value
for *yellow*
- Since the thickness value is given by **FILLED (-1)**, the rectangle will be filled.
Since we plan to draw two examples (an atom and a rook), we have to create two images and two
windows to display them.
@add_toggle_cpp
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp create_images
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/BasicGeometricDrawing/BasicGeometricDrawing.java create_images
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/BasicGeometricDrawing/basic_geometric_drawing.py create_images
@end_toggle
We created functions to draw different geometric shapes. For instance, to draw the atom we used
**MyEllipse** and **MyFilledCircle**:
@add_toggle_cpp
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp draw_atom
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/BasicGeometricDrawing/BasicGeometricDrawing.java draw_atom
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/BasicGeometricDrawing/basic_geometric_drawing.py draw_atom
@end_toggle
And to draw the rook we employed **MyLine**, **rectangle** and a **MyPolygon**:
@add_toggle_cpp
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp draw_rook
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/BasicGeometricDrawing/BasicGeometricDrawing.java draw_rook
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/BasicGeometricDrawing/basic_geometric_drawing.py draw_rook
@end_toggle
Let's check what is inside each of these functions:
@add_toggle_cpp
@end_toggle
<H4>MyLine</H4>
@add_toggle_cpp
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp my_line
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/BasicGeometricDrawing/BasicGeometricDrawing.java my_line
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/BasicGeometricDrawing/basic_geometric_drawing.py my_line
@end_toggle
- As we can see, **MyLine** just call the function **line()** , which does the following:
- Draw a line from Point **start** to Point **end**
- The line is displayed in the image **img**
- The line color is defined by <B>( 0, 0, 0 )</B> which is the RGB value correspondent
to **Black**
- The line thickness is set to **thickness** (in this case 2)
- The line is a 8-connected one (**lineType** = 8)
<H4>MyEllipse</H4>
@add_toggle_cpp
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp my_ellipse
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/BasicGeometricDrawing/BasicGeometricDrawing.java my_ellipse
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/BasicGeometricDrawing/basic_geometric_drawing.py my_ellipse
@end_toggle
- From the code above, we can observe that the function **ellipse()** draws an ellipse such
that:
- The ellipse is displayed in the image **img**
- The ellipse center is located in the point <B>(w/2, w/2)</B> and is enclosed in a box
of size <B>(w/4, w/16)</B>
- The ellipse is rotated **angle** degrees
- The ellipse extends an arc between **0** and **360** degrees
- The color of the figure will be <B>( 255, 0, 0 )</B> which means blue in BGR value.
- The ellipse's **thickness** is 2.
<H4>MyFilledCircle</H4>
@add_toggle_cpp
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp my_filled_circle
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/BasicGeometricDrawing/BasicGeometricDrawing.java my_filled_circle
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/BasicGeometricDrawing/basic_geometric_drawing.py my_filled_circle
@end_toggle
- Similar to the ellipse function, we can observe that *circle* receives as arguments:
- The image where the circle will be displayed (**img**)
- The center of the circle denoted as the point **center**
- The radius of the circle: **w/32**
- The color of the circle: <B>( 0, 0, 255 )</B> which means *Red* in BGR
- Since **thickness** = -1, the circle will be drawn filled.
<H4>MyPolygon</H4>
@add_toggle_cpp
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp my_polygon
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/BasicGeometricDrawing/BasicGeometricDrawing.java my_polygon
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/BasicGeometricDrawing/basic_geometric_drawing.py my_polygon
@end_toggle
- To draw a filled polygon we use the function **fillPoly()** . We note that:
- The polygon will be drawn on **img**
- The vertices of the polygon are the set of points in **ppt**
- The color of the polygon is defined by <B>( 255, 255, 255 )</B>, which is the BGR
value for *white*
<H4>rectangle</H4>
@add_toggle_cpp
@snippet cpp/tutorial_code/core/Matrix/Drawing_1.cpp rectangle
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/BasicGeometricDrawing/BasicGeometricDrawing.java rectangle
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/BasicGeometricDrawing/basic_geometric_drawing.py rectangle
@end_toggle
- Finally we have the @ref cv::rectangle function (we did not create a special function for
this guy). We note that:
- The rectangle will be drawn on **rook_image**
- Two opposite vertices of the rectangle are defined by <B>( 0, 7*w/8 )</B>
and <B>( w, w )</B>
- The color of the rectangle is given by <B>( 0, 255, 255 )</B> which is the BGR value
for *yellow*
- Since the thickness value is given by **FILLED (-1)**, the rectangle will be filled.
Result
------

