Further optimization of Conv2D, fused Conv_Add_Activation, bring latest code from ficus OpConv.fx. (#22401)

pull/22440/head
Zihao Mu 3 years ago committed by GitHub
parent 67fa8a2f47
commit bb64db98d8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 3
      modules/dnn/include/opencv2/dnn/all_layers.hpp
  2. 1
      modules/dnn/src/dnn_common.hpp
  3. 42
      modules/dnn/src/layers/convolution_layer.cpp
  4. 91
      modules/dnn/src/layers/fast_convolution/fast_convolution.avx2.cpp
  5. 843
      modules/dnn/src/layers/fast_convolution/fast_convolution.cpp
  6. 39
      modules/dnn/src/layers/fast_convolution/fast_convolution.hpp
  7. 508
      modules/dnn/src/layers/fast_convolution/fast_convolution.simd.hpp
  8. 406
      modules/dnn/src/layers/fast_convolution/winograd_3x3s1_f63.cpp
  9. 174
      modules/dnn/src/net_impl_fuse.cpp
  10. 2
      modules/dnn/test/test_caffe_importer.cpp
  11. 2
      modules/dnn/test/test_int8_layers.cpp
  12. 4
      modules/dnn/test/test_torch_importer.cpp

@ -256,6 +256,9 @@ CV__DNN_INLINE_NS_BEGIN
{
public:
static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
bool fusedActivation = false;
bool fusedAdd = false;
bool isConv2D = false; // Should be deleted after fastconv branch support Conv1D and Conv3D.
};
class CV_EXPORTS ConvolutionLayerInt8 : public BaseConvolutionLayer

@ -13,6 +13,7 @@
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
#define IS_DNN_OPENCL_TARGET(id) (id == DNN_TARGET_OPENCL || id == DNN_TARGET_OPENCL_FP16)
#define IS_DNN_CPU_TARGET(id) (id == DNN_TARGET_CPU) // TODO: add DNN_TARGET_CPU_FP16
Mutex& getInitializationMutex();
void initializeLayerFactory();

@ -118,6 +118,9 @@ public:
fusedWeights = false;
fusedBias = false;
if (kernel_size.size() == 2)
isConv2D = true;
}
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
@ -188,6 +191,9 @@ public:
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
{
if (fusedAdd) // If the Conv layer has fused Add layer, it cannot fuse other layers.
return false;
Ptr<BlankLayer> blank_layer = top.dynamicCast<BlankLayer>();
if (blank_layer)
return true;
@ -260,7 +266,6 @@ public:
std::vector<float> reluslope;
Ptr<ActivationLayer> activ;
Mat fastWeights; // Used to store weight params. It will be used for layer fusion and without memory alignment.
Ptr<FastConv2d> fastConv2dImpl;
#ifdef HAVE_OPENCL
@ -438,7 +443,6 @@ public:
wm.copyTo(wm_aligned);
wm = wm_aligned;
}
fastWeights = blobs[0].reshape(1, numOutput);
weightsMat = wm;
}
else
@ -584,11 +588,15 @@ public:
}
}
#endif
return !activ.empty();
fusedActivation = !activ.empty();
return fusedActivation;
}
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
{
if (fusedAdd) // If the Conv layer has fused Add layer, it cannot fuse other layers.
return false;
#ifdef HAVE_CUDA
if(IS_DNN_CUDA_TARGET(preferableTarget))
{
@ -634,26 +642,14 @@ public:
if (weightsMat.data == blobs[0].data)
weightsMat = weightsMat.clone();
// If fastWeights is the same as weightsMat, we don't need to allocate more space for fastWeights.
bool sameFastWeights = false;
if (fastWeights.step1() == weightsMat.step1()) // If weightsMat is realigned, it is not the same as fastWeights.
sameFastWeights = true;
if (!sameFastWeights && fastWeights.data == blobs[0].data)
fastWeights = fastWeights.clone();
Mat originWeights = blobs[0].reshape(1, outCn);
for (int i = 0; i < outCn; ++i)
{
double wi = w.at<float>(i);
weightsMultipliers[i] *= wi;
cv::multiply(originWeights.row(i), weightsMultipliers[i], weightsMat.row(i));
if (!sameFastWeights)
cv::multiply(originWeights.row(i), weightsMultipliers[i], fastWeights.row(i));
biasvec[i] *= wi;
}
if (sameFastWeights)
fastWeights = weightsMat;
}
if (!b.empty())
@ -1970,9 +1966,6 @@ public:
if (blobs.empty())
{
variableWeight = true;
if (fastWeights.data != inputs[1].data)
fastWeights = inputs[1].clone();
Mat wm = inputs[1].reshape(1, outCn);
if (wm.data != weightsMat.data)
{
@ -2089,7 +2082,7 @@ public:
{
int nstripes = std::max(getNumThreads(), 1);
// Initialization of FastCovn2d
// Initialization of FastCovn2d, pack weight.
if ((!fastConv2dImpl || variableWeight) && inputs[0].dims == 4)
{
int K = outputs[0].size[1];
@ -2103,23 +2096,22 @@ public:
int dilation_h = dilations[dilations.size() - 2];
int dilation_w = dilations.back();
float* weightsPtr = fastWeights.ptr<float>();
CV_Assert(weightsPtr);
fastConv2dImpl = initFastConv2d(ngroups, K, C, Hk, Wk, stride_w, stride_h,
dilation_w, dilation_h, pads_begin, pads_end, weightsPtr, &biasvec[0]);
fastConv2dImpl = initFastConv2d(ngroups, K, C, Hk, Wk, stride_w, stride_h, dilation_w,
dilation_h, pads_begin, pads_end, weightsMat, &biasvec[0]);
}
if (fastConv2dImpl)
{
runFastConv2d(inputs[0], outputs[0], fastConv2dImpl, nstripes, activ);
runFastConv2d(inputs[0], outputs[0], fastConv2dImpl, nstripes, activ, fusedAdd);
return;
}
//TODO: Add support of Conv1D and Conv3D to fastConv, and remove the old Conv branch.
// Use only for Conv1D and Conv3D.
CV_Assert(!fusedAdd);
ParallelConv::run(inputs[0], outputs[0], weightsMat, biasvec, reluslope,
kernel_size, strides, pads_begin, pads_end, dilations, activ.get(), ngroups, nstripes);
}
}

@ -9,67 +9,67 @@ namespace cv {
namespace opt_AVX2
{
#if CV_TRY_AVX2
void convBlock_AVX2(int k, const float *a, const float *b,
float *c, int ldc, const float *bias,
float minval, float maxval, bool ifActiv)
void convBlock_AVX2(int np, const float* a, const float* b, float* c, int ldc, bool init_c)
{
#if FAST_CONV_MR == 4 && FAST_CONV_NR == 24
__m256 vminval = _mm256_set1_ps(minval), vmaxval = _mm256_set1_ps(maxval);
__m256 c0 = _mm256_set1_ps(bias[0]), c1 = c0, c2 = c0;
__m256 c3 = _mm256_set1_ps(bias[1]), c4 = c3, c5 = c3;
__m256 c6 = _mm256_set1_ps(bias[2]), c7 = c6, c8 = c6;
__m256 c9 = _mm256_set1_ps(bias[3]), c10 = c9, c11 = c9;
#if CONV_MR == 4 && CONV_NR == 24
__m256 c00 = _mm256_set1_ps(0.f), c01 = c00, c02 = c00;
__m256 c10 = c00, c11 = c00, c12 = c00;
__m256 c20 = c00, c21 = c00, c22 = c00;
__m256 c30 = c00, c31 = c00, c32 = c00;
__m256 a0 = _mm256_setzero_ps(), a1 = _mm256_setzero_ps();
__m256 b0 = _mm256_setzero_ps(), b1 = _mm256_setzero_ps(), b2 = _mm256_setzero_ps();
for (int p = 0; p < k; p++, a += FAST_CONV_MR, b += FAST_CONV_NR)
for (int p = 0; p < np; p++, a += CONV_MR, b += CONV_NR)
{
a0 = _mm256_set1_ps(a[0]), a1 = _mm256_set1_ps(a[1]);
b0 = _mm256_load_ps(b), b1 = _mm256_load_ps(b + 8), b2 = _mm256_load_ps(b + 16);
c0 = _mm256_fmadd_ps(b0, a0, c0);
c1 = _mm256_fmadd_ps(b1, a0, c1);
c2 = _mm256_fmadd_ps(b2, a0, c2);
c00 = _mm256_fmadd_ps(b0, a0, c00);
c01 = _mm256_fmadd_ps(b1, a0, c01);
c02 = _mm256_fmadd_ps(b2, a0, c02);
c3 = _mm256_fmadd_ps(b0, a1, c3);
a0 = _mm256_set1_ps(a[2]);
c4 = _mm256_fmadd_ps(b1, a1, c4);
c5 = _mm256_fmadd_ps(b2, a1, c5);
c10 = _mm256_fmadd_ps(b0, a1, c10);
c11 = _mm256_fmadd_ps(b1, a1, c11);
c12 = _mm256_fmadd_ps(b2, a1, c12);
c6 = _mm256_fmadd_ps(b0, a0, c6);
a1 = _mm256_set1_ps(a[3]);
c7 = _mm256_fmadd_ps(b1, a0, c7);
c8 = _mm256_fmadd_ps(b2, a0, c8);
a0 = _mm256_set1_ps(a[2]), a1 = _mm256_set1_ps(a[3]);
c9 = _mm256_fmadd_ps(b0, a1, c9);
c10 = _mm256_fmadd_ps(b1, a1, c10);
c11 = _mm256_fmadd_ps(b2, a1, c11);
c20 = _mm256_fmadd_ps(b0, a0, c20);
c21 = _mm256_fmadd_ps(b1, a0, c21);
c22 = _mm256_fmadd_ps(b2, a0, c22);
c30 = _mm256_fmadd_ps(b0, a1, c30);
c31 = _mm256_fmadd_ps(b1, a1, c31);
c32 = _mm256_fmadd_ps(b2, a1, c32);
}
if (ifActiv)
if (!init_c)
{
c0 = _mm256_min_ps(_mm256_max_ps(c0, vminval), vmaxval);
c1 = _mm256_min_ps(_mm256_max_ps(c1, vminval), vmaxval);
c2 = _mm256_min_ps(_mm256_max_ps(c2, vminval), vmaxval);
c3 = _mm256_min_ps(_mm256_max_ps(c3, vminval), vmaxval);
c4 = _mm256_min_ps(_mm256_max_ps(c4, vminval), vmaxval);
c5 = _mm256_min_ps(_mm256_max_ps(c5, vminval), vmaxval);
c6 = _mm256_min_ps(_mm256_max_ps(c6, vminval), vmaxval);
c7 = _mm256_min_ps(_mm256_max_ps(c7, vminval), vmaxval);
c8 = _mm256_min_ps(_mm256_max_ps(c8, vminval), vmaxval);
c9 = _mm256_min_ps(_mm256_max_ps(c9, vminval), vmaxval);
c10 = _mm256_min_ps(_mm256_max_ps(c10, vminval), vmaxval);
c11 = _mm256_min_ps(_mm256_max_ps(c11, vminval), vmaxval);
c00 = _mm256_add_ps(c00, _mm256_load_ps(c));
c01 = _mm256_add_ps(c01, _mm256_load_ps(c + 8));
c02 = _mm256_add_ps(c02, _mm256_load_ps(c + 16));
c10 = _mm256_add_ps(c10, _mm256_load_ps(c + ldc));
c11 = _mm256_add_ps(c11, _mm256_load_ps(c + ldc + 8));
c12 = _mm256_add_ps(c12, _mm256_load_ps(c + ldc + 16));
c20 = _mm256_add_ps(c20, _mm256_load_ps(c + ldc*2));
c21 = _mm256_add_ps(c21, _mm256_load_ps(c + ldc*2 + 8));
c22 = _mm256_add_ps(c22, _mm256_load_ps(c + ldc*2 + 16));
c30 = _mm256_add_ps(c30, _mm256_load_ps(c + ldc*3));
c31 = _mm256_add_ps(c31, _mm256_load_ps(c + ldc*3 + 8));
c32 = _mm256_add_ps(c32, _mm256_load_ps(c + ldc*3 + 16));
}
_mm256_storeu_ps(c, c0); _mm256_storeu_ps(c+8, c1); _mm256_storeu_ps(c+16, c2);
_mm256_storeu_ps(c + ldc, c3); _mm256_storeu_ps(c + ldc + 8, c4); _mm256_storeu_ps(c + ldc + 16, c5);
_mm256_storeu_ps(c + ldc*2, c6); _mm256_storeu_ps(c + ldc*2 + 8, c7); _mm256_storeu_ps(c + ldc*2 + 16, c8);
_mm256_storeu_ps(c + ldc*3, c9); _mm256_storeu_ps(c + ldc*3 + 8, c10); _mm256_storeu_ps(c + ldc*3 + 16, c11);
_mm256_storeu_ps(c, c00), _mm256_storeu_ps(c+8, c01), _mm256_storeu_ps(c+16, c02);
_mm256_storeu_ps(c + ldc, c10), _mm256_storeu_ps(c + ldc + 8, c11), _mm256_storeu_ps(c + ldc + 16, c12);
_mm256_storeu_ps(c + ldc*2, c20), _mm256_storeu_ps(c + ldc*2 + 8, c21), _mm256_storeu_ps(c + ldc*2 + 16, c22);
_mm256_storeu_ps(c + ldc*3, c30), _mm256_storeu_ps(c + ldc*3 + 8, c31), _mm256_storeu_ps(c + ldc*3 + 16, c32);
_mm256_zeroupper();
#else
#error "unsupported FAST_CONV_MR and/or FAST_CONV_NR in convBlock_AVX2."
#error "unsupported CONV_MR and/or CONV_NR in convBlock_AVX2."
#endif
}
@ -78,7 +78,6 @@ void depthWiseBlock_AVX2(const float *inptr, float *outptr, const float *weights
int dilation_y, int stride_x, int stride_y, int inner_xleft, int inner_xright, int inner_ytop,
int inner_ybottom, bool ifMinMaxAct, bool useSIMD, bool is3x3)
{
const int VECSZ = 8;
__m256 vminval = _mm256_set1_ps(minval);
__m256 vmaxval = _mm256_set1_ps(maxval);
@ -175,7 +174,7 @@ void depthWiseBlock_AVX2(const float *inptr, float *outptr, const float *weights
{
if (dy0 == 3)
{
for (; x0 <= x1 - VECSZ; x0 += VECSZ)
for (; x0 <= x1 - FAST_VEC_NLANES; x0 += FAST_VEC_NLANES)
{
int xi_ = x0 * stride_x - pad_left;
const float *inptr_xi = inptr + Wi * yi_ + xi_;
@ -251,7 +250,7 @@ void depthWiseBlock_AVX2(const float *inptr, float *outptr, const float *weights
}
else
{
for (; x0 <= x1 - VECSZ; x0 += VECSZ)
for (; x0 <= x1 - FAST_VEC_NLANES; x0 += FAST_VEC_NLANES)
{
int xi_ = x0 * stride_x - pad_left;
const float *inptr_xi = inptr + Wi * yi_ + xi_;
@ -277,7 +276,7 @@ void depthWiseBlock_AVX2(const float *inptr, float *outptr, const float *weights
}
else
{
for (; x0 <= x1 - VECSZ; x0 += VECSZ)
for (; x0 <= x1 - FAST_VEC_NLANES; x0 += FAST_VEC_NLANES)
{
int xi_ = x0 * stride_x - pad_left, k = 0;
const float *inptr_xi = inptr + Wi * yi_ + xi_;

@ -22,7 +22,7 @@ Ptr<FastConv2d> initFastConv2d(
int dilation_x, int dilation_y,
const std::vector<size_t>& pads_begin,
const std::vector<size_t>& pads_end,
float* srcWeights,
InputArray _weightsMat,
float* srcBias)
{
Ptr<FastConv2d> conv = makePtr<FastConv2d>();
@ -43,33 +43,27 @@ Ptr<FastConv2d> initFastConv2d(
conv->pad_bottom = pads_end[0];
conv->pad_left = pads_begin[1];
conv->pad_right = pads_end[1];
// store bias; append some zero's to make sure that
// we can always read FAST_CONV_MR elements starting from any valid index
{
int k = 0, nbias = K + FAST_CONV_MR-1;
conv->biasBuf.reserve(nbias);
float* biasBufPtr = conv->biasBuf.data();
for(; k < K; k++)
biasBufPtr[k] = srcBias ? srcBias[k] : 0.f;
for(; k < nbias; k++)
biasBufPtr[k] = 0.f;
}
Mat weightsMat = _weightsMat.getMat();
auto wShape = shape(weightsMat);
const size_t wstep = weightsMat.step1();
#if CV_NEON // For now, winograd is ARM platform only.
if (ngroups == 1 && Hk ==3 && Wk == 3 && stride_x == 1 && stride_y == 1 && dilation_x == 1 && dilation_y ==1
&& K >= 16 && C >= 16 )
if (ngroups == 1 && Hk ==3 && Wk == 3 && stride_x == 1 && stride_y == 1 &&
dilation_x == 1 && dilation_y ==1 && K >= 16 && C >= 16)
conv->ifWinograd63 = true;
#else
conv->ifWinograd63 = false;
#endif
float *srcWeights = (float *)weightsMat.data;
if (ngroups > 1 && ngroups == K && ngroups == C)
{
// for depth-wise convolutions on NCHW data we just preserve the weights in KCHW layout,
// but add some padding to make the weights array layout more SIMD-friendly
int ksize = Hk*Wk;
int padded_ksize = ((ksize + FAST_VEC_NLANES-1)/FAST_VEC_NLANES)*FAST_VEC_NLANES; // this code aims to let memory fit with vector size.
