Merge pull request #1281 from SpecLad:the-smartest-pointer

pull/1405/merge
Roman Donchenko 11 years ago committed by OpenCV Buildbot
commit bad927325f
  1. 2
      apps/traincascade/boost.cpp
  2. 34
      apps/traincascade/cascadeclassifier.cpp
  3. 6
      apps/traincascade/traincascade.cpp
  4. 6
      modules/bioinspired/src/retina.cpp
  5. 4
      modules/bioinspired/src/retina_ocl.cpp
  6. 6
      modules/bioinspired/src/retinafasttonemapping.cpp
  7. 2
      modules/calib3d/doc/camera_calibration_and_3d_reconstruction.rst
  8. 2
      modules/calib3d/include/opencv2/calib3d.hpp
  9. 2
      modules/calib3d/perf/perf_pnp.cpp
  10. 18
      modules/calib3d/src/calibinit.cpp
  11. 78
      modules/calib3d/src/calibration.cpp
  12. 24
      modules/calib3d/src/compat_ptsetreg.cpp
  13. 4
      modules/calib3d/src/five-point.cpp
  14. 6
      modules/calib3d/src/fundam.cpp
  15. 4
      modules/calib3d/src/levmarq.cpp
  16. 12
      modules/calib3d/src/ptsetreg.cpp
  17. 2
      modules/calib3d/src/stereobm.cpp
  18. 11
      modules/calib3d/src/stereosgbm.cpp
  19. 28
      modules/calib3d/src/triangulate.cpp
  20. 4
      modules/calib3d/test/test_solvepnp_ransac.cpp
  21. 24
      modules/contrib/src/detection_based_tracker.cpp
  22. 8
      modules/contrib/src/facerec.cpp
  23. 6
      modules/contrib/src/featuretracker.cpp
  24. 365
      modules/core/doc/basic_structures.rst
  25. 15
      modules/core/doc/intro.rst
  26. 12
      modules/core/include/opencv2/core/core_c.h
  27. 365
      modules/core/include/opencv2/core/cvstd.hpp
  28. 6
      modules/core/include/opencv2/core/gpu.hpp
  29. 6
      modules/core/include/opencv2/core/opengl.hpp
  30. 8
      modules/core/include/opencv2/core/operations.hpp
  31. 8
      modules/core/include/opencv2/core/persistence.hpp
  32. 9
      modules/core/include/opencv2/core/private.hpp
  33. 338
      modules/core/include/opencv2/core/ptr.inl.hpp
  34. 4
      modules/core/src/algorithm.cpp
  35. 12
      modules/core/src/array.cpp
  36. 15
      modules/core/src/gpu_stream.cpp
  37. 8
      modules/core/src/opengl.cpp
  38. 24
      modules/core/src/out.cpp
  39. 22
      modules/core/src/persistence.cpp
  40. 16
      modules/core/test/test_ds.cpp
  41. 12
      modules/core/test/test_io.cpp
  42. 4
      modules/core/test/test_mat.cpp
  43. 389
      modules/core/test/test_ptr.cpp
  44. 6
      modules/features2d/include/opencv2/features2d.hpp
  45. 4
      modules/features2d/src/brisk.cpp
  46. 6
      modules/features2d/src/descriptors.cpp
  47. 10
      modules/features2d/src/detectors.cpp
  48. 14
      modules/features2d/src/dynamic.cpp
  49. 4
      modules/features2d/src/evaluation.cpp
  50. 44
      modules/features2d/src/matchers.cpp
  51. 6
      modules/features2d/test/test_descriptors_regression.cpp
  52. 2
      modules/features2d/test/test_detectors_regression.cpp
  53. 2
      modules/features2d/test/test_keypoints.cpp
  54. 12
      modules/features2d/test/test_rotation_and_scale_invariance.cpp
  55. 20
      modules/gpu/src/cascadeclassifier.cpp
  56. 2
      modules/gpuarithm/src/arithm.cpp
  57. 2
      modules/gpuarithm/src/core.cpp
  58. 2
      modules/gpubgsegm/perf/perf_bgsegm.cpp
  59. 2
      modules/gpubgsegm/src/fgd.cpp
  60. 2
      modules/gpubgsegm/src/gmg.cpp
  61. 2
      modules/gpubgsegm/src/mog.cpp
  62. 2
      modules/gpubgsegm/src/mog2.cpp
  63. 2
      modules/gpubgsegm/test/test_bgsegm.cpp
  64. 5
      modules/gpucodec/src/thread.cpp
  65. 4
      modules/gpucodec/src/thread.hpp
  66. 28
      modules/gpufilters/src/filtering.cpp
  67. 2
      modules/gpuimgproc/src/canny.cpp
  68. 4
      modules/gpuimgproc/src/corners.cpp
  69. 4
      modules/gpuimgproc/src/generalized_hough.cpp
  70. 3
      modules/gpuimgproc/src/gftt.cpp
  71. 2
      modules/gpuimgproc/src/histogram.cpp
  72. 2
      modules/gpuimgproc/src/hough_circles.cpp
  73. 2
      modules/gpuimgproc/src/hough_lines.cpp
  74. 2
      modules/gpuimgproc/src/hough_segments.cpp
  75. 16
      modules/gpuimgproc/src/match_template.cpp
  76. 4
      modules/gpulegacy/src/cuda/NCVHaarObjectDetection.cu
  77. 2
      modules/gpustereo/src/disparity_bilateral_filter.cpp
  78. 2
      modules/gpustereo/src/stereobm.cpp
  79. 2
      modules/gpustereo/src/stereobp.cpp
  80. 2
      modules/gpustereo/src/stereocsbp.cpp
  81. 2
      modules/gpuwarping/src/pyramids.cpp
  82. 4
      modules/highgui/include/opencv2/highgui.hpp
  83. 10
      modules/highgui/src/cap.cpp
  84. 4
      modules/highgui/src/grfmt_bmp.cpp
  85. 4
      modules/highgui/src/grfmt_exr.cpp
  86. 4
      modules/highgui/src/grfmt_jpeg.cpp
  87. 4
      modules/highgui/src/grfmt_jpeg2000.cpp
  88. 4
      modules/highgui/src/grfmt_png.cpp
  89. 4
      modules/highgui/src/grfmt_pxm.cpp
  90. 4
      modules/highgui/src/grfmt_sunras.cpp
  91. 4
      modules/highgui/src/grfmt_tiff.cpp
  92. 4
      modules/highgui/src/grfmt_webp.cpp
  93. 44
      modules/highgui/src/loadsave.cpp
  94. 4
      modules/highgui/test/test_framecount.cpp
  95. 2
      modules/imgproc/include/opencv2/imgproc.hpp
  96. 2
      modules/imgproc/src/clahe.cpp
  97. 4
      modules/imgproc/src/contours.cpp
  98. 192
      modules/imgproc/src/filter.cpp
  99. 4
      modules/imgproc/src/generalized_hough.cpp
  100. 14
      modules/imgproc/src/hough.cpp
  101. Some files were not shown because too many files have changed in this diff Show More