@ -1,6 +1,9 @@
Discrete Fourier Transform {#tutorial_discrete_fourier_transform}
==========================
@prev_tutorial{tutorial_random_generator_and_text}
@next_tutorial{tutorial_file_input_output_with_xml_yml}
Goal
----
@ -8,21 +11,49 @@ We'll seek answers for the following questions:
- What is a Fourier transform and why use it?
- How to do it in OpenCV?
- Usage of functions such as: @ref cv::copyMakeBorder() , @ref cv::merge() , @ref cv::dft() , @ref
cv::getOptimalDFTSize() , @ref cv::log() and @ref cv::normalize() .
- Usage of functions such as: **copyMakeBorder()** , **merge()** , **dft()** ,
**getOptimalDFTSize()** , **log()** and **normalize()** .
Source code
-----------
@add_toggle_cpp
You can [download this from here
](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp) or
](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp) or
find it in the
`samples/cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp` of the
OpenCV source code library.
@end_toggle
@add_toggle_java
You can [download this from here
](https://raw.githubusercontent.com/opencv/opencv/master/samples/java/tutorial_code/core/discrete_fourier_transform/DiscreteFourierTransform.java) or
find it in the
`samples/java/tutorial_code/core/discrete_fourier_transform/DiscreteFourierTransform.java` of the
OpenCV source code library.
@end_toggle
@add_toggle_python
You can [download this from here
](https://raw.githubusercontent.com/opencv/opencv/master/samples/python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py) or
find it in the
`samples/python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py` of the
OpenCV source code library.
@end_toggle
Here's a sample usage of **dft()** :
@add_toggle_cpp
@include cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp
@end_toggle
Here's a sample usage of @ref cv::dft() :
@add_toggle_java
@include java/tutorial_code/core/discrete_fourier_transform/DiscreteFourierTransform.java
@end_toggle
@includelineno cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp
@add_toggle_python
@include python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py
@end_toggle
Explanation
-----------
@ -49,89 +80,140 @@ Fourier Transform too needs to be of a discrete type resulting in a Discrete Fou
(*DFT*). You'll want to use this whenever you need to determine the structure of an image from a
geometrical point of view. Here are the steps to follow (in case of a gray scale input image *I*):
-# **Expand the image to an optimal size**. The performance of a DFT is dependent of the image
size. It tends to be the fastest for image sizes that are multiple of the numbers two, three and
five. Therefore, to achieve maximal performance it is generally a good idea to pad border values
to the image to get a size with such traits. The @ref cv::getOptimalDFTSize() returns this
optimal size and we can use the @ref cv::copyMakeBorder() function to expand the borders of an
image:
@code{.cpp}
Mat padded; //expand input image to optimal size
int m = getOptimalDFTSize( I.rows );
int n = getOptimalDFTSize( I.cols ); // on the border add zero pixels
copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));
@endcode
The appended pixels are initialized with zero.
-# **Make place for both the complex and the real values**. The result of a Fourier Transform is
complex. This implies that for each image value the result is two image values (one per
component). Moreover, the frequency domains range is much larger than its spatial counterpart.
Therefore, we store these usually at least in a *float* format. Therefore we'll convert our
input image to this type and expand it with another channel to hold the complex values:
@code{.cpp}
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexI;
merge(planes, 2, complexI); // Add to the expanded another plane with zeros
@endcode
-# **Make the Discrete Fourier Transform**. It's possible an in-place calculation (same input as
output):
@code{.cpp}
dft(complexI, complexI); // this way the result may fit in the source matrix
@endcode
-# **Transform the real and complex values to magnitude**. A complex number has a real (*Re*) and a
complex (imaginary - *Im*) part. The results of a DFT are complex numbers. The magnitude of a
DFT is:
\f[M = \sqrt[2]{ {Re(DFT(I))}^2 + {Im(DFT(I))}^2}\f]
Translated to OpenCV code:
@code{.cpp}
split(complexI, planes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude
Mat magI = planes[0];
@endcode
-# **Switch to a logarithmic scale**. It turns out that the dynamic range of the Fourier
coefficients is too large to be displayed on the screen. We have some small and some high
changing values that we can't observe like this. Therefore the high values will all turn out as
white points, while the small ones as black. To use the gray scale values to for visualization
we can transform our linear scale to a logarithmic one:
\f[M_1 = \log{(1 + M)}\f]
Translated to OpenCV code:
@code{.cpp}
magI += Scalar::all(1); // switch to logarithmic scale
log(magI, magI);
@endcode
-# **Crop and rearrange**. Remember, that at the first step, we expanded the image? Well, it's time
to throw away the newly introduced values. For visualization purposes we may also rearrange the
quadrants of the result, so that the origin (zero, zero) corresponds with the image center.
@code{.cpp}
magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2));
int cx = magI.cols/2;
int cy = magI.rows/2;
Mat q0(magI, Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant
Mat q1(magI, Rect(cx, 0, cx, cy)); // Top-Right
Mat q2(magI, Rect(0, cy, cx, cy)); // Bottom-Left
Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right
Mat tmp; // swap quadrants (Top-Left with Bottom-Right)
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left)
q2.copyTo(q1);
tmp.copyTo(q2);
@endcode
-# **Normalize**. This is done again for visualization purposes. We now have the magnitudes,
however this are still out of our image display range of zero to one. We normalize our values to
this range using the @ref cv::normalize() function.
@code{.cpp}
normalize(magI, magI, 0, 1, NORM_MINMAX); // Transform the matrix with float values into a
// viewable image form (float between values 0 and 1).
@endcode
#### Expand the image to an optimal size
The performance of a DFT is dependent of the image
size. It tends to be the fastest for image sizes that are multiple of the numbers two, three and
five. Therefore, to achieve maximal performance it is generally a good idea to pad border values
to the image to get a size with such traits. The **getOptimalDFTSize()** returns this
optimal size and we can use the **copyMakeBorder()** function to expand the borders of an
image (the appended pixels are initialized with zero):
@add_toggle_cpp
@snippet cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp expand
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/discrete_fourier_transform/DiscreteFourierTransform.java expand
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py expand
@end_toggle
#### Make place for both the complex and the real values
The result of a Fourier Transform is
complex. This implies that for each image value the result is two image values (one per
component). Moreover, the frequency domains range is much larger than its spatial counterpart.
Therefore, we store these usually at least in a *float* format. Therefore we'll convert our
input image to this type and expand it with another channel to hold the complex values:
@add_toggle_cpp
@snippet cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp complex_and_real
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/discrete_fourier_transform/DiscreteFourierTransform.java complex_and_real
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py complex_and_real
@end_toggle
#### Make the Discrete Fourier Transform
It's possible an in-place calculation (same input as
output):
@add_toggle_cpp
@snippet cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp dft
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/discrete_fourier_transform/DiscreteFourierTransform.java dft
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py dft
@end_toggle
#### Transform the real and complex values to magnitude
A complex number has a real (*Re*) and a
complex (imaginary - *Im*) part. The results of a DFT are complex numbers. The magnitude of a
DFT is:
\f[M = \sqrt[2]{ {Re(DFT(I))}^2 + {Im(DFT(I))}^2}\f]
Translated to OpenCV code:
@add_toggle_cpp
@snippet cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp magnitude
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/discrete_fourier_transform/DiscreteFourierTransform.java magnitude
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py magnitude
@end_toggle
#### Switch to a logarithmic scale
It turns out that the dynamic range of the Fourier
coefficients is too large to be displayed on the screen. We have some small and some high
changing values that we can't observe like this. Therefore the high values will all turn out as
white points, while the small ones as black. To use the gray scale values to for visualization
we can transform our linear scale to a logarithmic one:
\f[M_1 = \log{(1 + M)}\f]
Translated to OpenCV code:
@add_toggle_cpp
@snippet cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp log
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/discrete_fourier_transform/DiscreteFourierTransform.java log
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py log
@end_toggle
#### Crop and rearrange
Remember, that at the first step, we expanded the image? Well, it's time
to throw away the newly introduced values. For visualization purposes we may also rearrange the
quadrants of the result, so that the origin (zero, zero) corresponds with the image center.
@add_toggle_cpp
@snippet cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp crop_rearrange
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/discrete_fourier_transform/DiscreteFourierTransform.java crop_rearrange
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py crop_rearrange
@end_toggle
#### Normalize
This is done again for visualization purposes. We now have the magnitudes,
however this are still out of our image display range of zero to one. We normalize our values to
this range using the @ref cv::normalize() function.
@add_toggle_cpp
@snippet cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp normalize
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/discrete_fourier_transform/DiscreteFourierTransform.java normalize
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.py normalize
@end_toggle
Result
------
@ -140,7 +222,7 @@ An application idea would be to determine the geometrical orientation present in
example, let us find out if a text is horizontal or not? Looking at some text you'll notice that the
text lines sort of form also horizontal lines and the letters form sort of vertical lines. These two
main components of a text snippet may be also seen in case of the Fourier transform. Let us use
[this horizontal ](https://github.com/opencv/opencv/tree/master/samples/data/imageTextN.png) and [this rotated](https://github.com/opencv/opencv/tree/master/samples/data/imageTextR.png)
[this horizontal ](https://raw.githubusercontent.com/opencv/opencv/master/samples/data/imageTextN.png) and [this rotated](https://raw.githubusercontent.com/opencv/opencv/master/samples/data/imageTextR.png)
image about a text.
In case of the horizontal text:

@ -28,24 +28,39 @@ the zero-zero index) on the pixel you want to calculate and sum up the pixel val
the overlapped matrix values. It's the same thing, however in case of large matrices the latter
notation is a lot easier to look over.
Code
----
@add_toggle_cpp
Now let us see how we can make this happen by using the basic pixel access method or by using the
@ref cv::filter2D function.
You can download this source code from [here
](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp) or look in the
OpenCV source code libraries sample directory at
`samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp`.
@include samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp
@end_toggle
@add_toggle_java
Now let us see how we can make this happen by using the basic pixel access method or by using the
**Imgproc.filter2D()** function.
You can download this source code from [here
](https://raw.githubusercontent.com/opencv/opencv/master/samples/java/tutorial_code/core/mat_mask_operations/MatMaskOperations.java) or look in the
OpenCV source code libraries sample directory at
`samples/java/tutorial_code/core/mat_mask_operations/MatMaskOperations.java`.
@include samples/java/tutorial_code/core/mat_mask_operations/MatMaskOperations.java
@end_toggle
@add_toggle_python
Now let us see how we can make this happen by using the basic pixel access method or by using the
**cv2.filter2D()** function.
You can download this source code from [here
](https://raw.githubusercontent.com/opencv/opencv/master/samples/python/tutorial_code/core/mat_mask_operations/mat_mask_operations.py) or look in the
OpenCV source code libraries sample directory at
`samples/python/tutorial_code/core/mat_mask_operations/mat_mask_operations.py`.
@include samples/python/tutorial_code/core/mat_mask_operations/mat_mask_operations.py
@end_toggle
The Basic Method
----------------
Now let us see how we can make this happen by using the basic pixel access method or by using the
**filter2D()** function.
Here's a function that will do this:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp basic_method
@ -132,37 +147,38 @@ The filter2D function
Applying such filters are so common in image processing that in OpenCV there exist a function that
will take care of applying the mask (also called a kernel in some places). For this you first need
to define an object that holds the mask:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp kern
Then call the @ref cv::filter2D function specifying the input, the output image and the kernel to
use:
@snippet samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp filter2D
The function even has a fifth optional argument to specify the center of the kernel, a sixth
for adding an optional value to the filtered pixels before storing them in K and a seventh one
for determining what to do in the regions where the operation is undefined (borders).
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_mask_operations/MatMaskOperations.java kern
Then call the **Imgproc.filter2D()** function specifying the input, the output image and the kernel to
use:
@snippet samples/java/tutorial_code/core/mat_mask_operations/MatMaskOperations.java filter2D
The function even has a fifth optional argument to specify the center of the kernel, a sixth
for adding an optional value to the filtered pixels before storing them in K and a seventh one
for determining what to do in the regions where the operation is undefined (borders).
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_mask_operations/mat_mask_operations.py kern
@end_toggle
Then call the **cv2.filter2D()** function specifying the input, the output image and the kernell to
Then call the **filter2D()** function specifying the input, the output image and the kernel to
use:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp filter2D
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/core/mat_mask_operations/MatMaskOperations.java filter2D
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/core/mat_mask_operations/mat_mask_operations.py filter2D
@end_toggle
The function even has a fifth optional argument to specify the center of the kernel, a sixth
for adding an optional value to the filtered pixels before storing them in K and a seventh one
for determining what to do in the regions where the operation is undefined (borders).
This function is shorter, less verbose and, because there are some optimizations, it is usually faster
than the *hand-coded method*. For example in my test while the second one took only 13
milliseconds the first took around 31 milliseconds. Quite some difference.
@ -172,22 +188,7 @@ For example:
![](images/resultMatMaskFilter2D.png)
@add_toggle_cpp
You can download this source code from [here
](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp) or look in the
OpenCV source code libraries sample directory at
`samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp`.
Check out an instance of running the program on our [YouTube
channel](http://www.youtube.com/watch?v=7PF1tAU9se4) .
@youtube{7PF1tAU9se4}
@end_toggle
@add_toggle_java
You can look in the OpenCV source code libraries sample directory at
`samples/java/tutorial_code/core/mat_mask_operations/MatMaskOperations.java`.
@end_toggle
@add_toggle_python
You can look in the OpenCV source code libraries sample directory at
`samples/python/tutorial_code/core/mat_mask_operations/mat_mask_operations.py`.
@end_toggle