// this code aims to let memory fit with vector size.
int padded_ksize = ((ksize + FAST_VEC_NLANES-1) / FAST_VEC_NLANES) * FAST_VEC_NLANES;
int nweights = C*padded_ksize;
conv->weightsBuf.reserve(nweights);
float* weightsBufPtr = conv->weightsBuf.data();
@ -77,340 +71,80 @@ Ptr<FastConv2d> initFastConv2d(
for(int c = 0; c < C; c++)
{
for (int k = 0; k < ksize; k++)
weightsBufPtr[c*padded_ksize + k] = srcWeights[c*ksize + k];
weightsBufPtr[c*padded_ksize + k] = srcWeights[c*wstep + k];
}
}
else
{
// The weights are packed as
// ngroups x (ceil((K/ngroups)/FAST_CONV_MR)*FAST_CONV_MR) x (Cg*Hk*Wk) x FAST_CONV_MR tensor
// ngroups x (ceil((K/ngroups)/CONV_MR)*CONV_MR) x (Cg*Hk*Wk) x CONV_MR tensor
int Kg = K/ngroups, Cg = max(C/ngroups, 1);
int Kg_aligned = ((Kg + FAST_CONV_MR - 1)/FAST_CONV_MR)*FAST_CONV_MR;
size_t nweights = ngroups*Kg_aligned*Cg*Hk*Wk;
int numStripsMR = (Kg + CONV_MR - 1) / CONV_MR;
int Kg_aligned = numStripsMR * CONV_MR;
int HkWkCg = Hk*Wk*Cg;
size_t nweights = ngroups*Kg_aligned*HkWkCg;
conv->weightsBuf.reserve(nweights);
float* weightsBufPtr = conv->weightsBuf.data();
memset(weightsBufPtr, 0, nweights*sizeof(weightsBufPtr[0]));
float* packed_wptr = weightsBufPtr;
// pack the weight.
for(int g = 0; g < ngroups; g++)
// Pack the weight.
parallel_for_(Range(0, ngroups * numStripsMR), [&](const Range& r0){
for (int gsi = r0.start; gsi < r0.end; gsi++)
{
for(int k0 = 0; k0 < Kg_aligned; k0 += FAST_CONV_MR)
{
int dk = Kg - k0 < FAST_CONV_MR ? Kg - k0 : FAST_CONV_MR;
for(int c = 0; c < Cg; c++)
{
for(int yx = 0; yx < Hk*Wk; yx++, packed_wptr += FAST_CONV_MR)
{
const float* wptr = srcWeights + ((g*Kg + k0)*Cg + c)*Hk*Wk + yx;
int k = 0;
for(; k < dk; k++, wptr += Cg*Hk*Wk)
packed_wptr[k] = *wptr;
for(; k < FAST_CONV_MR; k++)
packed_wptr[k] = 0.f;
}
}
}
}
// Prepare Weight for Winograd F(6x6, 3x3)
if (conv->ifWinograd63)
{
initWinograd63(conv, srcWeights, K, C);
}
}
return conv;
}
static void packInput(float* inpbuf, const float* inptr, int* yxtab, int ksize, int Cg, int Hi, int Wi, int W0,
int pad_top, int pad_left, int stride_x, int stride_y, int yx0, int slice_len,
bool fast_1x1, bool partial0, bool s1d1p0, bool s1d1)
{
const size_t inp_planesize = (size_t)Hi*Wi;
int g = gsi / numStripsMR;
int si = gsi - g * numStripsMR;
if (fast_1x1)
{
/*
super-fast branch for 1x1 convolutions with sy=sx=1.
in this case each feature plane can be safely treated
as 1D array and we just extract next portion
of FAST_CONV_NR elements from each feature plane and
put it together.
*/
inptr += yx0;
if (!partial0)
{
// Make special branch where memcpy() is called with a constant buffer size.
// Compilers will likely unroll this loop properly.
for (int c = 0; c < Cg; c++, inptr += inp_planesize, inpbuf += FAST_CONV_NR)
memcpy(inpbuf, inptr, FAST_CONV_NR * sizeof(inpbuf[0]));
}
else
{
for (int c = 0; c < Cg; c++, inptr += inp_planesize, inpbuf += FAST_CONV_NR)
{
memcpy(inpbuf, inptr, slice_len * sizeof(inpbuf[0]));
memset(inpbuf + slice_len, 0, (FAST_CONV_NR - slice_len) * sizeof(inpbuf[0]));
}
}
}
else if (s1d1p0)
{
/*
slower, but still fast branch for sy=sx=1, dy=dx=1 and without padding,
in this case we copy data from input tensors by chunks.
*/
for (int c = 0; c < Cg; c++)
{
float *inpbuf_c = inpbuf + c * (FAST_CONV_NR * ksize);
const float *inptr_c = inptr + c * inp_planesize;
int startK = si * CONV_MR;
CV_Assert(startK < Kg_aligned);
for (int k = 0; k < ksize; k++)
{
int y0 = yx0 / W0, x0 = yx0 % W0;
int yi = y0 + yxtab[k * 2], xi = x0 + yxtab[k * 2 + 1];
float *inpbuf_k = inpbuf_c + k * FAST_CONV_NR;
int xi_0 = yxtab[k * 2 + 1];
float* packed_wptr = weightsBufPtr + HkWkCg * (startK + g * Kg_aligned);
int dk = Kg - startK < CONV_MR ? Kg - startK : CONV_MR; // check if we need zero padding.
int i = 0;
for (; i < slice_len;)
int k_idx = g*Kg + startK;
for(int yx = 0; yx < Hk*Wk; yx++) {
for(int c = 0; c < Cg; c++, packed_wptr += CONV_MR)
{
const float *inptr_k = inptr_c + yi * Wi + xi;
int copy_len = std::min(slice_len - i, W0 - x0);
int di_z = (slice_len == i + copy_len) ? FAST_CONV_NR - slice_len : 0;
memcpy(inpbuf_k + i,
inptr_k,
copy_len * sizeof(inpbuf_k[0]));
memset(inpbuf_k + i + copy_len,
0, di_z * sizeof(inpbuf_k[0]));
i += copy_len;
x0 = 0;
xi = xi_0;
yi++;
const float* wptr = srcWeights + wstep * k_idx + c*Hk*Wk + yx;
int k = 0;
for(; k < dk; k++, wptr += wstep)
packed_wptr[k] = *wptr;
for(; k < CONV_MR; k++)
packed_wptr[k] = 0.f;
}
}
}
}
else if (s1d1)
{
/*
slower, but still fast branch for sy=sx=1, dy=dx=1.
in this case we copy data from input tensors by chunks and
interleave the data in inpbuf with 0's
(that correspond to the padding elements) when necessary
*/
int y0 = yx0 / W0, x0 = yx0 % W0;
for (int c = 0; c < Cg; c++)
{
float *inpbuf_c = inpbuf + c * (FAST_CONV_NR * ksize);
const float *inptr_c = inptr + c * inp_planesize;
for (int k = 0; k < ksize; k++)
{
int x0_tmp = x0;
int xi_0 = yxtab[k * 2 + 1] - pad_left;
int yi = y0 + yxtab[k * 2] - pad_top, xi = x0_tmp + xi_0;
float *inpbuf_k = inpbuf_c + k * FAST_CONV_NR;
}});
int i = 0;
for (; i < slice_len;) {
int copyLen = std::min(slice_len - i, W0 - x0_tmp);
int di_z = (i + copyLen == slice_len) ? FAST_CONV_NR - slice_len
: 0; // The final padding.
// pad_top or pad bottom
if (yi < 0 || yi > Hi - 1)
{
memset(inpbuf_k + i,
0, (copyLen + di_z) * sizeof(inpbuf_k[0]));
i += copyLen + di_z;
}
else
{
int x_pad_left = 0, x_pad_right = 0;
// pad_left
if (xi < 0)
{
x_pad_left = std::min(-xi, copyLen);
xi = 0;
copyLen -= x_pad_left;
}
memset(inpbuf_k + i,
0, x_pad_left * sizeof(inpbuf_k[0]));
i += x_pad_left;
// pad right
if (xi + copyLen > Wi)
{
if (xi > Wi)
{
x_pad_right = copyLen;
copyLen = 0;
}
else
{
x_pad_right = std::min(xi + copyLen - Wi, copyLen);
copyLen -= x_pad_right;
}
}
CV_Assert(copyLen >= 0);
const float *inptr_k = inptr_c + yi * Wi + xi;
memcpy(inpbuf_k + i,
inptr_k,
copyLen * sizeof(inpbuf_k[0]));
i += copyLen;
// pad_right and the final padding.
memset(inpbuf_k + i,
0, (di_z + x_pad_right) * sizeof(inpbuf_k[0]));
i += x_pad_right + di_z;
}
x0_tmp = 0;
xi = xi_0;
yi++;
}
}
}
}
else
{
int y0_ = yx0 / W0, x0_ = yx0 - y0_ * W0;
for (int k = 0; k < ksize; k++)
// Prepare Weight for Winograd F(6x6, 3x3)
if (conv->ifWinograd63)
{
int dy = yxtab[k * 2], dx = yxtab[k * 2 + 1];
int i = 0, y0 = y0_, x0 = x0_;
for (; i < FAST_CONV_NR;)
{
float *inpbuf_ki = inpbuf + k * FAST_CONV_NR + i;
int yi = y0 * stride_y + dy - pad_top;
int xi = x0 * stride_x + dx - pad_left;
if ((unsigned) yi < (unsigned) Hi &&
(unsigned) xi < (unsigned) Wi)
{
const float *inptr_ki = inptr + yi * Wi + xi;
if (i + 4 <= FAST_CONV_NR && x0 + 4 <= W0 && xi + stride_x * 4 <= Wi)
{
if (stride_x == 2) {
for (int c = 0; c < Cg; c++, inpbuf_ki += FAST_CONV_NR *
ksize, inptr_ki += inp_planesize)
{
float t0 = inptr_ki[0], t1 = inptr_ki[2];
float t2 = inptr_ki[4], t3 = inptr_ki[6];
inpbuf_ki[0] = t0;
inpbuf_ki[1] = t1;
inpbuf_ki[2] = t2;
inpbuf_ki[3] = t3;
}
}
else
{
for (int c = 0; c < Cg; c++, inpbuf_ki += FAST_CONV_NR *
ksize, inptr_ki += inp_planesize)
{
float t0 = inptr_ki[0], t1 = inptr_ki[stride_x];
float t2 = inptr_ki[stride_x * 2], t3 = inptr_ki[stride_x * 3];
inpbuf_ki[0] = t0;
inpbuf_ki[1] = t1;
inpbuf_ki[2] = t2;
inpbuf_ki[3] = t3;
}
}
i += 4;
x0 += 4;
}
else
{
for (int c = 0; c < Cg; c++, inpbuf_ki += FAST_CONV_NR *
ksize, inptr_ki += inp_planesize)
*inpbuf_ki = *inptr_ki;
i++;
x0++;
}
}
else
{
for (int c = 0; c < Cg; c++, inpbuf_ki += FAST_CONV_NR * ksize)
inpbuf_ki[0] = 0.f;
i++;
x0++;
}
int mask = x0 >= W0;
y0 += mask;
x0 &= mask - 1;
}
initWinograd63(conv, weightsMat, K, C);
}
}
}
static void matMulCompute(float* outptr0, float* inpbuf_task, float* cbuf, const Ptr<FastConv2d>& conv, int HkWkCg,
int k0, int k1, int yx0, int yx1, size_t out_planesize, int g, int Kg, int Kg_aligned,
bool partial0, ActivationLayer*& activ, float minval, float maxval, bool ifMinMaxAct)
{
int outstep0 = out_planesize;
for (int k = k0; k < k1; k += FAST_CONV_MR, outptr0 += outstep0 * FAST_CONV_MR)
// store bias; append some zero's to make sure that
// we can always read MR elements starting from any valid index
{
int dk = Kg - k < FAST_CONV_MR ? Kg - k : FAST_CONV_MR;
bool partial = partial0 || dk < FAST_CONV_MR;
float *outptr = outptr0;
int outstep = outstep0;
if (partial)
{
outptr = cbuf;
outstep = FAST_CONV_NR;
}
#if CV_TRY_AVX2
if (conv->useAVX2)
opt_AVX2::convBlock_AVX2( HkWkCg, conv->weightsBuf.data() + (g * Kg_aligned + k) * HkWkCg,
inpbuf_task, outptr, outstep, conv->biasBuf.data() + Kg * g + k,
minval, maxval, ifMinMaxAct);
else
#endif
#if CV_TRY_NEON
if (conv->useNEON)
opt_NEON::convBlock_NEON(HkWkCg, conv->weightsBuf.data() + (g * Kg_aligned + k) * HkWkCg,
inpbuf_task, outptr, outstep, conv->biasBuf.data() + Kg * g + k,
minval, maxval, ifMinMaxAct);
else
#endif
convBlock(HkWkCg, conv->weightsBuf.data() + (g * Kg_aligned + k) * HkWkCg,
inpbuf_task, outptr, outstep, conv->biasBuf.data() + Kg * g + k,
minval, maxval, ifMinMaxAct);
// activation
if (activ)
activ->forwardSlice(outptr, outptr, yx1 - yx0, outstep, Kg * g + k,
Kg * g + k + dk);
if (partial)
{
for (int i = 0; i < dk; i++)
memcpy(outptr0 + i * outstep0, cbuf + i * FAST_CONV_NR,
(yx1 - yx0) * sizeof(cbuf[0]));
}
int k = 0, nbias = K + CONV_MR - 1;
conv->biasBuf.reserve(nbias);
float* biasBufPtr = conv->biasBuf.data();
for(; k < K; k++)
biasBufPtr[k] = srcBias ? srcBias[k] : 0.f;
for(; k < nbias; k++)
biasBufPtr[k] = 0.f;
}
return conv;
}
void runFastConv2d(InputArray _input, OutputArray _output,
const Ptr<FastConv2d>& conv, int ntasks, const Ptr<ActivationLayer>& actLayer)
void runFastConv2d(InputArray _input, OutputArray _output, const Ptr<FastConv2d>& conv, int ntasks,
const Ptr<ActivationLayer>& actLayer, bool fusedAdd)
{
Mat input = _input.getMat();
Mat output = _output.getMat();
Mat fusedAddMat;
if (fusedAdd)
fusedAddMat = _output.getMat();
MatShape inputShape = shape(input);
MatShape outputShape = shape(output);
CV_Assert(inputShape.size() == 4 && outputShape.size() == 4);
@ -452,93 +186,69 @@ void runFastConv2d(InputArray _input, OutputArray _output,
if (conv->ngroups > 1 && conv->ngroups == conv->K && conv->ngroups == conv->C)
{
CV_Assert(fusedAddMat.empty()); // Depthwise-Convolution layer should not be followed by Add layer.