@ -957,7 +957,7 @@ void CvCascadeBoostTree::write( FileStorage &fs, const Mat& featureMap )
int subsetN = (maxCatCount + 31)/32;
queue<CvDTreeNode*> internalNodesQueue;
int size = (int)pow( 2.f, (float)ensemble->get_params().max_depth);
Ptr<float> leafVals = new float[size];
std::vector<float> leafVals(size);
int leafValIdx = 0;
int internalNodeIdx = 1;
CvDTreeNode* tempNode;

@ -159,10 +159,10 @@ bool CvCascadeClassifier::train( const string _cascadeDirName,
cascadeParams = _cascadeParams;
featureParams = CvFeatureParams::create(cascadeParams.featureType);
featureParams->init(_featureParams);
stageParams = new CvCascadeBoostParams;
stageParams = makePtr<CvCascadeBoostParams>();
*stageParams = _stageParams;
featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType);
featureEvaluator->init( (CvFeatureParams*)featureParams, numPos + numNeg, cascadeParams.winSize );
featureEvaluator->init( featureParams, numPos + numNeg, cascadeParams.winSize );
stageClassifiers.reserve( numStages );
}
cout << "PARAMETERS:" << endl;
@ -206,10 +206,10 @@ bool CvCascadeClassifier::train( const string _cascadeDirName,
break;
}
CvCascadeBoost* tempStage = new CvCascadeBoost;
bool isStageTrained = tempStage->train( (CvFeatureEvaluator*)featureEvaluator,
Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>();
bool isStageTrained = tempStage->train( featureEvaluator,
curNumSamples, _precalcValBufSize, _precalcIdxBufSize,
*((CvCascadeBoostParams*)stageParams) );
*stageParams );
cout << "END>" << endl;
if(!isStageTrained)
@ -325,7 +325,7 @@ void CvCascadeClassifier::writeParams( FileStorage &fs ) const
void CvCascadeClassifier::writeFeatures( FileStorage &fs, const Mat& featureMap ) const
{
((CvFeatureEvaluator*)((Ptr<CvFeatureEvaluator>)featureEvaluator))->writeFeatures( fs, featureMap );
featureEvaluator->writeFeatures( fs, featureMap );
}
void CvCascadeClassifier::writeStages( FileStorage &fs, const Mat& featureMap ) const
@ -339,7 +339,7 @@ void CvCascadeClassifier::writeStages( FileStorage &fs, const Mat& featureMap )
sprintf( cmnt, "stage %d", i );
cvWriteComment( fs.fs, cmnt, 0 );
fs << "{";
((CvCascadeBoost*)((Ptr<CvCascadeBoost>)*it))->write( fs, featureMap );
(*it)->write( fs, featureMap );
fs << "}";
}
fs << "]";
@ -350,7 +350,7 @@ bool CvCascadeClassifier::readParams( const FileNode &node )
if ( !node.isMap() || !cascadeParams.read( node ) )
return false;
stageParams = new CvCascadeBoostParams;
stageParams = makePtr<CvCascadeBoostParams>();
FileNode rnode = node[CC_STAGE_PARAMS];
if ( !stageParams->read( rnode ) )
return false;
@ -371,12 +371,9 @@ bool CvCascadeClassifier::readStages( const FileNode &node)
FileNodeIterator it = rnode.begin();
for( int i = 0; i < min( (int)rnode.size(), numStages ); i++, it++ )
{
CvCascadeBoost* tempStage = new CvCascadeBoost;
if ( !tempStage->read( *it, (CvFeatureEvaluator *)featureEvaluator, *((CvCascadeBoostParams*)stageParams) ) )
{
delete tempStage;
Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>();
if ( !tempStage->read( *it, featureEvaluator, *stageParams) )
return false;
}
stageClassifiers.push_back(tempStage);
}
return true;
@ -453,7 +450,7 @@ void CvCascadeClassifier::save( const string filename, bool baseFormat )
fs << "{";
fs << ICV_HAAR_FEATURE_NAME << "{";
((CvHaarEvaluator*)((CvFeatureEvaluator*)featureEvaluator))->writeFeature( fs, tempNode->split->var_idx );
((CvHaarEvaluator*)featureEvaluator.get())->writeFeature( fs, tempNode->split->var_idx );
fs << "}";
fs << ICV_HAAR_THRESHOLD_NAME << tempNode->split->ord.c;
@ -499,7 +496,7 @@ bool CvCascadeClassifier::load( const string cascadeDirName )
if ( !readParams( node ) )
return false;
featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType);
featureEvaluator->init( ((CvFeatureParams*)featureParams), numPos + numNeg, cascadeParams.winSize );
featureEvaluator->init( featureParams, numPos + numNeg, cascadeParams.winSize );
fs.release();
char buf[10];
@ -510,11 +507,10 @@ bool CvCascadeClassifier::load( const string cascadeDirName )
node = fs.getFirstTopLevelNode();
if ( !fs.isOpened() )
break;
CvCascadeBoost *tempStage = new CvCascadeBoost;
Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>();
if ( !tempStage->read( node, (CvFeatureEvaluator*)featureEvaluator, *((CvCascadeBoostParams*)stageParams )) )
if ( !tempStage->read( node, featureEvaluator, *stageParams ))
{
delete tempStage;
fs.release();
break;
}
@ -531,7 +527,7 @@ void CvCascadeClassifier::getUsedFeaturesIdxMap( Mat& featureMap )
for( vector< Ptr<CvCascadeBoost> >::const_iterator it = stageClassifiers.begin();
it != stageClassifiers.end(); it++ )
((CvCascadeBoost*)((Ptr<CvCascadeBoost>)(*it)))->markUsedFeaturesInMap( featureMap );
(*it)->markUsedFeaturesInMap( featureMap );
for( int fi = 0, idx = 0; fi < varCount; fi++ )
if ( featureMap.at<int>(0, fi) >= 0 )

@ -18,9 +18,9 @@ int main( int argc, char* argv[] )
CvCascadeParams cascadeParams;
CvCascadeBoostParams stageParams;
Ptr<CvFeatureParams> featureParams[] = { Ptr<CvFeatureParams>(new CvHaarFeatureParams),
Ptr<CvFeatureParams>(new CvLBPFeatureParams),
Ptr<CvFeatureParams>(new CvHOGFeatureParams)
Ptr<CvFeatureParams> featureParams[] = { makePtr<CvHaarFeatureParams>(),
makePtr<CvLBPFeatureParams>(),
makePtr<CvHOGFeatureParams>()
};
int fc = sizeof(featureParams)/sizeof(featureParams[0]);
if( argc == 1 )

@ -295,8 +295,10 @@ private:
};
// smart pointers allocation :
Ptr<Retina> createRetina(Size inputSize){ return new RetinaImpl(inputSize); }
Ptr<Retina> createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght){return new RetinaImpl(inputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);}
Ptr<Retina> createRetina(Size inputSize){ return makePtr<RetinaImpl>(inputSize); }
Ptr<Retina> createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght){
return makePtr<RetinaImpl>(inputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
}
// RetinaImpl code