@ -40,6 +40,8 @@ understanding how to manipulate the images on a pixel level.
- @subpage tutorial_adding_images
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0
*Author:* Ana Huamán
@ -56,6 +58,8 @@ understanding how to manipulate the images on a pixel level.
- @subpage tutorial_basic_geometric_drawing
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0
*Author:* Ana Huamán
@ -72,6 +76,8 @@ understanding how to manipulate the images on a pixel level.
- @subpage tutorial_discrete_fourier_transform
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0
*Author:* Bernát Gábor

@ -3,7 +3,6 @@
* @brief Simple linear blender ( dst = alpha*src1 + beta*src2 )
* @author OpenCV team
*/
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
@ -24,7 +23,7 @@ int main( void )
/// Ask the user enter alpha
cout << " Simple Linear Blender " << endl;
cout << "-----------------------" << endl;
cout << "* Enter alpha [0-1]: ";
cout << "* Enter alpha [0.0-1.0]: ";
cin >> input;
// We use the alpha provided by the user if it is between 0 and 1

@ -1,8 +1,8 @@
/**
* @file Drawing_1.cpp
* @brief Simple sample code
* @brief Simple geometric drawing
* @author OpenCV team
*/
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
@ -83,11 +83,11 @@ int main( void ){
/// Function Declaration
//![myellipse]
/**
* @function MyEllipse
* @brief Draw a fixed-size ellipse with different angles
*/
//![my_ellipse]
void MyEllipse( Mat img, double angle )
{
int thickness = 2;
@ -103,13 +103,13 @@ void MyEllipse( Mat img, double angle )
thickness,
lineType );
}
//![myellipse]
//![my_ellipse]
//![myfilledcircle]
/**
* @function MyFilledCircle
* @brief Draw a fixed-size filled circle
*/
//![my_filled_circle]
void MyFilledCircle( Mat img, Point center )
{
circle( img,
@ -119,13 +119,13 @@ void MyFilledCircle( Mat img, Point center )
FILLED,
LINE_8 );
}
//![myfilledcircle]
//![my_filled_circle]
//![mypolygon]
/**
* @function MyPolygon
* @brief Draw a simple concave polygon (rook)
*/
//![my_polygon]
void MyPolygon( Mat img )
{
int lineType = LINE_8;
@ -163,17 +163,18 @@ void MyPolygon( Mat img )
Scalar( 255, 255, 255 ),
lineType );
}
//![mypolygon]
//![my_polygon]
//![myline]
/**
* @function MyLine
* @brief Draw a simple line
*/
//![my_line]
void MyLine( Mat img, Point start, Point end )
{
int thickness = 2;
int lineType = LINE_8;
line( img,
start,
end,
@ -181,4 +182,4 @@ void MyLine( Mat img, Point start, Point end )
thickness,
lineType );
}
//![myline]
//![my_line]

@ -8,45 +8,58 @@
using namespace cv;
using namespace std;
static void help(char* progName)
static void help(void)
{
cout << endl
<< "This program demonstrated the use of the discrete Fourier transform (DFT). " << endl
<< "The dft of an image is taken and it's power spectrum is displayed." << endl
<< "Usage:" << endl
<< progName << " [image_name -- default ../data/lena.jpg] " << endl << endl;
<< "./discrete_fourier_transform [image_name -- default ../data/lena.jpg]" << endl;
}
int main(int argc, char ** argv)
{
help(argv[0]);
help();
const char* filename = argc >=2 ? argv[1] : "../data/lena.jpg";
Mat I = imread(filename, IMREAD_GRAYSCALE);
if( I.empty())
if( I.empty()){
cout << "Error opening image" << endl;
return -1;
}
//! [expand]
Mat padded; //expand input image to optimal size
int m = getOptimalDFTSize( I.rows );
int n = getOptimalDFTSize( I.cols ); // on the border add zero values
copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));
//! [expand]
//! [complex_and_real]
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexI;
merge(planes, 2, complexI); // Add to the expanded another plane with zeros
//! [complex_and_real]
//! [dft]
dft(complexI, complexI); // this way the result may fit in the source matrix
//! [dft]
// compute the magnitude and switch to logarithmic scale
// => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
//! [magnitude]
split(complexI, planes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude
Mat magI = planes[0];
//! [magnitude]
//! [log]
magI += Scalar::all(1); // switch to logarithmic scale
log(magI, magI);
//! [log]
//! [crop_rearrange]
// crop the spectrum, if it has an odd number of rows or columns
magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2));
@ -67,9 +80,12 @@ int main(int argc, char ** argv)
q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left)
q2.copyTo(q1);
tmp.copyTo(q2);
//! [crop_rearrange]
//! [normalize]
normalize(magI, magI, 0, 1, NORM_MINMAX); // Transform the matrix with float values into a
// viewable image form (float between values 0 and 1).
//! [normalize]
imshow("Input Image" , I ); // Show the result
imshow("spectrum magnitude", magI);