return runDepthwise(input, output, conv, minval, maxval, activ, ifMinMaxAct);
}
#if CV_NEON
if ( conv->ifWinograd63
if (conv->ifWinograd63
&& inputShape[2] > 12 && inputShape[3] > 12
&& inputShape[2] < 120 && inputShape[3] < 120 )
&& inputShape[2] < 120 && inputShape[3] < 120
)
{
// In general, for winograd branch, more cores will give better performance.
int maxNumThread = std::max(getNumThreads(), 1);
if (runWinograd63(input, output, conv, maxNumThread, minval, maxval, activ, ifMinMaxAct))
if (runWinograd63(input, fusedAddMat, output, conv, ntasks, minval, maxval, activ, ifMinMaxAct))
return;
}
#endif
float* inp = input.ptr<float>();
float* out = output.ptr<float>();
int N = inputShape[0], C = inputShape[1], Hi = inputShape[2], Wi = inputShape[3]; // [N, C, H, W]
int K = conv->K, Hk = conv->Hk, Wk = conv->Wk;
int H0 = outputShape[2], W0 = outputShape[3], ngroups = conv->ngroups; // ngroups
int H0 = outputShape[2], W0 = outputShape[3], ngroups = conv->ngroups;
int Cg = C/ngroups, Kg = K/ngroups;
int Kg_nblocks = (Kg + FAST_CONV_MR-1)/FAST_CONV_MR, Kg_aligned = Kg_nblocks*FAST_CONV_MR; // align to MR
const size_t inp_planesize = (size_t)Hi*Wi;
const size_t out_planesize = (size_t)H0*W0;
int pad_top = conv->pad_top, pad_bottom = conv->pad_bottom;
int pad_top = conv->pad_top;
int pad_left = conv->pad_left;
int pad_right = conv->pad_right;
int stride_y = conv->stride_y, stride_x = conv->stride_x;
int dilation_y = conv->dilation_y, dilation_x = conv->dilation_x;
int ksize = Hk * Wk;
bool s1d1 = stride_x == 1 && stride_y == 1 && dilation_x == 1 && dilation_y == 1;
bool s1d1p0 = s1d1 && pad_top == 0 && pad_left ==0 && pad_bottom == 0 && pad_right == 0;
bool fast_1x1 = stride_x == 1 && stride_y == 1 && ksize == 1;
int HkWkCg = Hk*Wk*Cg;
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
size_t taskbufsize = FAST_CONV_NR*HkWkCg; // input buffer
size_t taskbufsizeOutput = FAST_CONV_NR * FAST_CONV_MR;
size_t inputbufsize = 0;
size_t outbufsize = ntasks * taskbufsizeOutput;
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F }; // Memory alignment.
int MAX_STRIPES = 2; // (56 + CONV_NR - 1)/CONV_NR;
// Friendly to L1 cache
const int K_BLOCK_SIZE = 32;
const int C_BLOCK_SIZE = 256;
int stripes_per_sample = (out_planesize + FAST_CONV_NR - 1)/FAST_CONV_NR; // align to NR
size_t hw_task = stripes_per_sample;
size_t hw_aligned = stripes_per_sample * FAST_CONV_NR;
int Kg_nblocks = (Kg + CONV_MR-1)/CONV_MR, Kg_aligned = Kg_nblocks * CONV_MR;
bool separatedLoop = false;
int stripes_per_sample = (out_planesize + CONV_NR - 1) / CONV_NR;
if (stripes_per_sample < 4 * ntasks)
if (stripes_per_sample < ntasks * 4)
{
// If stripes_per_sample is small, we parallelize on K (output channel).
MAX_STRIPES = 1;
stripes_per_sample = 1;
// Separated Parallelloop could save much time in packing input data. But it may cost more memory, we use it when batch size is 1.
if (N == 1)
{
separatedLoop = true;
inputbufsize = ngroups * hw_aligned * HkWkCg;
}
if (!separatedLoop)
{
inputbufsize = taskbufsize * ntasks;
}
}
else
{
// If stripes_per_sample is big, we parallelize on H0*W0.
Kg_nblocks = 1;
inputbufsize = taskbufsize * ntasks;
}
int Kstripes = Kg_nblocks*stripes_per_sample;
int nsubtasks = N*ngroups*Kstripes;
AutoBuffer<float> inpbuf_all_, outputbuf_;
inputbufsize = alignSize(inputbufsize, VEC_ALIGN);
inpbuf_all_.allocate(inputbufsize + VEC_ALIGN);
float* inpbuf_all = alignPtr(inpbuf_all_.data(), (int)(VEC_ALIGN*sizeof(float)));
size_t stripesize = CONV_NR * ksize * Cg;
size_t taskbufsize = (stripesize + CONV_NR * K_BLOCK_SIZE) * MAX_STRIPES;
size_t totalbufsize = taskbufsize * ntasks;
outbufsize = alignSize(outbufsize, VEC_ALIGN);
outputbuf_.allocate(outbufsize + VEC_ALIGN);
float* output_buf = alignPtr(outputbuf_.data(), (int)(VEC_ALIGN*sizeof(float)));
AutoBuffer<float> inpbuf_all_;
totalbufsize = alignSize(totalbufsize, VEC_ALIGN);
inpbuf_all_.allocate(totalbufsize + VEC_ALIGN);
float* inpbuf_all = alignPtr(inpbuf_all_.data(), (int)(VEC_ALIGN*sizeof(inpbuf_all_[0])));
std::vector<int> ofstab_(Hk*Wk*3, 0);
int* ofstab = ofstab_.data();
@ -554,141 +264,306 @@ void runFastConv2d(InputArray _input, OutputArray _output,
ofstab[k] = dy*Wi + dx;
}
if (ksize == 1)
{
CV_Assert(pad_left == 0 && pad_right == 0 && pad_top == 0 && pad_bottom == 0);
CV_Assert(stride_x != 1 || stride_y != 1 || (H0 == Hi && W0 == Wi));
}
float* inp = input.ptr<float>();
float* out = output.ptr<float>();
float* fusedAddPtr0 = fusedAddMat.empty() ? 0 : fusedAddMat.ptr<float>();
if (separatedLoop)
parallel_for_(Range(0, ntasks), [&](const Range& r0) {
for (int task_id = r0.start; task_id < r0.end; task_id++)
{
// For now this branch only handles batch size = 1. Maybe we could support batch size < 10 in the future.
// Pack Input data
parallel_for_(Range(0, ngroups * hw_task), [&](const Range& r0)
float* inpbuf_task = &inpbuf_all[taskbufsize * task_id];
float* cbuf_task = inpbuf_task + stripesize * MAX_STRIPES;
int ngs0 = (int)((size_t)nsubtasks * task_id / ntasks);
int ngs1 = (int)((size_t)nsubtasks * (task_id+1) / ntasks);
for (int subtask = ngs0; subtask < ngs1; )
{
for (int nhwi = r0.start; nhwi < r0.end; nhwi++)
int ng = subtask / Kstripes;
int kyx0 = subtask - ng * Kstripes;
int kyx1 = kyx0 + (ngs1 - subtask);
int n = ng / ngroups, g = ng % ngroups; // ng - n * ngroups;
size_t inp_plane_ofs = (size_t)(n * ngroups + g) * Cg * inp_planesize;
kyx1 = kyx1 <= Kstripes ? kyx1 : Kstripes;
subtask += kyx1 - kyx0;
int k0, k1;
int yx0, yx_limit, yx_block_limit = 0;
if (stripes_per_sample == 1)
{
int g = nhwi/hw_task;
int hw_i = nhwi % hw_task;
int hw0 = hw_i * FAST_CONV_NR;
float* inpbuf = inpbuf_all + g * hw_aligned * HkWkCg + hw0 * HkWkCg;
const float* inptr = inp + g * Cg * inp_planesize;
bool partial0 = hw0 + FAST_CONV_NR > out_planesize? true: false;
int slice_len = FAST_CONV_NR;
if (partial0)
slice_len = out_planesize - hw0;
packInput(inpbuf, inptr, yxtab, ksize, Cg, Hi, Wi, W0, pad_top, pad_left, stride_x, stride_y,
hw0, slice_len, fast_1x1, partial0, s1d1p0, s1d1);
k0 = kyx0 * CONV_MR;
k1 = kyx1 * CONV_MR;
k1 = k1 <= Kg ? k1 : Kg;
yx0 = 0;
yx_limit = out_planesize;
}
});
// Compute
parallel_for_(Range(0, ntasks), [&](const Range& r0)
{
for (int task_id = r0.start; task_id < r0.end; task_id++)
else
{
float *cbuf = output_buf + task_id * taskbufsizeOutput;
int ngs0 = (int) ((size_t) nsubtasks * task_id / ntasks);
int ngs1 = (int) ((size_t) nsubtasks * (task_id + 1) / ntasks);
for (int subtask = ngs0; subtask < ngs1;)
{
int ng = subtask / Kstripes;
int kyx0 = subtask - ng * Kstripes;
int kyx1 = kyx0 + (ngs1 - subtask);
int n = ng / ngroups, g = ng - n * ngroups;
CV_Assert(n <= 1);
k0 = 0;
k1 = Kg;
yx0 = kyx0 * CONV_NR;
yx_limit = kyx1 * CONV_NR;
yx_limit = yx_limit < out_planesize ? yx_limit : out_planesize;
}
kyx1 = kyx1 <= Kstripes ? kyx1 : Kstripes; // Guarantee that maximum kyx1 is Kstripes.
subtask += kyx1 - kyx0;
for (; yx0 < yx_limit; yx0 = yx_block_limit)
{
// step 1. extract part of input tensor and represent it in zigzag form
yx_block_limit = yx0 + CONV_NR * MAX_STRIPES;
yx_block_limit = yx_block_limit < yx_limit ? yx_block_limit : yx_limit;
int k0 = kyx0 * FAST_CONV_MR;
int k1 = kyx1 * FAST_CONV_MR;
k1 = k1 <= Kg ? k1 : Kg;
int nstripes = (yx_block_limit - yx0 + CONV_NR - 1) / CONV_NR;
int yx0_saved = yx0;
CV_Assert(nstripes <= MAX_STRIPES);
for (int yx0 = 0; yx0 < out_planesize; yx0 += FAST_CONV_NR)
{
float* inpbuf_task = inpbuf_all + g * hw_aligned * HkWkCg + yx0 * HkWkCg;
int yx1 = yx0 + FAST_CONV_NR;
yx1 = yx1 <= out_planesize ? yx1 : out_planesize;
int slice_len = yx1 - yx0;
bool partial0 = slice_len < FAST_CONV_NR;
int outstep0 = out_planesize;
size_t outofs = ((n * ngroups + g) * Kg + k0) * outstep0 + yx0;
float *outptr0 = out + outofs;
matMulCompute(outptr0, inpbuf_task, cbuf, conv, HkWkCg, k0, k1, yx0, yx1, out_planesize, g,
Kg, Kg_aligned, partial0, activ, minval, maxval, ifMinMaxAct);
}
}
}
});
}
else
{
parallel_for_(Range(0, ntasks), [&](const Range &r0) {
for (int task_id = r0.start; task_id < r0.end; task_id++) {
float *inpbuf_task = &inpbuf_all[taskbufsize * task_id];
float *cbuf = output_buf + task_id * taskbufsizeOutput;
int ngs0 = (int) ((size_t) nsubtasks * task_id / ntasks);
int ngs1 = (int) ((size_t) nsubtasks * (task_id + 1) / ntasks);
for (int subtask = ngs0; subtask < ngs1;)
for (int stripe = 0; yx0 < yx_block_limit; stripe++, yx0 += CONV_NR)
{
int ng = subtask / Kstripes;
int kyx0 = subtask - ng * Kstripes;
int kyx1 = kyx0 + (ngs1 - subtask);
int n = ng / ngroups, g = ng - n * ngroups;
size_t inp_plane_ofs = (size_t) (n * ngroups + g) * Cg * inp_planesize;
kyx1 = kyx1 <= Kstripes ? kyx1 : Kstripes; // Guarantee that maximum kyx1 is Kstripes.
subtask += kyx1 - kyx0;
int k0, k1;
int yx0, yx_limit;
if (stripes_per_sample == 1)
float* inpbuf = inpbuf_task + stripe * stripesize;
float* inptr = inp + inp_plane_ofs;
/*
1. pack the data. Copy the HkxWk CONV_NR-wide slices from
each feature plane of the input tensor to the input buffer.
*/
if (fast_1x1)
{
k0 = kyx0 * FAST_CONV_MR;
k1 = kyx1 * FAST_CONV_MR;
k1 = k1 <= Kg ? k1 : Kg;
yx0 = 0;
yx_limit = out_planesize;
int slice_len = yx_block_limit - yx0;
bool partial = slice_len < CONV_NR;
// Superfast branch for 1x1 convolutions with sy=sx=1.
// in this case each feature plane can be safely treated
// as 1D array, and we just extract next portion
// of CONV_NR elements from each feature plane and
// put it together.
inptr += yx0;
if (!partial)
{
// Make special branch where memcpy() is called with a constant buffer size.
// Compilers will likely unroll this loop properly.