@ -1639,10 +1639,10 @@ void RetinaFilter::_processRetinaParvoMagnoMapping()
}
} /* namespace ocl */
Ptr<Retina> createRetina_OCL(Size getInputSize){ return new ocl::RetinaOCLImpl(getInputSize); }
Ptr<Retina> createRetina_OCL(Size getInputSize){ return makePtr<ocl::RetinaOCLImpl>(getInputSize); }
Ptr<Retina> createRetina_OCL(Size getInputSize, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
{
return new ocl::RetinaOCLImpl(getInputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
return makePtr<ocl::RetinaOCLImpl>(getInputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
}
} /* namespace bioinspired */

@ -114,9 +114,9 @@ public:
_imageOutput.resize(nbPixels*3);
_temp2.resize(nbPixels);
// allocate the main filter with 2 setup sets properties (one for each low pass filter
_multiuseFilter = new BasicRetinaFilter(imageInput.height, imageInput.width, 2);
_multiuseFilter = makePtr<BasicRetinaFilter>(imageInput.height, imageInput.width, 2);
// allocate the color manager (multiplexer/demultiplexer
_colorEngine = new RetinaColor(imageInput.height, imageInput.width);
_colorEngine = makePtr<RetinaColor>(imageInput.height, imageInput.width);
// setup filter behaviors with default values
setup();
}
@ -309,7 +309,7 @@ bool _convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray<float> &out
CV_EXPORTS Ptr<RetinaFastToneMapping> createRetinaFastToneMapping(Size inputSize)
{
return new RetinaFastToneMappingImpl(inputSize);
return makePtr<RetinaFastToneMappingImpl>(inputSize);
}
}// end of namespace bioinspired

@ -515,7 +515,7 @@ findCirclesGrid
-------------------
Finds centers in the grid of circles.
.. ocv:function:: bool findCirclesGrid( InputArray image, Size patternSize, OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID, const Ptr<FeatureDetector> &blobDetector = new SimpleBlobDetector() )
.. ocv:function:: bool findCirclesGrid( InputArray image, Size patternSize, OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID, const Ptr<FeatureDetector> &blobDetector = makePtr<SimpleBlobDetector>() )
.. ocv:pyfunction:: cv2.findCirclesGrid(image, patternSize[, centers[, flags[, blobDetector]]]) -> retval, centers

@ -180,7 +180,7 @@ CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSiz
//! finds circles' grid pattern of the specified size in the image
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
const Ptr<FeatureDetector> &blobDetector = new SimpleBlobDetector());
const Ptr<FeatureDetector> &blobDetector = makePtr<SimpleBlobDetector>());
//! finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern.
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,

@ -130,7 +130,7 @@ PERF_TEST_P(PointsNum, DISABLED_SolvePnPRansac, testing::Values(4, 3*9, 7*13))
#ifdef HAVE_TBB
// limit concurrency to get determenistic result
cv::Ptr<tbb::task_scheduler_init> one_thread = new tbb::task_scheduler_init(1);
tbb::task_scheduler_init one_thread(1);
#endif
TEST_CYCLE()

@ -271,8 +271,8 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
if( !out_corners )
CV_Error( CV_StsNullPtr, "Null pointer to corners" );
storage = cvCreateMemStorage(0);
thresh_img = cvCreateMat( img->rows, img->cols, CV_8UC1 );
storage.reset(cvCreateMemStorage(0));
thresh_img.reset(cvCreateMat( img->rows, img->cols, CV_8UC1 ));
#ifdef DEBUG_CHESSBOARD
dbg_img = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 3 );
@ -284,7 +284,7 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
{
// equalize the input image histogram -
// that should make the contrast between "black" and "white" areas big enough
norm_img = cvCreateMat( img->rows, img->cols, CV_8UC1 );
norm_img.reset(cvCreateMat( img->rows, img->cols, CV_8UC1 ));
if( CV_MAT_CN(img->type) != 1 )
{
@ -541,12 +541,12 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
cv::Ptr<CvMat> gray;
if( CV_MAT_CN(img->type) != 1 )
{
gray = cvCreateMat(img->rows, img->cols, CV_8UC1);
gray.reset(cvCreateMat(img->rows, img->cols, CV_8UC1));
cvCvtColor(img, gray, CV_BGR2GRAY);
}
else
{
gray = cvCloneMat(img);
gray.reset(cvCloneMat(img));
}
int wsize = 2;
cvFindCornerSubPix( gray, out_corners, pattern_size.width*pattern_size.height,
@ -627,7 +627,7 @@ icvOrderFoundConnectedQuads( int quad_count, CvCBQuad **quads,
int *all_count, CvCBQuad **all_quads, CvCBCorner **corners,
CvSize pattern_size, CvMemStorage* storage )
{
cv::Ptr<CvMemStorage> temp_storage = cvCreateChildMemStorage( storage );
cv::Ptr<CvMemStorage> temp_storage(cvCreateChildMemStorage( storage ));
CvSeq* stack = cvCreateSeq( 0, sizeof(*stack), sizeof(void*), temp_storage );
// first find an interior quad
@ -1109,7 +1109,7 @@ icvCleanFoundConnectedQuads( int quad_count, CvCBQuad **quad_group, CvSize patte
// create an array of quadrangle centers
cv::AutoBuffer<CvPoint2D32f> centers( quad_count );
cv::Ptr<CvMemStorage> temp_storage = cvCreateMemStorage(0);
cv::Ptr<CvMemStorage> temp_storage(cvCreateMemStorage(0));
for( i = 0; i < quad_count; i++ )
{
@ -1205,7 +1205,7 @@ static int
icvFindConnectedQuads( CvCBQuad *quad, int quad_count, CvCBQuad **out_group,
int group_idx, CvMemStorage* storage )
{
cv::Ptr<CvMemStorage> temp_storage = cvCreateChildMemStorage( storage );
cv::Ptr<CvMemStorage> temp_storage(cvCreateChildMemStorage( storage ));
CvSeq* stack = cvCreateSeq( 0, sizeof(*stack), sizeof(void*), temp_storage );
int i, count = 0;
@ -1674,7 +1674,7 @@ icvGenerateQuads( CvCBQuad **out_quads, CvCBCorner **out_corners,
min_size = 25; //cvRound( image->cols * image->rows * .03 * 0.01 * 0.92 );
// create temporary storage for contours and the sequence of pointers to found quadrangles
temp_storage = cvCreateChildMemStorage( storage );
temp_storage.reset(cvCreateChildMemStorage( storage ));
root = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvSeq*), temp_storage );
// initialize contour retrieving routine