@ -0,0 +1,51 @@
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import java.util.Locale;
import java.util.Scanner;
class AddingImagesRun{
public void run() {
double alpha = 0.5; double beta; double input;
Mat src1, src2, dst = new Mat();
System.out.println(" Simple Linear Blender ");
System.out.println("-----------------------");
System.out.println("* Enter alpha [0.0-1.0]: ");
Scanner scan = new Scanner( System.in ).useLocale(Locale.US);
input = scan.nextDouble();
if( input >= 0.0 && input <= 1.0 )
alpha = input;
//! [load]
src1 = Imgcodecs.imread("../../images/LinuxLogo.jpg");
src2 = Imgcodecs.imread("../../images/WindowsLogo.jpg");
//! [load]
if( src1.empty() == true ){ System.out.println("Error loading src1"); return;}
if( src2.empty() == true ){ System.out.println("Error loading src2"); return;}
//! [blend_images]
beta = ( 1.0 - alpha );
Core.addWeighted( src1, alpha, src2, beta, 0.0, dst);
//! [blend_images]
//![display]
HighGui.imshow("Linear Blend", dst);
HighGui.waitKey(0);
//![display]
System.exit(0);
}
}
public class AddingImages {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new AddingImagesRun().run();
}
}

@ -0,0 +1,186 @@
import org.opencv.core.*;
import org.opencv.core.Point;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
import java.util.*;
import java.util.List;
class GeometricDrawingRun{
private static final int W = 400;
public void run(){
//! [create_images]
/// Windows names
String atom_window = "Drawing 1: Atom";
String rook_window = "Drawing 2: Rook";
/// Create black empty images
Mat atom_image = Mat.zeros( W, W, CvType.CV_8UC3 );
Mat rook_image = Mat.zeros( W, W, CvType.CV_8UC3 );
//! [create_images]
//! [draw_atom]
/// 1. Draw a simple atom:
/// -----------------------
MyEllipse( atom_image, 90.0 );
MyEllipse( atom_image, 0.0 );
MyEllipse( atom_image, 45.0 );
MyEllipse( atom_image, -45.0 );
/// 1.b. Creating circles
MyFilledCircle( atom_image, new Point( W/2, W/2) );
//! [draw_atom]
//! [draw_rook]
/// 2. Draw a rook
/// ------------------
/// 2.a. Create a convex polygon
MyPolygon( rook_image );
//! [rectangle]
/// 2.b. Creating rectangles
Imgproc.rectangle( rook_image,
new Point( 0, 7*W/8 ),
new Point( W, W),
new Scalar( 0, 255, 255 ),
-1,
8,
0 );
//! [rectangle]
/// 2.c. Create a few lines
MyLine( rook_image, new Point( 0, 15*W/16 ), new Point( W, 15*W/16 ) );
MyLine( rook_image, new Point( W/4, 7*W/8 ), new Point( W/4, W ) );
MyLine( rook_image, new Point( W/2, 7*W/8 ), new Point( W/2, W ) );
MyLine( rook_image, new Point( 3*W/4, 7*W/8 ), new Point( 3*W/4, W ) );
//! [draw_rook]
/// 3. Display your stuff!
HighGui.imshow( atom_window, atom_image );
HighGui.moveWindow( atom_window, 0, 200 );
HighGui.imshow( rook_window, rook_image );
HighGui.moveWindow( rook_window, W, 200 );
HighGui.waitKey( 0 );
System.exit(0);
}
/// Function Declaration
/**
* @function MyEllipse
* @brief Draw a fixed-size ellipse with different angles
*/
//! [my_ellipse]
private void MyEllipse( Mat img, double angle ) {
int thickness = 2;
int lineType = 8;
int shift = 0;
Imgproc.ellipse( img,
new Point( W/2, W/2 ),
new Size( W/4, W/16 ),
angle,
0.0,
360.0,
new Scalar( 255, 0, 0 ),
thickness,
lineType,
shift );
}
//! [my_ellipse]
/**
* @function MyFilledCircle
* @brief Draw a fixed-size filled circle
*/
//! [my_filled_circle]
private void MyFilledCircle( Mat img, Point center ) {
int thickness = -1;
int lineType = 8;
int shift = 0;
Imgproc.circle( img,
center,
W/32,
new Scalar( 0, 0, 255 ),
thickness,
lineType,
shift );
}
//! [my_filled_circle]
/**
* @function MyPolygon
* @function Draw a simple concave polygon (rook)
*/
//! [my_polygon]
private void MyPolygon( Mat img ) {
int lineType = 8;
int shift = 0;
/** Create some points */
Point[] rook_points = new Point[20];
rook_points[0] = new Point( W/4, 7*W/8 );
rook_points[1] = new Point( 3*W/4, 7*W/8 );
rook_points[2] = new Point( 3*W/4, 13*W/16 );
rook_points[3] = new Point( 11*W/16, 13*W/16 );
rook_points[4] = new Point( 19*W/32, 3*W/8 );
rook_points[5] = new Point( 3*W/4, 3*W/8 );
rook_points[6] = new Point( 3*W/4, W/8 );
rook_points[7] = new Point( 26*W/40, W/8 );
rook_points[8] = new Point( 26*W/40, W/4 );
rook_points[9] = new Point( 22*W/40, W/4 );
rook_points[10] = new Point( 22*W/40, W/8 );
rook_points[11] = new Point( 18*W/40, W/8 );
rook_points[12] = new Point( 18*W/40, W/4 );
rook_points[13] = new Point( 14*W/40, W/4 );
rook_points[14] = new Point( 14*W/40, W/8 );
rook_points[15] = new Point( W/4, W/8 );
rook_points[16] = new Point( W/4, 3*W/8 );
rook_points[17] = new Point( 13*W/32, 3*W/8 );
rook_points[18] = new Point( 5*W/16, 13*W/16 );
rook_points[19] = new Point( W/4, 13*W/16 );
MatOfPoint matPt = new MatOfPoint();
matPt.fromArray(rook_points);
List<MatOfPoint> ppt = new ArrayList<MatOfPoint>();
ppt.add(matPt);
Imgproc.fillPoly(img,
ppt,
new Scalar( 255, 255, 255 ),
lineType,
shift,
new Point(0,0) );
}
//! [my_polygon]
/**
* @function MyLine
* @brief Draw a simple line
*/
//! [my_line]
private void MyLine( Mat img, Point start, Point end ) {
int thickness = 2;
int lineType = 8;
int shift = 0;
Imgproc.line( img,
start,
end,
new Scalar( 0, 0, 0 ),
thickness,
lineType,
shift );
}
//! [my_line]
}
public class BasicGeometricDrawing {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new GeometricDrawingRun().run();
}
}