for (int c = 0; c < Cg; c++, inptr += inp_planesize, inpbuf += CONV_NR)
memcpy(inpbuf, inptr, CONV_NR*sizeof(inpbuf[0]));
}
else
{
for (int c = 0; c < Cg; c++, inptr += inp_planesize, inpbuf += CONV_NR)
{
memcpy(inpbuf, inptr, slice_len * sizeof(inpbuf[0]));
memset(inpbuf + slice_len, 0, (CONV_NR - slice_len) * sizeof(inpbuf[0]));
}
}
}
else
{
k0 = 0;
k1 = Kg;
yx0 = kyx0 * FAST_CONV_NR;
yx_limit = kyx1 * FAST_CONV_NR;
yx_limit = yx_limit < out_planesize ? yx_limit : out_planesize;
int y0_ = yx0 / W0, x0_ = yx0 - y0_ * W0;
for (int k = 0; k < ksize; k++)
{
int dy = yxtab[k * 2], dx = yxtab[k * 2 + 1];
int i = 0, y0 = y0_, x0 = x0_;
for (; i < CONV_NR;)
{
float *inpbuf_ki = inpbuf + k * CONV_NR * Cg + i;
int yi = y0 * stride_y + dy - pad_top;
int xi = x0 * stride_x + dx - pad_left;
if ((unsigned) yi < (unsigned) Hi && (unsigned) xi < (unsigned) Wi)
{
const float *inptr_ki = inptr + yi * Wi + xi;
if (i + 8 <= CONV_NR && x0 + 8 <= W0 && xi + stride_x * 8 <= Wi)
{
if (stride_x == 1)
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR, inptr_ki += inp_planesize)
{
float t0 = inptr_ki[0], t1 = inptr_ki[1];
float t2 = inptr_ki[2], t3 = inptr_ki[3];
float t4 = inptr_ki[4], t5 = inptr_ki[5];
float t6 = inptr_ki[6], t7 = inptr_ki[7];
inpbuf_ki[0] = t0; inpbuf_ki[1] = t1;
inpbuf_ki[2] = t2; inpbuf_ki[3] = t3;
inpbuf_ki[4] = t4; inpbuf_ki[5] = t5;
inpbuf_ki[6] = t6; inpbuf_ki[7] = t7;
}
}
else
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR, inptr_ki += inp_planesize)
{
float t0 = inptr_ki[0], t1 = inptr_ki[stride_x];
float t2 = inptr_ki[stride_x*2], t3 = inptr_ki[stride_x*3];
float t4 = inptr_ki[stride_x*4], t5 = inptr_ki[stride_x*5];
float t6 = inptr_ki[stride_x*6], t7 = inptr_ki[stride_x*7];
inpbuf_ki[0] = t0; inpbuf_ki[1] = t1;
inpbuf_ki[2] = t2; inpbuf_ki[3] = t3;
inpbuf_ki[4] = t4; inpbuf_ki[5] = t5;
inpbuf_ki[6] = t6; inpbuf_ki[7] = t7;
}
}
i += 8;
x0 += 8;
}
else if (i + 4 <= CONV_NR && x0 + 4 <= W0 && xi + stride_x * 4 <= Wi)
{
if (stride_x == 1)
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR, inptr_ki += inp_planesize)
{
float t0 = inptr_ki[0], t1 = inptr_ki[1];
float t2 = inptr_ki[2], t3 = inptr_ki[3];
inpbuf_ki[0] = t0; inpbuf_ki[1] = t1;
inpbuf_ki[2] = t2; inpbuf_ki[3] = t3;
}
}
else
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR, inptr_ki += inp_planesize)
{
float t0 = inptr_ki[0], t1 = inptr_ki[stride_x];
float t2 = inptr_ki[stride_x*2], t3 = inptr_ki[stride_x*3];
inpbuf_ki[0] = t0; inpbuf_ki[1] = t1;
inpbuf_ki[2] = t2; inpbuf_ki[3] = t3;
}
}
i += 4;
x0 += 4;
}
else
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR, inptr_ki += inp_planesize)
*inpbuf_ki = *inptr_ki;
i++;
x0++;
}
}
else
{
for (int c = 0; c < Cg; c++, inpbuf_ki += CONV_NR)
inpbuf_ki[0] = 0.f;
i++;
x0++;
}
int mask = x0 >= W0;
y0 += mask;
x0 &= mask - 1;
}
}
}
}
for (; yx0 < yx_limit; yx0 += FAST_CONV_NR)
yx0 = yx0_saved;
float* weights = conv->weightsBuf.data() + g * Kg_aligned * HkWkCg;
const float* biasptr = conv->biasBuf.data() + Kg * g;
int ldc = nstripes * CONV_NR;
// 2. do convolution, compute Kg x (yx_block_limit - yx0) part of the output tensor
for (int k0_block = k0; k0_block < k1; k0_block += K_BLOCK_SIZE)
{
int k1_block = k0_block + K_BLOCK_SIZE < k1 ? k0_block + K_BLOCK_SIZE : k1;
for (int c0 = 0; c0 < HkWkCg; c0 += C_BLOCK_SIZE)
{
float *inpbuf = inpbuf_task;
const float *inptr = inp + inp_plane_ofs;
int yx1 = yx0 + FAST_CONV_NR;
yx1 = yx1 <= yx_limit ? yx1 : yx_limit;
int slice_len = yx1 - yx0;
bool partial0 = slice_len < FAST_CONV_NR;
packInput(inpbuf, inptr, yxtab, ksize, Cg, Hi, Wi, W0, pad_top, pad_left, stride_x, stride_y,
yx0, slice_len, fast_1x1, partial0, s1d1p0, s1d1);
// 2. do convolution, compute Kg x (yx1 - yx0) part of the output tensor
int outstep0 = out_planesize;
size_t outofs = ((n * ngroups + g) * Kg + k0) * outstep0 + yx0;
float *outptr0 = out + outofs;
matMulCompute(outptr0, inpbuf_task, cbuf, conv, HkWkCg, k0, k1, yx0, yx1, out_planesize, g,
Kg, Kg_aligned, partial0, activ, minval, maxval, ifMinMaxAct);
int c1 = c0 + C_BLOCK_SIZE < HkWkCg ? c0 + C_BLOCK_SIZE : HkWkCg;
for (int stripe = 0; stripe < nstripes; stripe++)
{
float* wptr = weights + k0_block*HkWkCg + c0*CONV_MR;
const float* inptr = inpbuf_task + stripe*stripesize + c0 * CONV_NR;
float* cptr = cbuf_task + stripe * CONV_NR;
for (int k = k0_block; k < k1_block; k += CONV_MR,
wptr += HkWkCg * CONV_MR, cptr += CONV_MR * ldc)
{
#if CV_TRY_AVX2
if (conv->useAVX2)
opt_AVX2::convBlock_AVX2(c1 - c0, wptr, inptr, cptr, ldc, c0 == 0);
else
#endif
#if CV_TRY_NEON
if (conv->useNEON)
opt_NEON::convBlock_NEON(c1 - c0, wptr, inptr, cptr, ldc, c0 == 0);
else
#endif
convBlock(c1 - c0, wptr, inptr, cptr, ldc, c0 == 0);
}
}
}
size_t outofs = ((n*ngroups + g) * Kg + k0_block) * out_planesize + yx0;
int out_width = yx_block_limit - yx0;
const float* cptr = cbuf_task;
float* outptr = out + outofs;
const float* pbptr = fusedAddPtr0 ? fusedAddPtr0 + outofs : 0;
for (int k = k0_block; k < k1_block; k++,
cptr += ldc, outptr += out_planesize,
pbptr += (pbptr ? out_planesize : 0))
{
float biasval = biasptr[k];
int j = 0;
#if CV_SIMD128
v_float32x4 vbias = v_setall_f32(biasval), vmax = v_setall_f32(maxval), vmin = v_setall_f32(minval);
if (pbptr)
{
for (; j + 7 < out_width; j += 8)
{
v_float32x4 v0 = v_add(v_load(cptr + j), vbias);
v_float32x4 v1 = v_add(v_load(cptr + j + 4), vbias);
v0 = v_add(v0, v_load(pbptr + j));
v1 = v_add(v1, v_load(pbptr + j + 4));
if (ifMinMaxAct)
{
v0 = v_min(v_max(v0, vmin), vmax);
v1 = v_min(v_max(v1, vmin), vmax);
}
v_store(outptr + j, v0);
v_store(outptr + j + 4, v1);
}
}
else
{
for (; j + 7 < out_width; j += 8)
{
v_float32x4 v0 = v_add(v_load(cptr + j), vbias);
v_float32x4 v1 = v_add(v_load(cptr + j + 4), vbias);
if (ifMinMaxAct)
{
v0 = v_min(v_max(v0, vmin), vmax);
v1 = v_min(v_max(v1, vmin), vmax);
}
v_store(outptr + j, v0);
v_store(outptr + j + 4, v1);
}
}
#endif
if (pbptr) {
for (; j < out_width; j++)
{
float v = cptr[j] + biasval;
v += pbptr[j];
if (ifMinMaxAct)
v = std::min(std::max(v, minval), maxval);
outptr[j] = v;
}
}
else
{
for (; j < out_width; j++)
{
float v = cptr[j] + biasval;
if (ifMinMaxAct)
v = std::min(std::max(v, minval), maxval);
outptr[j] = v;
}
}
if (activ)
activ->forwardSlice(outptr, outptr, out_width, out_planesize, Kg * g + k, Kg * g + k + 1);
}
}
}
});
}
}
});
}
}} // namespace cv::dnn
}} // namespace cv::dnn

@ -7,20 +7,26 @@
#include "opencv2/core/hal/intrin.hpp"
#ifndef FAST_CONV_PRAM
#define FAST_CONV_PRAM
#ifndef CONV_PRAM
#define CONV_PRAM
#if CV_NEON && CV_NEON_AARCH64 // 32 registers.
#define FAST_CONV_MR 4
#define FAST_CONV_NR 28
#define CONV_MR 4
#define CONV_NR 28
enum { FAST_VEC_NLANES=4 };
#elif CV_NEON // 16 registers.
#define FAST_CONV_MR 4
#define FAST_CONV_NR 12
#define CONV_MR 4
#define CONV_NR 12
enum { FAST_VEC_NLANES=4 };
#else // SIMD 128, AVX or AVX2
#define FAST_CONV_MR 4
#define FAST_CONV_NR 24
enum { FAST_VEC_NLANES=4 };
#define CONV_MR 4
#define CONV_NR 24
#ifdef CV_AVX2
enum { FAST_VEC_NLANES=8 }; // AVX2
#else
enum { FAST_VEC_NLANES=4 }; // SIMD 128
#endif
#endif
#endif
@ -37,7 +43,6 @@ struct FastConv2d
std::vector<float> weightsBuf; // For generic Conv 2D
std::vector<float> weightsWino63Buf; // For Winograd F(6x6, 3x3).
std::vector<float> biasBuf;
bool ifWinograd63 = false;
bool useAVX2 = checkHardwareSupport(CPU_AVX2);
@ -52,20 +57,20 @@ Ptr<FastConv2d> initFastConv2d(
int dilation_x, int dilation_y,
const std::vector<size_t>& pads_begin,
const std::vector<size_t>& pads_end,
float* srcWeights,
InputArray weightsMat,
float* srcBias);
// It contains different computing branches, like winograd, 1x1 conv.
void runFastConv2d(InputArray _input, OutputArray _output,
const Ptr<FastConv2d>& conv, int ntasks, const Ptr<ActivationLayer>& actLayer);
void runFastConv2d(InputArray _input, OutputArray _output, const Ptr<FastConv2d>& conv, int ntasks,
const Ptr<ActivationLayer>& actLayer, bool fusedAdd);
void runDepthwise(InputArray _input, OutputArray _output, const Ptr<FastConv2d>& conv, float minval, float maxval,
ActivationLayer* activ, bool ifMinMaxAct);
// winograd init
void initWinograd63(Ptr<FastConv2d>& conv, float* src_weight, int K, int C);
void initWinograd63(Ptr<FastConv2d>& conv, InputArray weightsMat, int K, int C);
int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>& conv, int ntasks,
int runWinograd63(InputArray _input, InputArray _fusedAddMat, OutputArray _output, const Ptr<FastConv2d>& conv, int ntasks,
float minval, float maxval, ActivationLayer* activ, bool ifMinMaxAct);
} // namespace dnn
@ -73,9 +78,7 @@ int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>&
namespace opt_AVX2
{
#if CV_TRY_AVX2
void convBlock_AVX2(int k, const float *a, const float *b,
float *c, int ldc, const float *bias,
float minval, float maxval, bool ifActiv);
void convBlock_AVX2(int np, const float* a, const float* b, float* c, int ldc, bool init_c);
void depthWiseBlock_AVX2(const float *inptr, float *outptr, const float *weights, float biasval, int *ofstab, int *yxtab,
float minval, float maxval, int Hi, int Wi, int H0, int W0, int ksize, int pad_top, int pad_left,

@ -11,140 +11,131 @@
namespace cv {
namespace dnn {
void convBlock(int k, const float *a, const float *b,
float *c, int ldc, const float *bias,
float minval, float maxval, bool ifActiv)
void convBlock(int np, const float* a, const float* b, float* c, int ldc, bool init_c)
{
#if CV_SIMD128
#if FAST_CONV_MR == 4 && FAST_CONV_NR == 24
{
v_float32x4 c0 = v_setall_f32(bias[0]), c1 = c0, c2 = c0, c3 = c0, c4 = c0, c5 = c0;
v_float32x4 c6 = v_setall_f32(bias[1]), c7 = c6, c8 = c6, c9 = c6, c10 = c6, c11 = c6;
v_float32x4 c12 = v_setall_f32(bias[2]), c13 = c12, c14 = c12, c15 = c12, c16 = c12, c17 = c12;
v_float32x4 c18 = v_setall_f32(bias[3]), c19 = c18, c20 = c18, c21 = c18, c22 = c18, c23 = c18;
#if 0 // CV_SIMD128 && CONV_MR == 4 && CONV_NR == 24
v_float32x4 c0 = v_setzero_f32(), c1 = c0, c2 = c0, c3 = c0, c4 = c0, c5 = c0;
v_float32x4 c6 = v_setzero_f32(), c7 = c6, c8 = c6, c9 = c6, c10 = c6, c11 = c6;
v_float32x4 c12 = v_setzero_f32(), c13 = c12, c14 = c12, c15 = c12, c16 = c12, c17 = c12;
v_float32x4 c18 = v_setzero_f32(), c19 = c18, c20 = c18, c21 = c18, c22 = c18, c23 = c18;
for (int p = 0; p < k; p++, a += FAST_CONV_MR, b += FAST_CONV_NR)
{
v_float32x4 a0 = v_setall_f32(a[0]);
v_float32x4 b0 = v_load(b), b1 = v_load(b + 4), b2 = v_load(b + 8);
v_float32x4 b3 = v_load(b + 12), b4 = v_load(b + 16), b5 = v_load(b + 20);
c0 = v_fma(b0, a0, c0);
c1 = v_fma(b1, a0, c1);
c2 = v_fma(b2, a0, c2);
c3 = v_fma(b3, a0, c3);
c4 = v_fma(b4, a0, c4);
c5 = v_fma(b5, a0, c5);
a0 = v_setall_f32(a[1]);
c6 = v_fma(b0, a0, c6);
c7 = v_fma(b1, a0, c7);
c8 = v_fma(b2, a0, c8);
c9 = v_fma(b3, a0, c9);
c10 = v_fma(b4, a0, c10);