@ -568,7 +568,7 @@ CV_IMPL void cvProjectPoints2( const CvMat* objectPoints,
(objectPoints->rows == count && CV_MAT_CN(objectPoints->type)*objectPoints->cols == 3) ||
(objectPoints->rows == 3 && CV_MAT_CN(objectPoints->type) == 1 && objectPoints->cols == count)))
{
matM = cvCreateMat( objectPoints->rows, objectPoints->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(objectPoints->type)) );
matM.reset(cvCreateMat( objectPoints->rows, objectPoints->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(objectPoints->type)) ));
cvConvert(objectPoints, matM);
}
else
@ -584,7 +584,7 @@ CV_IMPL void cvProjectPoints2( const CvMat* objectPoints,
(imagePoints->rows == count && CV_MAT_CN(imagePoints->type)*imagePoints->cols == 2) ||
(imagePoints->rows == 2 && CV_MAT_CN(imagePoints->type) == 1 && imagePoints->cols == count)))
{
_m = cvCreateMat( imagePoints->rows, imagePoints->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(imagePoints->type)) );
_m.reset(cvCreateMat( imagePoints->rows, imagePoints->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(imagePoints->type)) ));
cvConvert(imagePoints, _m);
}
else
@ -664,10 +664,10 @@ CV_IMPL void cvProjectPoints2( const CvMat* objectPoints,
if( CV_MAT_TYPE(dpdr->type) == CV_64FC1 )
{
_dpdr = cvCloneMat(dpdr);
_dpdr.reset(cvCloneMat(dpdr));
}
else
_dpdr = cvCreateMat( 2*count, 3, CV_64FC1 );
_dpdr.reset(cvCreateMat( 2*count, 3, CV_64FC1 ));
dpdr_p = _dpdr->data.db;
dpdr_step = _dpdr->step/sizeof(dpdr_p[0]);
}
@ -682,10 +682,10 @@ CV_IMPL void cvProjectPoints2( const CvMat* objectPoints,
if( CV_MAT_TYPE(dpdt->type) == CV_64FC1 )
{
_dpdt = cvCloneMat(dpdt);
_dpdt.reset(cvCloneMat(dpdt));
}
else
_dpdt = cvCreateMat( 2*count, 3, CV_64FC1 );
_dpdt.reset(cvCreateMat( 2*count, 3, CV_64FC1 ));
dpdt_p = _dpdt->data.db;
dpdt_step = _dpdt->step/sizeof(dpdt_p[0]);
}
@ -699,10 +699,10 @@ CV_IMPL void cvProjectPoints2( const CvMat* objectPoints,
if( CV_MAT_TYPE(dpdf->type) == CV_64FC1 )
{
_dpdf = cvCloneMat(dpdf);
_dpdf.reset(cvCloneMat(dpdf));
}
else
_dpdf = cvCreateMat( 2*count, 2, CV_64FC1 );
_dpdf.reset(cvCreateMat( 2*count, 2, CV_64FC1 ));
dpdf_p = _dpdf->data.db;
dpdf_step = _dpdf->step/sizeof(dpdf_p[0]);
}
@ -716,10 +716,10 @@ CV_IMPL void cvProjectPoints2( const CvMat* objectPoints,
if( CV_MAT_TYPE(dpdc->type) == CV_64FC1 )
{
_dpdc = cvCloneMat(dpdc);
_dpdc.reset(cvCloneMat(dpdc));
}
else
_dpdc = cvCreateMat( 2*count, 2, CV_64FC1 );
_dpdc.reset(cvCreateMat( 2*count, 2, CV_64FC1 ));
dpdc_p = _dpdc->data.db;
dpdc_step = _dpdc->step/sizeof(dpdc_p[0]);
}
@ -736,10 +736,10 @@ CV_IMPL void cvProjectPoints2( const CvMat* objectPoints,
if( CV_MAT_TYPE(dpdk->type) == CV_64FC1 )
{
_dpdk = cvCloneMat(dpdk);
_dpdk.reset(cvCloneMat(dpdk));
}
else
_dpdk = cvCreateMat( dpdk->rows, dpdk->cols, CV_64FC1 );
_dpdk.reset(cvCreateMat( dpdk->rows, dpdk->cols, CV_64FC1 ));
dpdk_p = _dpdk->data.db;
dpdk_step = _dpdk->step/sizeof(dpdk_p[0]);
}
@ -950,8 +950,8 @@ CV_IMPL void cvFindExtrinsicCameraParams2( const CvMat* objectPoints,