@ -0,0 +1,109 @@
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import java.util.List;
import java.util.*;
class DiscreteFourierTransformRun{
private void help() {
System.out.println("" +
"This program demonstrated the use of the discrete Fourier transform (DFT). \n" +
"The dft of an image is taken and it's power spectrum is displayed.\n" +
"Usage:\n" +
"./DiscreteFourierTransform [image_name -- default ../data/lena.jpg]");
}
public void run(String[] args){
help();
String filename = ((args.length > 0) ? args[0] : "../data/lena.jpg");
Mat I = Imgcodecs.imread(filename, Imgcodecs.IMREAD_GRAYSCALE);
if( I.empty() ) {
System.out.println("Error opening image");
System.exit(-1);
}
//! [expand]
Mat padded = new Mat(); //expand input image to optimal size
int m = Core.getOptimalDFTSize( I.rows() );
int n = Core.getOptimalDFTSize( I.cols() ); // on the border add zero values
Core.copyMakeBorder(I, padded, 0, m - I.rows(), 0, n - I.cols(), Core.BORDER_CONSTANT, Scalar.all(0));
//! [expand]
//! [complex_and_real]
List<Mat> planes = new ArrayList<Mat>();
padded.convertTo(padded, CvType.CV_32F);
planes.add(padded);
planes.add(Mat.zeros(padded.size(), CvType.CV_32F));
Mat complexI = new Mat();
Core.merge(planes, complexI); // Add to the expanded another plane with zeros
//! [complex_and_real]
//! [dft]
Core.dft(complexI, complexI); // this way the result may fit in the source matrix
//! [dft]
// compute the magnitude and switch to logarithmic scale
// => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
//! [magnitude]
Core.split(complexI, planes); // planes.get(0) = Re(DFT(I)
// planes.get(1) = Im(DFT(I))
Core.magnitude(planes.get(0), planes.get(1), planes.get(0));// planes.get(0) = magnitude
Mat magI = planes.get(0);
//! [magnitude]
//! [log]
Mat matOfOnes = Mat.ones(magI.size(), magI.type());
Core.add(matOfOnes, magI, magI); // switch to logarithmic scale
Core.log(magI, magI);
//! [log]
//! [crop_rearrange]
// crop the spectrum, if it has an odd number of rows or columns
magI = magI.submat(new Rect(0, 0, magI.cols() & -2, magI.rows() & -2));
// rearrange the quadrants of Fourier image so that the origin is at the image center
int cx = magI.cols()/2;
int cy = magI.rows()/2;
Mat q0 = new Mat(magI, new Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant
Mat q1 = new Mat(magI, new Rect(cx, 0, cx, cy)); // Top-Right
Mat q2 = new Mat(magI, new Rect(0, cy, cx, cy)); // Bottom-Left
Mat q3 = new Mat(magI, new Rect(cx, cy, cx, cy)); // Bottom-Right
Mat tmp = new Mat(); // swap quadrants (Top-Left with Bottom-Right)
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left)
q2.copyTo(q1);
tmp.copyTo(q2);
//! [crop_rearrange]
magI.convertTo(magI, CvType.CV_8UC1);
//! [normalize]
Core.normalize(magI, magI, 0, 255, Core.NORM_MINMAX, CvType.CV_8UC1); // Transform the matrix with float values
// into a viewable image form (float between
// values 0 and 255).
//! [normalize]
HighGui.imshow("Input Image" , I ); // Show the result
HighGui.imshow("Spectrum Magnitude", magI);
HighGui.waitKey();
System.exit(0);
}
}
public class DiscreteFourierTransform {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new DiscreteFourierTransformRun().run(args);
}
}

@ -2,14 +2,10 @@ import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import javax.swing.*;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
class MatMaskOperationsRun {
public void run(String[] args) {
@ -31,8 +27,10 @@ class MatMaskOperationsRun {
System.exit(-1);
}
Image img = toBufferedImage(src);
displayImage("Input", img, 0, 200);
HighGui.namedWindow("Input", HighGui.WINDOW_AUTOSIZE);
HighGui.namedWindow("Output", HighGui.WINDOW_AUTOSIZE);
HighGui.imshow( "Input", src );
double t = System.currentTimeMillis();
Mat dst0 = sharpen(src, new Mat());
@ -40,8 +38,9 @@ class MatMaskOperationsRun {
t = ((double) System.currentTimeMillis() - t) / 1000;
System.out.println("Hand written function time passed in seconds: " + t);
Image img2 = toBufferedImage(dst0);
displayImage("Output", img2, 400, 400);
HighGui.imshow( "Output", dst0 );
HighGui.moveWindow("Output", 400, 400);
HighGui.waitKey();
//![kern]
Mat kern = new Mat(3, 3, CvType.CV_8S);
@ -58,8 +57,10 @@ class MatMaskOperationsRun {
t = ((double) System.currentTimeMillis() - t) / 1000;
System.out.println("Built-in filter2D time passed in seconds: " + t);
Image img3 = toBufferedImage(dst1);
displayImage("Output", img3, 800, 400);
HighGui.imshow( "Output", dst1 );
HighGui.waitKey();
System.exit(0);
}
//! [basic_method]
@ -108,38 +109,12 @@ class MatMaskOperationsRun {
return Result;
}
//! [basic_method]
public Image toBufferedImage(Mat m) {
int type = BufferedImage.TYPE_BYTE_GRAY;
if (m.channels() > 1) {
type = BufferedImage.TYPE_3BYTE_BGR;
}
int bufferSize = m.channels() * m.cols() * m.rows();
byte[] b = new byte[bufferSize];
m.get(0, 0, b); // get all the pixels
BufferedImage image = new BufferedImage(m.cols(), m.rows(), type);
final byte[] targetPixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
System.arraycopy(b, 0, targetPixels, 0, b.length);
return image;
}
public void displayImage(String title, Image img, int x, int y) {
ImageIcon icon = new ImageIcon(img);
JFrame frame = new JFrame(title);
JLabel lbl = new JLabel(icon);
frame.add(lbl);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setLocation(x, y);
frame.setVisible(true);
}
}
public class MatMaskOperations {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new MatMaskOperationsRun().run(args); // run code
new MatMaskOperationsRun().run(args);
}
}