c11 = v_fma(b5, a0, c11);
a0 = v_setall_f32(a[2]);
c12 = v_fma(b0, a0, c12);
c13 = v_fma(b1, a0, c13);
c14 = v_fma(b2, a0, c14);
c15 = v_fma(b3, a0, c15);
c16 = v_fma(b4, a0, c16);
c17 = v_fma(b5, a0, c17);
a0 = v_setall_f32(a[3]);
c18 = v_fma(b0, a0, c18);
c19 = v_fma(b1, a0, c19);
c20 = v_fma(b2, a0, c20);
c21 = v_fma(b3, a0, c21);
c22 = v_fma(b4, a0, c22);
c23 = v_fma(b5, a0, c23);
}
if (ifActiv) {
v_float32x4 vmin = v_setall_f32(minval), vmax = v_setall_f32(maxval);
c0 = v_min(v_max(c0, vmin), vmax);
c1 = v_min(v_max(c1, vmin), vmax);
c2 = v_min(v_max(c2, vmin), vmax);
c3 = v_min(v_max(c3, vmin), vmax);
c4 = v_min(v_max(c4, vmin), vmax);
c5 = v_min(v_max(c5, vmin), vmax);
c6 = v_min(v_max(c6, vmin), vmax);
c7 = v_min(v_max(c7, vmin), vmax);
c8 = v_min(v_max(c8, vmin), vmax);
c9 = v_min(v_max(c9, vmin), vmax);
c10 = v_min(v_max(c10, vmin), vmax);
c11 = v_min(v_max(c11, vmin), vmax);
c12 = v_min(v_max(c12, vmin), vmax);
c13 = v_min(v_max(c13, vmin), vmax);
c14 = v_min(v_max(c14, vmin), vmax);
c15 = v_min(v_max(c15, vmin), vmax);
c16 = v_min(v_max(c16, vmin), vmax);
c17 = v_min(v_max(c17, vmin), vmax);
c18 = v_min(v_max(c18, vmin), vmax);
c19 = v_min(v_max(c19, vmin), vmax);
c20 = v_min(v_max(c20, vmin), vmax);
c21 = v_min(v_max(c21, vmin), vmax);
c22 = v_min(v_max(c22, vmin), vmax);
c23 = v_min(v_max(c23, vmin), vmax);
}
v_store(c, c0);
v_store(c + 4, c1);
v_store(c + 8, c2);
v_store(c + 12, c3);
v_store(c + 16, c4);
v_store(c + 20, c5);
v_store(c + ldc, c6);
v_store(c + ldc + 4, c7);
v_store(c + ldc + 8, c8);
v_store(c + ldc + 12, c9);
v_store(c + ldc + 16, c10);
v_store(c + ldc + 20, c11);
v_store(c + ldc * 2, c12);
v_store(c + ldc * 2 + 4, c13);
v_store(c + ldc * 2 + 8, c14);
v_store(c + ldc * 2 + 12, c15);
v_store(c + ldc * 2 + 16, c16);
v_store(c + ldc * 2 + 20, c17);
v_store(c + ldc * 3, c18);
v_store(c + ldc * 3 + 4, c19);
v_store(c + ldc * 3 + 8, c20);
v_store(c + ldc * 3 + 12, c21);
v_store(c + ldc * 3 + 16, c22);
v_store(c + ldc * 3 + 20, c23);
for (int p = 0; p < np; p++, a += CONV_MR, b += CONV_NR)
{
v_float32x4 a0 = v_setall_f32(a[0]);
v_float32x4 b0 = v_load(b), b1 = v_load(b + 4), b2 = v_load(b + 8);
v_float32x4 b3 = v_load(b + 12), b4 = v_load(b + 16), b5 = v_load(b + 20);
c0 = v_fma(b0, a0, c0);
c1 = v_fma(b1, a0, c1);
c2 = v_fma(b2, a0, c2);
c3 = v_fma(b3, a0, c3);
c4 = v_fma(b4, a0, c4);
c5 = v_fma(b5, a0, c5);
a0 = v_setall_f32(a[1]);
c6 = v_fma(b0, a0, c6);
c7 = v_fma(b1, a0, c7);
c8 = v_fma(b2, a0, c8);
c9 = v_fma(b3, a0, c9);
c10 = v_fma(b4, a0, c10);
c11 = v_fma(b5, a0, c11);
a0 = v_setall_f32(a[2]);
c12 = v_fma(b0, a0, c12);
c13 = v_fma(b1, a0, c13);
c14 = v_fma(b2, a0, c14);
c15 = v_fma(b3, a0, c15);
c16 = v_fma(b4, a0, c16);
c17 = v_fma(b5, a0, c17);
a0 = v_setall_f32(a[3]);
c18 = v_fma(b0, a0, c18);
c19 = v_fma(b1, a0, c19);
c20 = v_fma(b2, a0, c20);
c21 = v_fma(b3, a0, c21);
c22 = v_fma(b4, a0, c22);
c23 = v_fma(b5, a0, c23);
}
#endif
#else
for (int i = 0; i < FAST_CONV_MR; i++)
if (!init_c)
{
float beta = bias[i];
for (int j = 0; j < FAST_CONV_NR; j++)
c[i*ldc + j] = beta;
c0 = v_add(c0, v_load(c));
c1 = v_add(c1, v_load(c + 4));
c2 = v_add(c2, v_load(c + 8));
c3 = v_add(c3, v_load(c + 12));
c4 = v_add(c4, v_load(c + 16));
c5 = v_add(c5, v_load(c + 20));
c6 = v_add(c6 , v_load(c + ldc));
c7 = v_add(c7 , v_load(c + ldc + 4));
c8 = v_add(c8 , v_load(c + ldc + 8));
c9 = v_add(c9 , v_load(c + ldc + 12));
c10 = v_add(c10, v_load(c + ldc + 16));
c11 = v_add(c11, v_load(c + ldc + 20));
c12 = v_add(c12, v_load(c + ldc*2));
c13 = v_add(c13, v_load(c + ldc*2 + 4));
c14 = v_add(c14, v_load(c + ldc*2 + 8));
c15 = v_add(c15, v_load(c + ldc*2 + 12));
c16 = v_add(c16, v_load(c + ldc*2 + 16));
c17 = v_add(c17, v_load(c + ldc*2 + 20));
c18 = v_add(c18, v_load(c + ldc*3));
c19 = v_add(c19, v_load(c + ldc*3 + 4));
c20 = v_add(c20, v_load(c + ldc*3 + 8));
c21 = v_add(c21, v_load(c + ldc*3 + 12));
c22 = v_add(c22, v_load(c + ldc*3 + 16));
c23 = v_add(c23, v_load(c + ldc*3 + 20));
}
for (int p = 0; p < k; p++)
v_store(c, c0);
v_store(c + 4, c1);
v_store(c + 8, c2);
v_store(c + 12, c3);
v_store(c + 16, c4);
v_store(c + 20, c5);
v_store(c + ldc, c6);
v_store(c + ldc + 4, c7);
v_store(c + ldc + 8, c8);
v_store(c + ldc + 12, c9);
v_store(c + ldc + 16, c10);
v_store(c + ldc + 20, c11);
v_store(c + ldc * 2, c12);
v_store(c + ldc * 2 + 4, c13);
v_store(c + ldc * 2 + 8, c14);
v_store(c + ldc * 2 + 12, c15);
v_store(c + ldc * 2 + 16, c16);
v_store(c + ldc * 2 + 20, c17);
v_store(c + ldc * 3, c18);
v_store(c + ldc * 3 + 4, c19);
v_store(c + ldc * 3 + 8, c20);
v_store(c + ldc * 3 + 12, c21);
v_store(c + ldc * 3 + 16, c22);
v_store(c + ldc * 3 + 20, c23);
#else
float cbuf[CONV_MR * CONV_NR];
memset(cbuf, 0, sizeof(cbuf));
for( int p = 0; p < np; p++ )
{
for (int i = 0; i < FAST_CONV_MR; i++)
for( int i = 0; i < CONV_MR; i++ )
{
float alpha = a[FAST_CONV_MR*p + i];
for (int j = 0; j < FAST_CONV_NR; j++)
{
c[i*ldc+j] += b[FAST_CONV_NR*p + j]*alpha;
}
float ai = a[CONV_MR*p + i];
for( int j = 0; j < CONV_NR; j++ )
cbuf[i * CONV_NR+j] += b[CONV_NR*p + j] * ai;
}
}
if (ifActiv)
{
for (int i = 0; i < FAST_CONV_MR; i++)
{
for (int j = 0; j < FAST_CONV_NR; j++)
{
float v = c[i*ldc + j];
v = std::min(std::max(v, minval), maxval);
c[i*ldc + j] = v;
}
if (!init_c) {
for(int i = 0; i < CONV_MR; i++) {
for(int j = 0; j < CONV_NR; j++)
c[i*ldc + j] += cbuf[i*CONV_NR + j];
}
} else {
for(int i = 0; i < CONV_MR; i++) {
for(int j = 0; j < CONV_NR; j++)
c[i*ldc + j] = cbuf[i*CONV_NR + j];
}
}
#endif
@ -154,142 +145,122 @@ void convBlock(int k, const float *a, const float *b,
namespace opt_NEON
{
#if CV_TRY_NEON
void convBlock_NEON(int k, const float *a, const float *b,
float *c, int ldc, const float *bias,
float minval, float maxval, bool ifActiv)
void convBlock_NEON(int np, const float* a, const float* b, float* c, int ldc, bool init_c)
{
#if CV_NEON_AARCH64 && FAST_CONV_MR == 4 && FAST_CONV_NR == 28 // AARCH64
#if CONV_MR == 4 && CONV_NR == 28 // AARCH64
{
float32x4_t c0 = vdupq_n_f32(bias[0]), c1 = c0, c2 = c0, c3 = c0, c4 = c0, c5 = c0, c24 = c0;
float32x4_t c6 = vdupq_n_f32(bias[1]), c7 = c6, c8 = c6, c9 = c6, c10 = c6, c11 = c6, c25 = c6;
float32x4_t c12 = vdupq_n_f32(bias[2]), c13 = c12, c14 = c12, c15 = c12, c16 = c12, c17 = c12, c26 = c12;
float32x4_t c18 = vdupq_n_f32(bias[3]), c19 = c18, c20 = c18, c21 = c18, c22 = c18, c23 = c18, c27 = c18;
float32x4_t a0 = vdupq_n_f32(0.0f);
float32x4_t b0 = vdupq_n_f32(0.0f), b1 = vdupq_n_f32(0.0f), b2 = vdupq_n_f32(0.0f);
float32x4_t c00 = vdupq_n_f32(0.f), c01 = c00, c02 = c00, c03 = c00, c04 = c00, c05 = c00, c06 = c00;
float32x4_t c10 = vdupq_n_f32(0.f), c11 = c10, c12 = c10, c13 = c10, c14 = c10, c15 = c10, c16 = c10;
float32x4_t c20 = vdupq_n_f32(0.f), c21 = c20, c22 = c20, c23 = c20, c24 = c20, c25 = c20, c26 = c20;
float32x4_t c30 = vdupq_n_f32(0.f), c31 = c30, c32 = c30, c33 = c30, c34 = c30, c35 = c30, c36 = c30;
for (int p = 0; p < k; p++, a += FAST_CONV_MR)
for( int p = 0; p < np; p++, a += CONV_MR, b += CONV_NR )
{
a0 = vld1q_f32(a);
b0 = vld1q_f32(b), b1 = vld1q_f32(b + 4), b2 = vld1q_f32(b + 8);
b += 12;
c0 = vfmaq_laneq_f32(c0, b0, a0, 0);
c1 = vfmaq_laneq_f32(c1, b1, a0, 0);
c2 = vfmaq_laneq_f32(c2, b2, a0, 0);
c6 = vfmaq_laneq_f32(c6, b0, a0, 1);
c7 = vfmaq_laneq_f32(c7, b1, a0, 1);
c8 = vfmaq_laneq_f32(c8, b2, a0, 1);
c12 = vfmaq_laneq_f32(c12, b0, a0, 2);
c13 = vfmaq_laneq_f32(c13, b1, a0, 2);
c14 = vfmaq_laneq_f32(c14, b2, a0, 2);
c18 = vfmaq_laneq_f32(c18, b0, a0, 3);
c19 = vfmaq_laneq_f32(c19, b1, a0, 3);
c20 = vfmaq_laneq_f32(c20, b2, a0, 3);
b0 = vld1q_f32(b), b1 = vld1q_f32(b + 4), b2 = vld1q_f32(b + 8);
b += 12;
c3 = vfmaq_laneq_f32(c3, b0, a0, 0);
c4 = vfmaq_laneq_f32(c4, b1, a0, 0);
c5 = vfmaq_laneq_f32(c5, b2, a0, 0);
c9 = vfmaq_laneq_f32(c9, b0, a0, 1);
c10 = vfmaq_laneq_f32(c10, b1, a0, 1);
c11 = vfmaq_laneq_f32(c11, b2, a0, 1);
c15 = vfmaq_laneq_f32(c15, b0, a0, 2);
c16 = vfmaq_laneq_f32(c16, b1, a0, 2);
c17 = vfmaq_laneq_f32(c17, b2, a0, 2);
c21 = vfmaq_laneq_f32(c21, b0, a0, 3);
b0 = vld1q_f32(b);
b += 4;
c22 = vfmaq_laneq_f32(c22, b1, a0, 3);
c23 = vfmaq_laneq_f32(c23, b2, a0, 3);
c24 = vfmaq_laneq_f32(c24, b0, a0, 0);
c25 = vfmaq_laneq_f32(c25, b0, a0, 1);
float32x4_t a0 = vld1q_f32(a), b0, b1, b2;
b0 = vld1q_f32(b); b1 = vld1q_f32(b + 4); b2 = vld1q_f32(b + 8);
c00 = vfmaq_laneq_f32(c00, b0, a0, 0);
c01 = vfmaq_laneq_f32(c01, b1, a0, 0);
c02 = vfmaq_laneq_f32(c02, b2, a0, 0);
c10 = vfmaq_laneq_f32(c10, b0, a0, 1);
c11 = vfmaq_laneq_f32(c11, b1, a0, 1);
c12 = vfmaq_laneq_f32(c12, b2, a0, 1);
c20 = vfmaq_laneq_f32(c20, b0, a0, 2);
c21 = vfmaq_laneq_f32(c21, b1, a0, 2);
c22 = vfmaq_laneq_f32(c22, b2, a0, 2);
c30 = vfmaq_laneq_f32(c30, b0, a0, 3);
c31 = vfmaq_laneq_f32(c31, b1, a0, 3);
c32 = vfmaq_laneq_f32(c32, b2, a0, 3);
b0 = vld1q_f32(b + 12); b1 = vld1q_f32(b + 16); b2 = vld1q_f32(b + 20);
c03 = vfmaq_laneq_f32(c03, b0, a0, 0);
c04 = vfmaq_laneq_f32(c04, b1, a0, 0);
c05 = vfmaq_laneq_f32(c05, b2, a0, 0);
c13 = vfmaq_laneq_f32(c13, b0, a0, 1);
c14 = vfmaq_laneq_f32(c14, b1, a0, 1);
c15 = vfmaq_laneq_f32(c15, b2, a0, 1);
c23 = vfmaq_laneq_f32(c23, b0, a0, 2);
c24 = vfmaq_laneq_f32(c24, b1, a0, 2);
c25 = vfmaq_laneq_f32(c25, b2, a0, 2);
c33 = vfmaq_laneq_f32(c33, b0, a0, 3);
c34 = vfmaq_laneq_f32(c34, b1, a0, 3);
c35 = vfmaq_laneq_f32(c35, b2, a0, 3);
b0 = vld1q_f32(b + 24);
c06 = vfmaq_laneq_f32(c06, b0, a0, 0);
c16 = vfmaq_laneq_f32(c16, b0, a0, 1);
c26 = vfmaq_laneq_f32(c26, b0, a0, 2);
c27 = vfmaq_laneq_f32(c27, b0, a0, 3);
c36 = vfmaq_laneq_f32(c36, b0, a0, 3);
}
if (ifActiv) {
b0 = vdupq_n_f32(minval), b1 = vdupq_n_f32(maxval);
c0 = vminq_f32(vmaxq_f32(c0, b0), b1);
c1 = vminq_f32(vmaxq_f32(c1, b0), b1);
c2 = vminq_f32(vmaxq_f32(c2, b0), b1);
c3 = vminq_f32(vmaxq_f32(c3, b0), b1);
c4 = vminq_f32(vmaxq_f32(c4, b0), b1);
c5 = vminq_f32(vmaxq_f32(c5, b0), b1);
c6 = vminq_f32(vmaxq_f32(c6, b0), b1);
c7 = vminq_f32(vmaxq_f32(c7, b0), b1);
c8 = vminq_f32(vmaxq_f32(c8, b0), b1);
c9 = vminq_f32(vmaxq_f32(c9, b0), b1);
c10 = vminq_f32(vmaxq_f32(c10, b0), b1);
c11 = vminq_f32(vmaxq_f32(c11, b0), b1);
c12 = vminq_f32(vmaxq_f32(c12, b0), b1);
c13 = vminq_f32(vmaxq_f32(c13, b0), b1);
c14 = vminq_f32(vmaxq_f32(c14, b0), b1);
c15 = vminq_f32(vmaxq_f32(c15, b0), b1);
c16 = vminq_f32(vmaxq_f32(c16, b0), b1);
c17 = vminq_f32(vmaxq_f32(c17, b0), b1);
c18 = vminq_f32(vmaxq_f32(c18, b0), b1);
c19 = vminq_f32(vmaxq_f32(c19, b0), b1);
c20 = vminq_f32(vmaxq_f32(c20, b0), b1);
c21 = vminq_f32(vmaxq_f32(c21, b0), b1);
c22 = vminq_f32(vmaxq_f32(c22, b0), b1);
c23 = vminq_f32(vmaxq_f32(c23, b0), b1);
c24 = vminq_f32(vmaxq_f32(c24, b0), b1);
c25 = vminq_f32(vmaxq_f32(c25, b0), b1);
c26 = vminq_f32(vmaxq_f32(c26, b0), b1);
c27 = vminq_f32(vmaxq_f32(c27, b0), b1);