CV_IS_MAT(A) && CV_IS_MAT(rvec) && CV_IS_MAT(tvec) );
count = MAX(objectPoints->cols, objectPoints->rows);
matM = cvCreateMat( 1, count, CV_64FC3 );
_m = cvCreateMat( 1, count, CV_64FC2 );
matM.reset(cvCreateMat( 1, count, CV_64FC3 ));
_m.reset(cvCreateMat( 1, count, CV_64FC2 ));
cvConvertPointsHomogeneous( objectPoints, matM );
cvConvertPointsHomogeneous( imagePoints, _m );
@ -963,8 +963,8 @@ CV_IMPL void cvFindExtrinsicCameraParams2( const CvMat* objectPoints,
CV_Assert( (CV_MAT_DEPTH(tvec->type) == CV_64F || CV_MAT_DEPTH(tvec->type) == CV_32F) &&
(tvec->rows == 1 || tvec->cols == 1) && tvec->rows*tvec->cols*CV_MAT_CN(tvec->type) == 3 );
_mn = cvCreateMat( 1, count, CV_64FC2 );
_Mxy = cvCreateMat( 1, count, CV_64FC2 );
_mn.reset(cvCreateMat( 1, count, CV_64FC2 ));
_Mxy.reset(cvCreateMat( 1, count, CV_64FC2 ));
// normalize image points
// (unapply the intrinsic matrix transformation and distortion)
@ -1055,7 +1055,7 @@ CV_IMPL void cvFindExtrinsicCameraParams2( const CvMat* objectPoints,
CvPoint3D64f* M = (CvPoint3D64f*)matM->data.db;
CvPoint2D64f* mn = (CvPoint2D64f*)_mn->data.db;
matL = cvCreateMat( 2*count, 12, CV_64F );
matL.reset(cvCreateMat( 2*count, 12, CV_64F ));
L = matL->data.db;
for( i = 0; i < count; i++, L += 24 )
@ -1162,11 +1162,11 @@ CV_IMPL void cvInitIntrinsicParams2D( const CvMat* objectPoints,
if( objectPoints->rows != 1 || imagePoints->rows != 1 )
CV_Error( CV_StsBadSize, "object points and image points must be a single-row matrices" );
matA = cvCreateMat( 2*nimages, 2, CV_64F );
_b = cvCreateMat( 2*nimages, 1, CV_64F );
matA.reset(cvCreateMat( 2*nimages, 2, CV_64F ));
_b.reset(cvCreateMat( 2*nimages, 1, CV_64F ));
a[2] = (imageSize.width - 1)*0.5;
a[5] = (imageSize.height - 1)*0.5;
_allH = cvCreateMat( nimages, 9, CV_64F );
_allH.reset(cvCreateMat( nimages, 9, CV_64F ));
// extract vanishing points in order to obtain initial value for the focal length
for( i = 0, pos = 0; i < nimages; i++, pos += ni )
@ -1310,16 +1310,16 @@ CV_IMPL double cvCalibrateCamera2( const CvMat* objectPoints,
total += ni;
}
matM = cvCreateMat( 1, total, CV_64FC3 );
_m = cvCreateMat( 1, total, CV_64FC2 );
matM.reset(cvCreateMat( 1, total, CV_64FC3 ));
_m.reset(cvCreateMat( 1, total, CV_64FC2 ));
cvConvertPointsHomogeneous( objectPoints, matM );
cvConvertPointsHomogeneous( imagePoints, _m );
nparams = NINTRINSIC + nimages*6;
_Ji = cvCreateMat( maxPoints*2, NINTRINSIC, CV_64FC1 );
_Je = cvCreateMat( maxPoints*2, 6, CV_64FC1 );
_err = cvCreateMat( maxPoints*2, 1, CV_64FC1 );
_Ji.reset(cvCreateMat( maxPoints*2, NINTRINSIC, CV_64FC1 ));
_Je.reset(cvCreateMat( maxPoints*2, 6, CV_64FC1 ));
_err.reset(cvCreateMat( maxPoints*2, 1, CV_64FC1 ));
cvZero( _Ji );
_k = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), k);
@ -1662,7 +1662,7 @@ double cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1
CV_MAT_TYPE(_npoints->type) == CV_32SC1 );
nimages = _npoints->cols + _npoints->rows - 1;
npoints = cvCreateMat( _npoints->rows, _npoints->cols, _npoints->type );
npoints.reset(cvCreateMat( _npoints->rows, _npoints->cols, _npoints->type ));