@ -0,0 +1,35 @@
from __future__ import print_function
import sys
import cv2
alpha = 0.5
print(''' Simple Linear Blender
-----------------------
* Enter alpha [0.0-1.0]: ''')
if sys.version_info >= (3, 0): # If Python 3.x
input_alpha = float(input())
else:
input_alpha = float(raw_input())
if 0 <= alpha <= 1:
alpha = input_alpha
## [load]
src1 = cv2.imread('../../../../data/LinuxLogo.jpg')
src2 = cv2.imread('../../../../data/WindowsLogo.jpg')
## [load]
if src1 is None:
print ("Error loading src1")
exit(-1)
elif src2 is None:
print ("Error loading src2")
exit(-1)
## [blend_images]
beta = (1.0 - alpha)
dst = cv2.addWeighted(src1, alpha, src2, beta, 0.0)
## [blend_images]
## [display]
cv2.imshow('dst', dst)
cv2.waitKey(0)
## [display]
cv2.destroyAllWindows()

@ -0,0 +1,115 @@
import cv2
import numpy as np
W = 400
## [my_ellipse]
def my_ellipse(img, angle):
thickness = 2
line_type = 8
cv2.ellipse(img,
(W / 2, W / 2),
(W / 4, W / 16),
angle,
0,
360,
(255, 0, 0),
thickness,
line_type)
## [my_ellipse]
## [my_filled_circle]
def my_filled_circle(img, center):
thickness = -1
line_type = 8
cv2.circle(img,
center,
W / 32,
(0, 0, 255),
thickness,
line_type)
## [my_filled_circle]
## [my_polygon]
def my_polygon(img):
line_type = 8
# Create some points
ppt = np.array([[W / 4, 7 * W / 8], [3 * W / 4, 7 * W / 8],
[3 * W / 4, 13 * W / 16], [11 * W / 16, 13 * W / 16],
[19 * W / 32, 3 * W / 8], [3 * W / 4, 3 * W / 8],
[3 * W / 4, W / 8], [26 * W / 40, W / 8],
[26 * W / 40, W / 4], [22 * W / 40, W / 4],
[22 * W / 40, W / 8], [18 * W / 40, W / 8],
[18 * W / 40, W / 4], [14 * W / 40, W / 4],
[14 * W / 40, W / 8], [W / 4, W / 8],
[W / 4, 3 * W / 8], [13 * W / 32, 3 * W / 8],
[5 * W / 16, 13 * W / 16], [W / 4, 13 * W / 16]], np.int32)
ppt = ppt.reshape((-1, 1, 2))
cv2.fillPoly(img, [ppt], (255, 255, 255), line_type)
# Only drawind the lines would be:
# cv2.polylines(img, [ppt], True, (255, 0, 255), line_type)
## [my_polygon]
## [my_line]
def my_line(img, start, end):
thickness = 2
line_type = 8
cv2.line(img,
start,
end,
(0, 0, 0),
thickness,
line_type)
## [my_line]
## [create_images]
# Windows names
atom_window = "Drawing 1: Atom"
rook_window = "Drawing 2: Rook"
# Create black empty images
size = W, W, 3
atom_image = np.zeros(size, dtype=np.uint8)
rook_image = np.zeros(size, dtype=np.uint8)
## [create_images]
## [draw_atom]
# 1. Draw a simple atom:
# -----------------------
# 1.a. Creating ellipses
my_ellipse(atom_image, 90)
my_ellipse(atom_image, 0)
my_ellipse(atom_image, 45)
my_ellipse(atom_image, -45)
# 1.b. Creating circles
my_filled_circle(atom_image, (W / 2, W / 2))
## [draw_atom]
## [draw_rook]
# 2. Draw a rook
# ------------------
# 2.a. Create a convex polygon
my_polygon(rook_image)
## [rectangle]
# 2.b. Creating rectangles
cv2.rectangle(rook_image,
(0, 7 * W / 8),
(W, W),
(0, 255, 255),
-1,
8)
## [rectangle]
# 2.c. Create a few lines
my_line(rook_image, (0, 15 * W / 16), (W, 15 * W / 16))
my_line(rook_image, (W / 4, 7 * W / 8), (W / 4, W))
my_line(rook_image, (W / 2, 7 * W / 8), (W / 2, W))
my_line(rook_image, (3 * W / 4, 7 * W / 8), (3 * W / 4, W))
## [draw_rook]
cv2.imshow(atom_window, atom_image)
cv2.moveWindow(atom_window, 0, 200)
cv2.imshow(rook_window, rook_image)
cv2.moveWindow(rook_window, W, 200)
cv2.waitKey(0)
cv2.destroyAllWindows()