if (!init_c)
{
c00 = vaddq_f32(c00, vld1q_f32(c));
c01 = vaddq_f32(c01, vld1q_f32(c + 4));
c02 = vaddq_f32(c02, vld1q_f32(c + 8));
c03 = vaddq_f32(c03, vld1q_f32(c + 12));
c04 = vaddq_f32(c04, vld1q_f32(c + 16));
c05 = vaddq_f32(c05, vld1q_f32(c + 20));
c06 = vaddq_f32(c06, vld1q_f32(c + 24));
c10 = vaddq_f32(c10, vld1q_f32(c + ldc));
c11 = vaddq_f32(c11, vld1q_f32(c + ldc + 4));
c12 = vaddq_f32(c12, vld1q_f32(c + ldc + 8));
c13 = vaddq_f32(c13, vld1q_f32(c + ldc + 12));
c14 = vaddq_f32(c14, vld1q_f32(c + ldc + 16));
c15 = vaddq_f32(c15, vld1q_f32(c + ldc + 20));
c16 = vaddq_f32(c16, vld1q_f32(c + ldc + 24));
c20 = vaddq_f32(c20, vld1q_f32(c + ldc*2));
c21 = vaddq_f32(c21, vld1q_f32(c + ldc*2 + 4));
c22 = vaddq_f32(c22, vld1q_f32(c + ldc*2 + 8));
c23 = vaddq_f32(c23, vld1q_f32(c + ldc*2 + 12));
c24 = vaddq_f32(c24, vld1q_f32(c + ldc*2 + 16));
c25 = vaddq_f32(c25, vld1q_f32(c + ldc*2 + 20));
c26 = vaddq_f32(c26, vld1q_f32(c + ldc*2 + 24));
c30 = vaddq_f32(c30, vld1q_f32(c + ldc*3));
c31 = vaddq_f32(c31, vld1q_f32(c + ldc*3 + 4));
c32 = vaddq_f32(c32, vld1q_f32(c + ldc*3 + 8));
c33 = vaddq_f32(c33, vld1q_f32(c + ldc*3 + 12));
c34 = vaddq_f32(c34, vld1q_f32(c + ldc*3 + 16));
c35 = vaddq_f32(c35, vld1q_f32(c + ldc*3 + 20));
c36 = vaddq_f32(c36, vld1q_f32(c + ldc*3 + 24));
}
vst1q_f32(c, c0);
vst1q_f32(c + 4, c1);
vst1q_f32(c + 8, c2);
vst1q_f32(c + 12, c3);
vst1q_f32(c + 16, c4);
vst1q_f32(c + 20, c5);
vst1q_f32(c + 24, c24);
vst1q_f32(c + ldc, c6);
vst1q_f32(c + ldc + 4, c7);
vst1q_f32(c + ldc + 8, c8);
vst1q_f32(c + ldc + 12, c9);
vst1q_f32(c + ldc + 16, c10);
vst1q_f32(c + ldc + 20, c11);
vst1q_f32(c + ldc + 24, c25);
vst1q_f32(c + ldc * 2, c12);
vst1q_f32(c + ldc * 2 + 4, c13);
vst1q_f32(c + ldc * 2 + 8, c14);
vst1q_f32(c + ldc * 2 + 12, c15);
vst1q_f32(c + ldc * 2 + 16, c16);
vst1q_f32(c + ldc * 2 + 20, c17);
vst1q_f32(c + ldc * 2 + 24, c26);
vst1q_f32(c + ldc * 3, c18);
vst1q_f32(c + ldc * 3 + 4, c19);
vst1q_f32(c + ldc * 3 + 8, c20);
vst1q_f32(c + ldc * 3 + 12, c21);
vst1q_f32(c + ldc * 3 + 16, c22);
vst1q_f32(c + ldc * 3 + 20, c23);
vst1q_f32(c + ldc * 3 + 24, c27);
vst1q_f32(c, c00); vst1q_f32(c+4, c01);
vst1q_f32(c+8, c02); vst1q_f32(c+12, c03);
vst1q_f32(c+16, c04); vst1q_f32(c+20, c05);
vst1q_f32(c+24, c06);
vst1q_f32(c+ldc, c10); vst1q_f32(c+ldc+4, c11);
vst1q_f32(c+ldc+8, c12); vst1q_f32(c+ldc+12, c13);
vst1q_f32(c+ldc+16, c14); vst1q_f32(c+ldc+20, c15);
vst1q_f32(c+ldc+24, c16);
vst1q_f32(c+ldc*2, c20); vst1q_f32(c+ldc*2+4, c21);
vst1q_f32(c+ldc*2+8, c22); vst1q_f32(c+ldc*2+12, c23);
vst1q_f32(c+ldc*2+16, c24); vst1q_f32(c+ldc*2+20, c25);
vst1q_f32(c+ldc*2+24, c26);
vst1q_f32(c+ldc*3, c30); vst1q_f32(c+ldc*3+4, c31);
vst1q_f32(c+ldc*3+8, c32); vst1q_f32(c+ldc*3+12, c33);
vst1q_f32(c+ldc*3+16, c34); vst1q_f32(c+ldc*3+20, c35);
vst1q_f32(c+ldc*3+24, c36);
}
#elif (!defined(CV_NEON_AARCH64) || !CV_NEON_AARCH64) && FAST_CONV_MR == 4 && FAST_CONV_NR == 12 // ARMv7
#elif CONV_MR == 4 && CONV_NR == 12 // ARMv7
{
float32x4_t c0 = vdupq_n_f32(bias[0]), c1 = c0, c2 = c0;
float32x4_t c3 = vdupq_n_f32(bias[1]), c4 = c3, c5 = c3;
float32x4_t c6 = vdupq_n_f32(bias[2]), c7 = c6, c8 = c6;
float32x4_t c9 = vdupq_n_f32(bias[3]), c10 = c9, c11 = c9;
float32x4_t c0 = vdupq_n_f32(0.f), c1 = c0, c2 = c0;
float32x4_t c3 = vdupq_n_f32(0.f), c4 = c3, c5 = c3;
float32x4_t c6 = vdupq_n_f32(0.f), c7 = c6, c8 = c6;
float32x4_t c9 = vdupq_n_f32(0.f), c10 = c9, c11 = c9;
float32x2_t a0 = vdup_n_f32(0.0f), a1 = a0;
float32x4_t b0 = vdupq_n_f32(0.0f), b1 = vdupq_n_f32(0.0f), b2 = vdupq_n_f32(0.0f);
for (int p = 0; p < k; p++, a += FAST_CONV_MR, b += FAST_CONV_NR)
for (int p = 0; p < np; p++, a += CONV_MR, b += CONV_NR)
{
a0 = vld1_f32(a), a1 = vld1_f32(a+2);
b0 = vld1q_f32(b), b1 = vld1q_f32(b + 4), b2 = vld1q_f32(b + 8);
@ -311,29 +282,32 @@ void convBlock_NEON(int k, const float *a, const float *b,
c11 = vmlaq_lane_f32(c11, b2, a1, 1);
}
if (ifActiv)
if (!init_c)
{
b0 = vdupq_n_f32(minval), b1 = vdupq_n_f32(maxval);
c0 = vminq_f32(vmaxq_f32(c0, b0), b1);
c1 = vminq_f32(vmaxq_f32(c1, b0), b1);
c2 = vminq_f32(vmaxq_f32(c2, b0), b1);
c3 = vminq_f32(vmaxq_f32(c3, b0), b1);
c4 = vminq_f32(vmaxq_f32(c4, b0), b1);
c5 = vminq_f32(vmaxq_f32(c5, b0), b1);
c6 = vminq_f32(vmaxq_f32(c6, b0), b1);
c7 = vminq_f32(vmaxq_f32(c7, b0), b1);
c8 = vminq_f32(vmaxq_f32(c8, b0), b1);
c9 = vminq_f32(vmaxq_f32(c9, b0), b1);
c10 = vminq_f32(vmaxq_f32(c10, b0), b1);
c11 = vminq_f32(vmaxq_f32(c11, b0), b1);
c0 = vaddq_f32(c0, vld1q_f32(c));
c1 = vaddq_f32(c1, vld1q_f32(c + 4));
c2 = vaddq_f32(c2, vld1q_f32(c + 8));
c3 = vaddq_f32(c3, vld1q_f32(c + ldc));
c4 = vaddq_f32(c4, vld1q_f32(c + ldc + 4));
c5 = vaddq_f32(c5, vld1q_f32(c + ldc + 8));
c6 = vaddq_f32(c6, vld1q_f32(c + ldc * 2));
c7 = vaddq_f32(c7, vld1q_f32(c + ldc * 2 + 4));
c8 = vaddq_f32(c8, vld1q_f32(c + ldc * 2 + 8));
c9 = vaddq_f32(c9 , vld1q_f32(c + ldc * 3));
c10 = vaddq_f32(c10, vld1q_f32(c + ldc * 3 + 4));
c11 = vaddq_f32(c11, vld1q_f32(c + ldc * 3 + 8));
}
vst1q_f32(c, c0); vst1q_f32(c+4, c1); vst1q_f32(c+8, c2);
vst1q_f32(c + ldc, c3); vst1q_f32(c + ldc + 4, c4); vst1q_f32(c + ldc + 8, c5);
vst1q_f32(c + ldc*2, c6); vst1q_f32(c + ldc*2 + 4, c7); vst1q_f32(c + ldc*2 + 8, c8);
vst1q_f32(c + ldc*3, c9); vst1q_f32(c + ldc*3 + 4, c10); vst1q_f32(c + ldc*3 + 8, c11);
vst1q_f32(c, c0), vst1q_f32(c+4, c1), vst1q_f32(c+8, c2);
vst1q_f32(c + ldc, c3), vst1q_f32(c + ldc + 4, c4), vst1q_f32(c + ldc + 8, c5);
vst1q_f32(c + ldc*2, c6), vst1q_f32(c + ldc*2 + 4, c7), vst1q_f32(c + ldc*2 + 8, c8);
vst1q_f32(c + ldc*3, c9), vst1q_f32(c + ldc*3 + 4, c10), vst1q_f32(c + ldc*3 + 8, c11);
}
#else
#error "unsupported FAST_CONV_MR and/or FAST_CONV_NR in convBlock_NEON."
//#else
//#error "unsupported CONV_MR and/or CONV_NR in convBlock_NEON."
#endif
}
#endif

@ -37,6 +37,47 @@ enum
};
#if CV_NEON
#undef _FAST_CONV_T4x4
#define _FAST_CONV_T4x4(a, b, c, d, tr0, tr1) \
tr0 = vtrnq_f32(a, b); \
tr1 = vtrnq_f32(c, d); \
a = vcombine_f32(vget_low_f32(tr0.val[0]), vget_low_f32(tr1.val[0])); \
b = vcombine_f32(vget_low_f32(tr0.val[1]), vget_low_f32(tr1.val[1])); \
c = vcombine_f32(vget_high_f32(tr0.val[0]), vget_high_f32(tr1.val[0])); \
d = vcombine_f32(vget_high_f32(tr0.val[1]), vget_high_f32(tr1.val[1]))
// The input is the pack4 data, and the output is unpack4 data.
static void transpose12x4(float* src, float* dst, const int cn)
{
float32x4_t r00, r01, r02, r03, r04, r05, r06, r07, r08, r09, r10, r11;
float32x4x2_t tr0, tr1;
for (int i = 0; i < cn; i++, src += 48, dst += 48)
{
r00 = vld1q_f32(src);
r01 = vld1q_f32(src + 4);
r02 = vld1q_f32(src + 8);
r03 = vld1q_f32(src + 12);
r04 = vld1q_f32(src + 16);
r05 = vld1q_f32(src + 20);
r06 = vld1q_f32(src + 24);
r07 = vld1q_f32(src + 28);
r08 = vld1q_f32(src + 32);
r09 = vld1q_f32(src + 36);
r10 = vld1q_f32(src + 40);
r11 = vld1q_f32(src + 44);
_FAST_CONV_T4x4(r00, r01, r02, r03, tr0, tr1);
_FAST_CONV_T4x4(r04, r05, r06, r07, tr0, tr1);
_FAST_CONV_T4x4(r08, r09, r10, r11, tr0, tr1);
vst1q_f32(dst, r00), vst1q_f32(dst + 4, r04), vst1q_f32(dst + 8, r08);
vst1q_f32(dst + 12, r01), vst1q_f32(dst + 16, r05), vst1q_f32(dst + 20, r09);
vst1q_f32(dst + 24, r02), vst1q_f32(dst + 28, r06), vst1q_f32(dst + 32, r10);
vst1q_f32(dst + 36, r03), vst1q_f32(dst + 40, r07), vst1q_f32(dst + 44, r11);
}
}
static void winograd_trans_input_F63(float* src, float* dst, int Channle_div4, const int tiles, const int big_step, const int line_step, const int* ofstab0)
{
// const float itm[8][8] = {
@ -192,15 +233,14 @@ static void winograd_trans_input_F63(float* src, float* dst, int Channle_div4, c
float* input0 = input_buf0 + 4 * tiles * r;
// TODO! support tiles > 12
//#if CV_NEON_AARCH64
// for (; ti + 11 < tiles; ti += 12)
// {
// float* out1 = out0 + line_step * ofstab0[ti * 2] + Channle_div4 * ofstab0[ti * 2 + 1] * 4;
//// std::cout<<"ofstab0[ti * 2] = "<<ofstab0[ti * 2]<<", ofstab0[ti * 2 + 1] = "<<ofstab0[ti * 2 + 1]<<std::endl;
// float* input1 = input0 + ti * 4;
// memcpy(out1, input1, 12 * 4 * sizeof(float ));
// }
//#endif
#if CV_NEON_AARCH64
for (; ti + 11 < tiles; ti += 12)
{
float* out1 = out0 + line_step * ofstab0[ti * 2] + Channle_div4 * ofstab0[ti * 2 + 1] * 4;
float* input1 = input0 + ti * 4;
memcpy(out1, input1, 12 * 4 * sizeof(float ));
}
#endif
for (; ti + 7 < tiles; ti += 8)
{
float* out1 = out0 + line_step * ofstab0[ti * 2] + Channle_div4 * ofstab0[ti * 2 + 1] * 4;
@ -231,7 +271,7 @@ static void winograd_trans_input_F63(float* src, float* dst, int Channle_div4, c
}
}
static void winograd_trans_output_F63(float* src_, float* bias_, float minval, float maxval, bool ifMinMaxAct)
static void winograd_trans_output_F63(float* src_, float* bias_, float* fAbuf0, float minval, float maxval, bool ifMinMaxAct)
{
// const float otm[6][8] = {
// {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 32.0f, 32.0f, 0.0f},
@ -292,6 +332,7 @@ static void winograd_trans_output_F63(float* src_, float* bias_, float minval, f
for (int m = 0; m < 6; m++)
{
float* output0 = src_ + 6 * m * FAST_VEC_NLANES;
float* fAbuf = fAbuf0 ? fAbuf0 + 6 * m * FAST_VEC_NLANES : 0;
float32x4_t _tmp00 = vld1q_f32(tmp[m][0]);
float32x4_t _tmp01 = vld1q_f32(tmp[m][1]);
@ -319,6 +360,16 @@ static void winograd_trans_output_F63(float* src_, float* bias_, float minval, f
float32x4_t _out03 = vaddq_f32(bias0, vmlaq_n_f32(vmlaq_n_f32(_tmp135a, _tmp135b, 8.f), _tmp135c, 4.f));
float32x4_t _out05 = vaddq_f32(bias0, vaddq_f32(vaddq_f32(_tmp07, _tmp135a), vmlaq_n_f32(_tmp135c, _tmp135b, 32.f)));
if (fAbuf)
{
_out00 = vaddq_f32(_out00, vld1q_f32(fAbuf));
_out01 = vaddq_f32(_out01, vld1q_f32(fAbuf + 4));
_out02 = vaddq_f32(_out02, vld1q_f32(fAbuf + 8));
_out03 = vaddq_f32(_out03, vld1q_f32(fAbuf + 12));
_out04 = vaddq_f32(_out04, vld1q_f32(fAbuf + 16));
_out05 = vaddq_f32(_out05, vld1q_f32(fAbuf + 20));
}
if (ifMinMaxAct)
{
float32x4_t vmin = vdupq_n_f32(minval), vmax = vdupq_n_f32(maxval);
@ -339,7 +390,7 @@ static void winograd_trans_output_F63(float* src_, float* bias_, float minval, f
}
}
void initWinograd63(Ptr<FastConv2d>& conv, float* srcWeight, int K, int C)
void initWinograd63(Ptr<FastConv2d>& conv, InputArray _weightsMat, int K, int C)
{
static const float ktm[8][3] = {
{1.0f, 0.0f, 0.0f},
@ -352,11 +403,14 @@ void initWinograd63(Ptr<FastConv2d>& conv, float* srcWeight, int K, int C)
{0.0f, 0.0f, 1.0f}
};
Mat weightsMat = _weightsMat.getMat();
float* srcWeight = weightsMat.ptr<float>();
size_t wstep = weightsMat.step1();
int K_aligned = ((K + FAST_VEC_NLANES - 1)/FAST_VEC_NLANES) * FAST_VEC_NLANES;
int C_aligned = ((C + FAST_VEC_NLANES - 1)/FAST_VEC_NLANES) * FAST_VEC_NLANES;
const int winoSize = C * WINO_AREA;
const int kArea = WINO_KSIZE * WINO_KSIZE;
const int kSize = C * kArea;
// Allocate memory for winograd.