cvCopy( _npoints, npoints );
for( i = 0, pointsTotal = 0; i < nimages; i++ )
@ -1671,8 +1671,8 @@ double cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1
pointsTotal += npoints->data.i[i];
}
objectPoints = cvCreateMat( _objectPoints->rows, _objectPoints->cols,
CV_64FC(CV_MAT_CN(_objectPoints->type)));
objectPoints.reset(cvCreateMat( _objectPoints->rows, _objectPoints->cols,
CV_64FC(CV_MAT_CN(_objectPoints->type))));
cvConvert( _objectPoints, objectPoints );
cvReshape( objectPoints, objectPoints, 3, 1 );
@ -1691,7 +1691,7 @@ double cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1
K[k] = cvMat(3,3,CV_64F,A[k]);
Dist[k] = cvMat(1,8,CV_64F,dk[k]);
imagePoints[k] = cvCreateMat( points->rows, points->cols, CV_64FC(CV_MAT_CN(points->type)));
imagePoints[k].reset(cvCreateMat( points->rows, points->cols, CV_64FC(CV_MAT_CN(points->type))));
cvConvert( points, imagePoints[k] );
cvReshape( imagePoints[k], imagePoints[k], 2, 1 );
@ -1729,10 +1729,10 @@ double cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1
recomputeIntrinsics = (flags & CV_CALIB_FIX_INTRINSIC) == 0;
err = cvCreateMat( maxPoints*2, 1, CV_64F );
Je = cvCreateMat( maxPoints*2, 6, CV_64F );
J_LR = cvCreateMat( maxPoints*2, 6, CV_64F );
Ji = cvCreateMat( maxPoints*2, NINTRINSIC, CV_64F );
err.reset(cvCreateMat( maxPoints*2, 1, CV_64F ));
Je.reset(cvCreateMat( maxPoints*2, 6, CV_64F ));
J_LR.reset(cvCreateMat( maxPoints*2, 6, CV_64F ));
Ji.reset(cvCreateMat( maxPoints*2, NINTRINSIC, CV_64F ));
cvZero( Ji );
// we optimize for the inter-camera R(3),t(3), then, optionally,
@ -1740,7 +1740,7 @@ double cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1
nparams = 6*(nimages+1) + (recomputeIntrinsics ? NINTRINSIC*2 : 0);
// storage for initial [om(R){i}|t{i}] (in order to compute the median for each component)
RT0 = cvCreateMat( 6, nimages, CV_64F );
RT0.reset(cvCreateMat( 6, nimages, CV_64F ));
solver.init( nparams, 0, termCrit );
if( recomputeIntrinsics )
@ -2080,7 +2080,7 @@ icvGetRectangles( const CvMat* cameraMatrix, const CvMat* distCoeffs,
{
const int N = 9;
int x, y, k;
cv::Ptr<CvMat> _pts = cvCreateMat(1, N*N, CV_32FC2);
cv::Ptr<CvMat> _pts(cvCreateMat(1, N*N, CV_32FC2));
CvPoint2D32f* pts = (CvPoint2D32f*)(_pts->data.ptr);
for( y = k = 0; y < N; y++ )
@ -2439,10 +2439,10 @@ CV_IMPL int cvStereoRectifyUncalibrated(
npoints = _points1->rows * _points1->cols * CV_MAT_CN(_points1->type) / 2;
_m1 = cvCreateMat( _points1->rows, _points1->cols, CV_64FC(CV_MAT_CN(_points1->type)) );
_m2 = cvCreateMat( _points2->rows, _points2->cols, CV_64FC(CV_MAT_CN(_points2->type)) );
_lines1 = cvCreateMat( 1, npoints, CV_64FC3 );
_lines2 = cvCreateMat( 1, npoints, CV_64FC3 );
_m1.reset(cvCreateMat( _points1->rows, _points1->cols, CV_64FC(CV_MAT_CN(_points1->type)) ));
_m2.reset(cvCreateMat( _points2->rows, _points2->cols, CV_64FC(CV_MAT_CN(_points2->type)) ));
_lines1.reset(cvCreateMat( 1, npoints, CV_64FC3 ));
_lines2.reset(cvCreateMat( 1, npoints, CV_64FC3 ));
cvConvert( F0, &F );