@ -0,0 +1,80 @@
from __future__ import print_function
import sys
import cv2
import numpy as np
def print_help():
print('''
This program demonstrated the use of the discrete Fourier transform (DFT).
The dft of an image is taken and it's power spectrum is displayed.
Usage:
discrete_fourier_transform.py [image_name -- default ../../../../data/lena.jpg]''')
def main(argv):
print_help()
filename = argv[0] if len(argv) > 0 else "../../../../data/lena.jpg"
I = cv2.imread(filename, cv2.IMREAD_GRAYSCALE)
if I is None:
print('Error opening image')
return -1
## [expand]
rows, cols = I.shape
m = cv2.getOptimalDFTSize( rows )
n = cv2.getOptimalDFTSize( cols )
padded = cv2.copyMakeBorder(I, 0, m - rows, 0, n - cols, cv2.BORDER_CONSTANT, value=[0, 0, 0])
## [expand]
## [complex_and_real]
planes = [np.float32(padded), np.zeros(padded.shape, np.float32)]
complexI = cv2.merge(planes) # Add to the expanded another plane with zeros
## [complex_and_real]
## [dft]
cv2.dft(complexI, complexI) # this way the result may fit in the source matrix
## [dft]
# compute the magnitude and switch to logarithmic scale
# = > log(1 + sqrt(Re(DFT(I)) ^ 2 + Im(DFT(I)) ^ 2))
## [magnitude]
cv2.split(complexI, planes) # planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
cv2.magnitude(planes[0], planes[1], planes[0])# planes[0] = magnitude
magI = planes[0]
## [magnitude]
## [log]
matOfOnes = np.ones(magI.shape, dtype=magI.dtype)
cv2.add(matOfOnes, magI, magI) # switch to logarithmic scale
cv2.log(magI, magI)
## [log]
## [crop_rearrange]
magI_rows, magI_cols = magI.shape
# crop the spectrum, if it has an odd number of rows or columns
magI = magI[0:(magI_rows & -2), 0:(magI_cols & -2)]
cx = int(magI_rows/2)
cy = int(magI_cols/2)
q0 = magI[0:cx, 0:cy] # Top-Left - Create a ROI per quadrant
q1 = magI[cx:cx+cx, 0:cy] # Top-Right
q2 = magI[0:cx, cy:cy+cy] # Bottom-Left
q3 = magI[cx:cx+cx, cy:cy+cy] # Bottom-Right
tmp = np.copy(q0) # swap quadrants (Top-Left with Bottom-Right)
magI[0:cx, 0:cy] = q3
magI[cx:cx + cx, cy:cy + cy] = tmp
tmp = np.copy(q1) # swap quadrant (Top-Right with Bottom-Left)
magI[cx:cx + cx, 0:cy] = q2
magI[0:cx, cy:cy + cy] = tmp
## [crop_rearrange]
## [normalize]
cv2.normalize(magI, magI, 0, 1, cv2.NORM_MINMAX) # Transform the matrix with float values into a
## viewable image form(float between values 0 and 1).
## [normalize]
cv2.imshow("Input Image" , I ) # Show the result
cv2.imshow("spectrum magnitude", magI)
cv2.waitKey()
if __name__ == "__main__":
main(sys.argv[1:])

@ -1,9 +1,10 @@
from __future__ import print_function
import sys
import time
import numpy as np
import cv2
## [basic_method]
def is_grayscale(my_image):
return len(my_image.shape) < 3
@ -26,7 +27,6 @@ def sharpen(my_image):
height, width, n_channels = my_image.shape
result = np.zeros(my_image.shape, my_image.dtype)
## [basic_method_loop]
for j in range(1, height - 1):
for i in range(1, width - 1):
@ -36,17 +36,16 @@ def sharpen(my_image):
result[j, i] = saturated(sum_value)
else:
for k in range(0, n_channels):
sum_value = 5 * my_image[j, i, k] - my_image[j + 1, i, k] - my_image[j - 1, i, k] \
- my_image[j, i + 1, k] - my_image[j, i - 1, k]
sum_value = 5 * my_image[j, i, k] - my_image[j + 1, i, k] \
- my_image[j - 1, i, k] - my_image[j, i + 1, k]\
- my_image[j, i - 1, k]
result[j, i, k] = saturated(sum_value)
## [basic_method_loop]
return result
## [basic_method]
def main(argv):
filename = "../data/lena.jpg"
filename = "../../../../data/lena.jpg"
img_codec = cv2.IMREAD_COLOR
if argv:
@ -57,8 +56,9 @@ def main(argv):
src = cv2.imread(filename, img_codec)
if src is None:
print "Can't open image [" + filename + "]"
print "Usage:\nmat_mask_operations.py [image_path -- default ../data/lena.jpg] [G -- grayscale]"
print("Can't open image [" + filename + "]")
print("Usage:")
print("mat_mask_operations.py [image_path -- default ../../../../data/lena.jpg] [G -- grayscale]")
return -1
cv2.namedWindow("Input", cv2.WINDOW_AUTOSIZE)
@ -70,7 +70,7 @@ def main(argv):
dst0 = sharpen(src)
t = (time.time() - t) / 1000
print "Hand written function time passed in seconds: %s" % t
print("Hand written function time passed in seconds: %s" % t)
cv2.imshow("Output", dst0)
cv2.waitKey()
@ -81,13 +81,13 @@ def main(argv):
[-1, 5, -1],
[0, -1, 0]], np.float32) # kernel should be floating point type
## [kern]
## [filter2D]
dst1 = cv2.filter2D(src, -1, kernel) # ddepth = -1, means destination image has depth same as input image
dst1 = cv2.filter2D(src, -1, kernel)
# ddepth = -1, means destination image has depth same as input image
## [filter2D]
t = (time.time() - t) / 1000
print "Built-in filter2D time passed in seconds: %s" % t
print("Built-in filter2D time passed in seconds: %s" % t)
cv2.imshow("Output", dst1)

Loading…
Cancel
Save