int nweights = K_aligned * C_aligned * WINO_AREA;
@ -379,7 +433,7 @@ void initWinograd63(Ptr<FastConv2d>& conv, float* srcWeight, int K, int C)
for (int inc = 0; inc < C; inc++)
{
float *kernel_tm0 = kernelTm + outc * winoSize + inc * WINO_AREA;
const float *kernel0 = srcWeight + outc * kSize + inc * kArea;
const float *kernel0 = srcWeight + outc * wstep + inc * kArea;
// transform kernel, transposed
const float *k0 = kernel0;
@ -472,16 +526,16 @@ void initWinograd63(Ptr<FastConv2d>& conv, float* srcWeight, int K, int C)
out1[inc * 4] = tmp1[inc * 64];
}
}
}
}
}
int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>& conv, int ntasks, float minval,
int runWinograd63(InputArray _input, InputArray _fusedAddMat, OutputArray _output, const Ptr<FastConv2d>& conv, int ntasks, float minval,
float maxval, ActivationLayer* activ, bool ifMinMaxAct)
{
Mat input = _input.getMat();
Mat output = _output.getMat();
Mat fusedAddMat = _fusedAddMat.getMat();
MatShape inputShape = shape(input);
MatShape outputShape = shape(output);
@ -517,15 +571,14 @@ int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>&
int inpPack = 0;
int lineNum =0;
// TODO! tiles > 12
//#if CV_NEON_AARCH64
// if (tiles >= 12)
// {
// inpPack = 12;
// lineNum = tiles / 12 + (tiles % 12) / 8 + (tiles % 12 % 8) / 4 + (tiles % 12 % 4) / 2 + tiles % 12 % 2;
// }
// else
//#endif
#if CV_NEON_AARCH64
if (tiles >= 12)
{
inpPack = 12;
lineNum = tiles / 12 + (tiles % 12) / 8 + (tiles % 12 % 8) / 4 + (tiles % 12 % 4) / 2 + tiles % 12 % 2;
}
else
#endif
if (tiles >= 8)
{
inpPack = 8;
@ -586,6 +639,7 @@ int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>&
}
}
const size_t inp_planesize = (size_t)Hi*Wi;
const size_t out_planesize = (size_t)H0*W0;
size_t inputbuf_size = inpPack * C_aligned * lineNum * 64;
@ -594,36 +648,33 @@ int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>&
size_t outputbuf_size = tiles * K_aligned * 8 * 8;
size_t outputCnbuf_size = ntasks * 8 * 8 * 4;
AutoBuffer<float> inputbuf0_, inputCnbuf0_, outputbuf0_, outputCnbuf0_;
size_t part0_size = std::max(inputbuf_size, outputCnbuf_size);
size_t allbuf_size = part0_size + std::max(inputbufCn_size, outputbuf_size);
inputbuf0_.allocate(inputbuf_size);
float* inputbuf0 = alignPtr(inputbuf0_.data(), (int)(sizeof(float)));
memset(inputbuf0, 0, inputbuf_size * sizeof(float ));
inputCnbuf0_.allocate(inputbufCn_size);
float* inputCnbuf0 = inputCnbuf0_.data();
outputbuf0_.allocate(outputbuf_size);
float* outputbuf0 = outputbuf0_.data();
outputCnbuf0_.allocate(outputCnbuf_size);
float* outputCnbuf0 = outputCnbuf0_.data();
AutoBuffer<float> allbuf_;
allbuf_.allocate(allbuf_size);
float* inputbuf0 = alignPtr(allbuf_.data(), (int)(sizeof(float)));
float* inputCnbuf0 = inputbuf0 + inputbuf_size;
float* outputbuf0 = inputCnbuf0;
float* outputCnbuf0 = inputbuf0;
// Input Parallel For
float* weight_ptr0 = conv->weightsWino63Buf.data();
for (int bn = 0; bn < N; bn++)
{
float* input_ptr0 = input.ptr<float>() + bn * Hi * Wi * C;
float* input_ptr0 = input.ptr<float>() + bn * inp_planesize * C;
float* output_ptr0 = output.ptr<float>() + bn * out_planesize * K;
float* fusedAddPtr0 = fusedAddMat.empty() ? 0 : fusedAddMat.ptr<float>() + bn * out_planesize * K;
// Transform Input
int C_aligned_div4 = C_aligned/4;
const int tiStep = 8 * 8 * FAST_VEC_NLANES;
parallel_for_(Range(0, ntasks), [&](const Range& range)
{
for (int task_i = range.start; task_i < range.end; task_i++)
parallel_for_(Range(0, ntasks), [&](const Range& range){
for (int task_i = range.start; task_i < range.end; task_i++)
{
float *inpCnbuf = inputCnbuf0 + tiles * 256 * task_i;
float *inpCnbuf = inputCnbuf0 + tiles * tiStep * task_i;
for (int inc4 = task_i; inc4 < C_aligned_div4; inc4 += ntasks)
{
for (int cn = 0; cn < 4; cn++)
@ -699,31 +750,225 @@ int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>&
}
}
// Transfor Compute BdB^T
// Transform Compute BdB^T
winograd_trans_input_F63(inpCnbuf, inputbuf0, inc4, tiles, big_step, line_step, ofstab0);
}
}
});
// Matrix multiplication 8 channel
int K_div8 = 0;
#if CV_NEON_AARCH64
K_div8 = K_aligned/8;
parallel_for_(Range(0, K_div8), [&](const Range &range){
for (int outcn = range.start; outcn < range.end; outcn ++)
// Transpose 12
if (inpPack == 12)
{
float* output_tmp = outputbuf0 + tiles * outcn * 8;
float* kernel_tmp = weight_ptr0 + outcn * 8 * C_aligned;
for (int r = 0; r < 64; r++)
int C_div4 = C_aligned/4;
parallel_for_(Range(0, 64), [&](const Range &range){
for (int r = range.start; r < range.end; r++)
{
float* input_tm = inputbuf0 + r * big_step;
float* output0_tm = output_tmp + tiles * K_aligned * r;
for (int ti = 0; ti + 11 < tiles; ti += 12)
{
float* r0 = input_tm + ofstab0[ti * 2] * line_step;
transpose12x4(r0, r0, C_div4);
}
}
});
}
parallel_for_(Range(0, 64), [&](const Range &range){
for (int r = range.start; r < range.end; r++)
{
float* input_tm = inputbuf0 + r * big_step;
float* output_tmp = outputbuf0 + tiles * K_aligned * r;
float* kernel_tmp = weight_ptr0 + r * C_aligned * K_aligned;
for (int out_div8 = 0; out_div8 < K_div8; out_div8 ++)
{
float* output0_tm = output_tmp + tiles * out_div8 * 8;
float* output1_tm = output0_tm + tiles * 4;
float* kernel_tm_i = kernel_tmp + r * C_aligned * K_aligned;
float* kernel_tm_i = kernel_tmp + out_div8 * 8 * C_aligned;
int ti = 0;
for (; ti + 11 < tiles; ti += 12)
{
float* r0 = input_tm + ofstab0[ti * 2] * line_step;
const float* k01 = kernel_tm_i;
int nn = C_aligned/4;
r0 = input_tm + ofstab0[ti * 2] * line_step;
// init 32 registers. FMA/load ratio = 96/20
float32x4_t r00 = vdupq_n_f32(0.0f), r01 = r00, r02 = r00, r03 = r00;
float32x4_t r04 = r00, r05 = r00, r06 = r00, r07 = r00;
float32x4_t r08 = r00, r09 = r00, r10 = r00, r11 = r00;
float32x4_t r12 = r00, r13 = r00, r14 = r00, r15 = r00;
float32x4_t r16 = r00, r17 = r00, r18 = r00, r19 = r00;
float32x4_t r20 = r00, r21 = r00, r22 = r00, r23 = r00;
float32x4_t r24 = r00, r25 = r00, r26 = r00, r27 = r00;
float32x4_t r28 = r00, r29 = r00, r30 = r00, r31 = r00;
for(;nn > 0; nn--)
{
r00 = vld1q_f32(r0), r01 = vld1q_f32(r0+4), r02 = vld1q_f32(r0+8), r03 = vld1q_f32(r0+12);
r04 = vld1q_f32(k01), r05 = vld1q_f32(k01+4), r06 = vld1q_f32(k01+8), r07 = vld1q_f32(k01+12);
r0 += 16, k01 += 16;
// Cn0
// 8 ~ 19
r08 = vfmaq_laneq_f32(r08, r04, r00, 0);
r09 = vfmaq_laneq_f32(r09, r04, r00, 1);
r10 = vfmaq_laneq_f32(r10, r04, r00, 2);
r11 = vfmaq_laneq_f32(r11, r04, r00, 3);
r12 = vfmaq_laneq_f32(r12, r04, r01, 0);
r13 = vfmaq_laneq_f32(r13, r04, r01, 1);
r14 = vfmaq_laneq_f32(r14, r04, r01, 2);
r15 = vfmaq_laneq_f32(r15, r04, r01, 3);
r16 = vfmaq_laneq_f32(r16, r04, r02, 0);
r17 = vfmaq_laneq_f32(r17, r04, r02, 1);
r18 = vfmaq_laneq_f32(r18, r04, r02, 2);
r19 = vfmaq_laneq_f32(r19, r04, r02, 3);
// 20 ~ 31
r20 = vfmaq_laneq_f32(r20, r05, r00, 0);
r21 = vfmaq_laneq_f32(r21, r05, r00, 1);
r22 = vfmaq_laneq_f32(r22, r05, r00, 2);
r23 = vfmaq_laneq_f32(r23, r05, r00, 3);
r24 = vfmaq_laneq_f32(r24, r05, r01, 0);
r25 = vfmaq_laneq_f32(r25, r05, r01, 1);
r26 = vfmaq_laneq_f32(r26, r05, r01, 2);
r27 = vfmaq_laneq_f32(r27, r05, r01, 3);
r28 = vfmaq_laneq_f32(r28, r05, r02, 0);
r29 = vfmaq_laneq_f32(r29, r05, r02, 1);
r30 = vfmaq_laneq_f32(r30, r05, r02, 2);
r31 = vfmaq_laneq_f32(r31, r05, r02, 3);
// Cn1
r08 = vfmaq_laneq_f32(r08, r06, r03, 0);
r09 = vfmaq_laneq_f32(r09, r06, r03, 1);
r10 = vfmaq_laneq_f32(r10, r06, r03, 2);
r11 = vfmaq_laneq_f32(r11, r06, r03, 3);
r20 = vfmaq_laneq_f32(r20, r07, r03, 0);
r21 = vfmaq_laneq_f32(r21, r07, r03, 1);
r22 = vfmaq_laneq_f32(r22, r07, r03, 2);
r23 = vfmaq_laneq_f32(r23, r07, r03, 3);
r00 = vld1q_f32(r0), r01 = vld1q_f32(r0+4), r02 = vld1q_f32(r0+8), r03 = vld1q_f32(r0+12);
r0 += 16;
r12 = vfmaq_laneq_f32(r12, r06, r00, 0);
r13 = vfmaq_laneq_f32(r13, r06, r00, 1);
r14 = vfmaq_laneq_f32(r14, r06, r00, 2);
r15 = vfmaq_laneq_f32(r15, r06, r00, 3);
r16 = vfmaq_laneq_f32(r16, r06, r01, 0);
r17 = vfmaq_laneq_f32(r17, r06, r01, 1);
r18 = vfmaq_laneq_f32(r18, r06, r01, 2);
r19 = vfmaq_laneq_f32(r19, r06, r01, 3);
r24 = vfmaq_laneq_f32(r24, r07, r00, 0);
r25 = vfmaq_laneq_f32(r25, r07, r00, 1);
r26 = vfmaq_laneq_f32(r26, r07, r00, 2);
r27 = vfmaq_laneq_f32(r27, r07, r00, 3);
r28 = vfmaq_laneq_f32(r28, r07, r01, 0);
r29 = vfmaq_laneq_f32(r29, r07, r01, 1);
r30 = vfmaq_laneq_f32(r30, r07, r01, 2);
r31 = vfmaq_laneq_f32(r31, r07, r01, 3);
r04 = vld1q_f32(k01), r05 = vld1q_f32(k01+4), r06 = vld1q_f32(k01+8), r07 = vld1q_f32(k01+12);
k01 += 16;
// Cn2
r08 = vfmaq_laneq_f32(r08, r04, r02, 0);
r09 = vfmaq_laneq_f32(r09, r04, r02, 1);
r10 = vfmaq_laneq_f32(r10, r04, r02, 2);
r11 = vfmaq_laneq_f32(r11, r04, r02, 3);
r12 = vfmaq_laneq_f32(r12, r04, r03, 0);
r13 = vfmaq_laneq_f32(r13, r04, r03, 1);
r14 = vfmaq_laneq_f32(r14, r04, r03, 2);
r15 = vfmaq_laneq_f32(r15, r04, r03, 3);
r20 = vfmaq_laneq_f32(r20, r05, r02, 0);
r21 = vfmaq_laneq_f32(r21, r05, r02, 1);
r22 = vfmaq_laneq_f32(r22, r05, r02, 2);
r23 = vfmaq_laneq_f32(r23, r05, r02, 3);
r24 = vfmaq_laneq_f32(r24, r05, r03, 0);
r25 = vfmaq_laneq_f32(r25, r05, r03, 1);
r26 = vfmaq_laneq_f32(r26, r05, r03, 2);
r27 = vfmaq_laneq_f32(r27, r05, r03, 3);
r00 = vld1q_f32(r0), r01 = vld1q_f32(r0+4), r02 = vld1q_f32(r0+8), r03 = vld1q_f32(r0+12);
r0 += 16;
r16 = vfmaq_laneq_f32(r16, r04, r00, 0);
r17 = vfmaq_laneq_f32(r17, r04, r00, 1);
r18 = vfmaq_laneq_f32(r18, r04, r00, 2);
r19 = vfmaq_laneq_f32(r19, r04, r00, 3);
r28 = vfmaq_laneq_f32(r28, r05, r00, 0);
r29 = vfmaq_laneq_f32(r29, r05, r00, 1);
r30 = vfmaq_laneq_f32(r30, r05, r00, 2);
r31 = vfmaq_laneq_f32(r31, r05, r00, 3);
// Cn3
// 8 ~ 19
r08 = vfmaq_laneq_f32(r08, r06, r01, 0);
r09 = vfmaq_laneq_f32(r09, r06, r01, 1);
r10 = vfmaq_laneq_f32(r10, r06, r01, 2);
r11 = vfmaq_laneq_f32(r11, r06, r01, 3);
r12 = vfmaq_laneq_f32(r12, r06, r02, 0);
r13 = vfmaq_laneq_f32(r13, r06, r02, 1);
r14 = vfmaq_laneq_f32(r14, r06, r02, 2);
r15 = vfmaq_laneq_f32(r15, r06, r02, 3);
r16 = vfmaq_laneq_f32(r16, r06, r03, 0);
r17 = vfmaq_laneq_f32(r17, r06, r03, 1);
r18 = vfmaq_laneq_f32(r18, r06, r03, 2);
r19 = vfmaq_laneq_f32(r19, r06, r03, 3);
// 20 ~ 31
r20 = vfmaq_laneq_f32(r20, r07, r01, 0);
r21 = vfmaq_laneq_f32(r21, r07, r01, 1);
r22 = vfmaq_laneq_f32(r22, r07, r01, 2);
r23 = vfmaq_laneq_f32(r23, r07, r01, 3);
r24 = vfmaq_laneq_f32(r24, r07, r02, 0);
r25 = vfmaq_laneq_f32(r25, r07, r02, 1);
r26 = vfmaq_laneq_f32(r26, r07, r02, 2);
r27 = vfmaq_laneq_f32(r27, r07, r02, 3);
r28 = vfmaq_laneq_f32(r28, r07, r03, 0);
r29 = vfmaq_laneq_f32(r29, r07, r03, 1);
r30 = vfmaq_laneq_f32(r30, r07, r03, 2);
r31 = vfmaq_laneq_f32(r31, r07, r03, 3);
}
vst1q_f32(output0_tm, r08), vst1q_f32(output0_tm + 4, r09), vst1q_f32(output0_tm + 8, r10), vst1q_f32(output0_tm + 12, r11);
output0_tm += 16;
vst1q_f32(output1_tm, r20), vst1q_f32(output1_tm + 4, r21), vst1q_f32(output1_tm + 8, r22), vst1q_f32(output1_tm + 12, r23);
output1_tm += 16;
vst1q_f32(output0_tm, r12), vst1q_f32(output0_tm + 4, r13), vst1q_f32(output0_tm + 8, r14), vst1q_f32(output0_tm + 12, r15);
output0_tm += 16;
vst1q_f32(output1_tm, r24), vst1q_f32(output1_tm + 4, r25), vst1q_f32(output1_tm + 8, r26), vst1q_f32(output1_tm + 12, r27);
output1_tm += 16;
vst1q_f32(output0_tm, r16), vst1q_f32(output0_tm + 4, r17), vst1q_f32(output0_tm + 8, r18), vst1q_f32(output0_tm + 12, r19);
output0_tm += 16;
vst1q_f32(output1_tm, r28), vst1q_f32(output1_tm + 4, r29), vst1q_f32(output1_tm + 8, r30), vst1q_f32(output1_tm + 12, r31);
output1_tm += 16;
}
for (; ti + 7 < tiles; ti += 8)
{
const float* r0 = input_tm + ofstab0[ti * 2] * line_step;
@ -1009,17 +1254,17 @@ int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>&
// Matrix multiplication, 4 output channel.