@ -53,7 +53,6 @@ using cv::Ptr;
CvLevMarq::CvLevMarq()
{
mask = prevParam = param = J = err = JtJ = JtJN = JtErr = JtJV = JtJW = Ptr<CvMat>();
lambdaLg10 = 0; state = DONE;
criteria = cvTermCriteria(0,0,0);
iters = 0;
@ -62,7 +61,6 @@ CvLevMarq::CvLevMarq()
CvLevMarq::CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag )
{
mask = prevParam = param = J = err = JtJ = JtJN = JtErr = JtJV = JtJW = Ptr<CvMat>();
init(nparams, nerrs, criteria0, _completeSymmFlag);
}
@ -89,19 +87,19 @@ void CvLevMarq::init( int nparams, int nerrs, CvTermCriteria criteria0, bool _co
{
if( !param || param->rows != nparams || nerrs != (err ? err->rows : 0) )
clear();
mask = cvCreateMat( nparams, 1, CV_8U );
mask.reset(cvCreateMat( nparams, 1, CV_8U ));
cvSet(mask, cvScalarAll(1));
prevParam = cvCreateMat( nparams, 1, CV_64F );
param = cvCreateMat( nparams, 1, CV_64F );
JtJ = cvCreateMat( nparams, nparams, CV_64F );
JtJN = cvCreateMat( nparams, nparams, CV_64F );
JtJV = cvCreateMat( nparams, nparams, CV_64F );
JtJW = cvCreateMat( nparams, 1, CV_64F );
JtErr = cvCreateMat( nparams, 1, CV_64F );
prevParam.reset(cvCreateMat( nparams, 1, CV_64F ));
param.reset(cvCreateMat( nparams, 1, CV_64F ));
JtJ.reset(cvCreateMat( nparams, nparams, CV_64F ));
JtJN.reset(cvCreateMat( nparams, nparams, CV_64F ));
JtJV.reset(cvCreateMat( nparams, nparams, CV_64F ));
JtJW.reset(cvCreateMat( nparams, 1, CV_64F ));
JtErr.reset(cvCreateMat( nparams, 1, CV_64F ));
if( nerrs > 0 )
{
J = cvCreateMat( nerrs, nparams, CV_64F );
err = cvCreateMat( nerrs, 1, CV_64F );
J.reset(cvCreateMat( nerrs, nparams, CV_64F ));
err.reset(cvCreateMat( nerrs, 1, CV_64F ));
}
prevErrNorm = DBL_MAX;
lambdaLg10 = -3;
@ -196,7 +194,7 @@ bool CvLevMarq::updateAlt( const CvMat*& _param, CvMat*& _JtJ, CvMat*& _JtErr, d
{
double change;
CV_Assert( err.empty() );
CV_Assert( !err );
if( state == DONE )
{
_param = param;