int Ock_div4 = (K_aligned - K_div8 * 8) / 4;
parallel_for_(Range(0, Ock_div4), [&](const Range &range){
for (int outcn = range.start; outcn < range.end; outcn++)
parallel_for_(Range(0, 64), [&](const Range &range){
for (int r = range.start; r < range.end; r++)
{
float* output_tmp = outputbuf0 + tiles * (outcn + K_div8 * 2)* 4;
float* kernel_tmp = weight_ptr0 + (outcn + K_div8 * 2) * 4 * C_aligned;
float* input_tm = inputbuf0 + r * big_step;
float* output_tmp = outputbuf0 + tiles * K_aligned * r;
float* kernel_tmp = weight_ptr0 + r * C_aligned * K_aligned;
for (int r = 0; r < 64; r++)
for (int out_div4 = 0; out_div4 < Ock_div4; out_div4 ++)
{
float *input_tm = inputbuf0 + r * big_step;
float *output0_tm = output_tmp + tiles * K_aligned * r;
float *kernel_tm_i = kernel_tmp + r * C_aligned * K_aligned;
float* output0_tm = output_tmp + tiles * (out_div4 + K_div8 * 2) * 4 ;
float* kernel_tm_i = kernel_tmp + (out_div4 + K_div8 * 2) * 4 * C_aligned;
int ti = 0;
for (; ti + 7 < tiles; ti += 8)
@ -1345,12 +1590,20 @@ int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>&
});
int bigStepOut = tiles * K_aligned;
AutoBuffer<float> _fAbuf;
float* fAbuf0 = 0;
if (fusedAddPtr0)
{
_fAbuf.allocate(6 * 6 * 4 * ntasks);
fAbuf0 = _fAbuf.data();
}
// Transfor Ouput
parallel_for_(Range(0, ntasks), [&](const Range& range)
{
for (int task_i = range.start; task_i < range.end; task_i++)
{
float* fAbuf = fAbuf0 ? fAbuf0 + task_i * 6 * 6 * 4 : 0;
float* outputCnbuf = outputCnbuf0 + task_i * 8 * 8 * 4;
for (int outCn4 = task_i; outCn4 < K_aligned / 4; outCn4 += ntasks)
{
@ -1358,6 +1611,7 @@ int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>&
int outCn = outCn4 * 4;
float* output_buf = outputbuf0 + outCn * tiles;
float* output_ptr = output_ptr0 + outCn * W0 * H0;
float* fusedAddPtr = fusedAddPtr0 + outCn * W0 * H0;
for (int ti = 0; ti < tiles; ti++)
{
@ -1366,6 +1620,9 @@ int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>&
int hi = ti / W_tiles;
int wi = ti % W_tiles;
int wEnd = (wi + 1) * 6 > W0 ? W0 - (wi * 6) : 6;
int hEnd = (hi + 1) * 6 > H0 ? H0 - (hi * 6) : 6;
// construct the output tile.
for (int r = 0; r < 64; r++)
{
@ -1374,11 +1631,26 @@ int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>&
outputCnbuf_i += FAST_VEC_NLANES;
}
winograd_trans_output_F63(outputCnbuf, conv->biasBuf.data() + outCn,
minval, maxval, ifMinMaxAct);
// construct the fusedAdd buffer.
if (fAbuf && fusedAddPtr0)
{
memset(fAbuf, 0, sizeof(fAbuf[0]) * 6 * 6 * 4);
float* fAPtr = fusedAddPtr + (hi * W0 + wi) * 6;
for (int outCni = 0; outCni < FAST_VEC_NLANES; outCni++)
{
float* fAbufCnPtr = fAPtr + outCni * out_planesize; // skip channel
for (int i = 0; i < hEnd; i++)
{
for (int j = 0; j < wEnd; j++)
{
fAbuf[(i * 6 + j) * FAST_VEC_NLANES + outCni] = fAbufCnPtr[i * W0 + j];
}
}
}
}
int wEnd = (wi + 1) * 6 > W0 ? W0 - (wi * 6) : 6;
int hEnd = (hi + 1) * 6 > H0 ? H0 - (hi * 6) : 6;
winograd_trans_output_F63(outputCnbuf, conv->biasBuf.data() + outCn, fAbuf,
minval, maxval, ifMinMaxAct);
float* output_ptr_i = output_ptr + (hi * W0 + wi) * 6;
@ -1411,13 +1683,11 @@ int runWinograd63(InputArray _input, OutputArray _output, const Ptr<FastConv2d>&
}
});
}
return 1;
}
#else
void initWinograd63(Ptr<FastConv2d>& conv, float* src_weight, int K, int C)
void initWinograd63(Ptr<FastConv2d>& conv, InputArray _weightsMat, int K, int C)
{
conv->ifWinograd63 = false;
}

@ -162,6 +162,178 @@ void Net::Impl::fuseLayers(const std::vector<LayerPin>& blobsToKeep_)
break;
}
// CPU: fuse Convolution 2D layer followed by Add + activation.
while (nextData && (IS_DNN_CPU_TARGET(preferableTarget)) && ld.layerInstance->type == "Convolution")
{
// Note that we can only deal with conv + Add + activ here.
// To avoid the order like: conv + activ + add, if we found the conv has been fused with activ, we break.
Ptr<ConvolutionLayer> convLayer = ld.layerInstance.dynamicCast<ConvolutionLayer>();
// Only Conv2D without fusion Activation supports this fusion, other-wise, we skip.
if (!convLayer->isConv2D || convLayer->fusedActivation)
break;
// For now, there are currently two layers in OpenCV that run the Add operator.
Ptr<NaryEltwiseLayer> nextNaryEltwiseLayer = nextData->layerInstance.dynamicCast<NaryEltwiseLayer>();
Ptr<EltwiseLayer> nextEltwiseLayer = nextData->layerInstance.dynamicCast<EltwiseLayer>();
if (nextNaryEltwiseLayer.empty() && nextEltwiseLayer.empty())
break;
if (nextData->inputBlobsId.size() != 2)
break;
if (!nextData->params.has("operation") || toLowerCase(nextData->params.get<String>("operation")) != "add")
{
CV_LOG_DEBUG(NULL, "DNN/CPU: fusion with NaryEltwise or Eltwise Layer operation is not supported: "
<< nextData->params.get<String>("operation"));
break;
}
// This optimization is for cases like
// some_layer conv
// | |
// +-- eltwise or (naryEltwise) --+
// |
// activ
// This way all the element-wise computations
// (i.e. some_layer+conv) would be done at [conv] layer.
// So we need to replace [conv]'s output blob to [eltwise]'s one
// considering that [activ] is an in-place layer.
// Also we need to move all the consumers' references.
// To prevent memory collisions (i.e. when input of
// [conv] and output of [eltwise or naryEltwise] is the same blob)
// we allocate a new blob.
{
LayerData *naryOrEltwiseData = nextData;
// Eltwise or NaryEltwise layer has two inputs. We need to determine which
// is a base convolution layer and which could be used as it's bias.
LayerData* biasLayerData = 0;
for (int i = 0; i < 2; ++i)
{
LayerData *downLayerData = &layers[naryOrEltwiseData->inputBlobsId[i].lid];
CV_Assert(downLayerData);
// If the current downLayerData is skip, it means it is fused into the parent node.
while (downLayerData->skip)
{
if (downLayerData->inputBlobsId.size() == 1)
downLayerData = &layers[downLayerData->inputBlobsId[0].lid];
else
{
downLayerData = 0;
break;
}
}
if (downLayerData && ld.id == downLayerData->id)
{
biasLayerData = &layers[naryOrEltwiseData->inputBlobsId[1 - i].lid];
break;
}
}
// We check if biasLayerData is expected layer.
if (!biasLayerData)
break;
// We check if the bias output shape and the ld output shape are the same.
MatShape biasOutShape = shape(biasLayerData->outputBlobs[0]);
MatShape ldOutShape = shape(ld.outputBlobs[0]);
if (biasOutShape != ldOutShape)
break;
CV_Assert(biasLayerData);
{
// fuse naryEltwise layer
// bias must already be computed to fuse => bias layer must appear before convolution
if (biasLayerData->id < ld.id)
{
// conv + naryEltwise.
CV_Assert_N(biasLayerData->outputBlobs.size() == 1, ld.inputBlobs.size() == 1);
CV_Assert_N(biasLayerData->outputBlobsWrappers.size() == 1, ld.inputBlobsWrappers.size() == 1);
printf_(("\tfused with %s\n", nextNaryEltwiseLayer->name.c_str()));
naryOrEltwiseData->skip = true;
CV_Assert_N(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1);
// Note: Here's a trick. We set the output of conv as the output of biasLayer.
ld.outputBlobs[0] = ld.outputBlobs[0].clone();
ld.outputBlobsWrappers[0] = wrap(ld.outputBlobs[0]);
// Recursively modifies the output data of biasLayerData and its parent.
std::vector<LayerData*> skipDataList;
skipDataList.push_back(biasLayerData);
while (!skipDataList.empty())
{
LayerData* skipData = skipDataList.back();
skipDataList.pop_back();
CV_Assert(skipData->outputBlobs.size() == 1);
skipData->outputBlobs[0] = ld.outputBlobs[0];
skipData->outputBlobsWrappers[0] = ld.outputBlobsWrappers[0];
if (skipData->skip)
{
for (auto& inputLayerId : skipData->inputLayersId)
{
LayerData* inputld = &layers[inputLayerId];
if (inputld && inputld->outputBlobs.size() == 1)
skipDataList.push_back(inputld);
}
}
}
naryOrEltwiseData->outputBlobs = ld.outputBlobs;
naryOrEltwiseData->outputBlobsWrappers = ld.outputBlobsWrappers;
// set the fusedAdd flag in [Conv];
convLayer->fusedAdd = true;
LayerData* finalData = naryOrEltwiseData;
/* After fused Conv + naryEltwise or eltwise, we can fuse activation if:
* => activation layer that follows is the only consumer of eltwise output
* => activation layer does not process multiple inputs
* => we do not require to keep the output of eltwise
*/
if (naryOrEltwiseData->consumers.size() == 1)
{
Ptr<ActivationLayer> nextFusabeleActivLayer;
LayerData* nextAct = &layers[naryOrEltwiseData->consumers[0].lid];
if (nextData->outputBlobs.size() == 1)
nextFusabeleActivLayer = nextAct->layerInstance.dynamicCast<ActivationLayer>();
if (!nextFusabeleActivLayer.empty())
{
convLayer->setActivation(nextFusabeleActivLayer);
nextAct->skip = true;
nextAct->outputBlobs = ld.outputBlobs;
nextAct->outputBlobsWrappers = ld.outputBlobsWrappers;
}
}
// Move references of finalData (eltwise or activation) layer consumers to the newly allocated blob.
for (int i = 0; i < finalData->consumers.size(); ++i)
{
LayerData& consumer = layers[finalData->consumers[i].lid];
for (int j = 0; j < consumer.inputBlobsId.size(); ++j)
{
if (consumer.inputBlobsId[j].lid == finalData->id)
{
consumer.inputBlobs[j] = &ld.outputBlobs[0];
consumer.inputBlobsWrappers[j] = ld.outputBlobsWrappers[0];
break;
}
}
}
}
}
}
break;
}
// OpenCL: fuse convolution layer followed by eltwise + relu
// CUDA: fuse convolution layer followed by eltwise (and optional activation)
while (nextData &&
@ -398,7 +570,7 @@ void Net::Impl::fuseLayers(const std::vector<LayerPin>& blobsToKeep_)
// (i.e. some_layer+conv or some_layer*conv)
// would be done at [conv] layer. So we need to
// replace [conv]'s output blob to [eltwise]'s one.
// Also we need to move all the consumers' references.
// Also, we need to move all the consumers' references.
// To prevent memory collisions (i.e. when input of
// [conv] and output of [eltwise] is the same blob)
// we allocate a new blob.

@ -284,7 +284,7 @@ TEST(Reproducibility_SSD, Accuracy)
Mat out = net.forward("detection_out");
Mat ref = blobFromNPY(_tf("ssd_out.npy"));
normAssertDetections(ref, out, "", FLT_MIN);
normAssertDetections(ref, out, "", 0.06);
}
typedef testing::TestWithParam<tuple<Backend, Target> > Reproducibility_MobileNet_SSD;

@ -1029,7 +1029,7 @@ TEST_P(Test_Int8_nets, FasterRCNN_resnet50)
Mat blob = blobFromImage(inp, 1.0, Size(800, 600), Scalar(), true, false);
Mat ref = blobFromNPY(_tf("tensorflow/faster_rcnn_resnet50_coco_2018_01_28.detection_out.npy"));
float confThreshold = 0.5, scoreDiff = 0.05, iouDiff = 0.15;
float confThreshold = 0.8, scoreDiff = 0.05, iouDiff = 0.15;
testDetectionNet(net, blob, ref, confThreshold, scoreDiff, iouDiff);
}

@ -488,7 +488,7 @@ TEST_P(Test_Torch_nets, ENet_accuracy)
// Due to numerical instability in Pooling-Unpooling layers (indexes jittering)
// thresholds for ENet must be changed. Accuracy of results was checked on
// Cityscapes dataset and difference in mIOU with Torch is 10E-4%
normAssert(ref, out, "", 0.00044, /*target == DNN_TARGET_CPU ? 0.453 : */0.552);
normAssert(ref, out, "", 0.0005, /*target == DNN_TARGET_CPU ? 0.453 : */0.552);
normAssertSegmentation(ref, out);
const int N = 3;
@ -496,7 +496,7 @@ TEST_P(Test_Torch_nets, ENet_accuracy)
{
net.setInput(inputBlob, "");
Mat out = net.forward();
normAssert(ref, out, "", 0.00044, /*target == DNN_TARGET_CPU ? 0.453 : */0.552);
normAssert(ref, out, "", 0.0005, /*target == DNN_TARGET_CPU ? 0.453 : */0.552);
normAssertSegmentation(ref, out);
}
}

Loading…
Cancel
Save