@ -436,9 +436,9 @@ cv::Mat cv::findEssentialMat( InputArray _points1, InputArray _points2, double f
Mat E;
if( method == RANSAC )
createRANSACPointSetRegistrator(new EMEstimatorCallback, 5, threshold, prob)->run(points1, points2, E, _mask);
createRANSACPointSetRegistrator(makePtr<EMEstimatorCallback>(), 5, threshold, prob)->run(points1, points2, E, _mask);
else
createLMeDSPointSetRegistrator(new EMEstimatorCallback, 5, prob)->run(points1, points2, E, _mask);
createLMeDSPointSetRegistrator(makePtr<EMEstimatorCallback>(), 5, prob)->run(points1, points2, E, _mask);
return E;
}

@ -307,7 +307,7 @@ cv::Mat cv::findHomography( InputArray _points1, InputArray _points2,
if( ransacReprojThreshold <= 0 )
ransacReprojThreshold = defaultRANSACReprojThreshold;
Ptr<PointSetRegistrator::Callback> cb = new HomographyEstimatorCallback;
Ptr<PointSetRegistrator::Callback> cb = makePtr<HomographyEstimatorCallback>();
if( method == 0 || npoints == 4 )
{
@ -334,7 +334,7 @@ cv::Mat cv::findHomography( InputArray _points1, InputArray _points2,
if( method == RANSAC || method == LMEDS )
cb->runKernel( src, dst, H );
Mat H8(8, 1, CV_64F, H.ptr<double>());
createLMSolver(new HomographyRefineCallback(src, dst), 10)->run(H8);
createLMSolver(makePtr<HomographyRefineCallback>(src, dst), 10)->run(H8);
}
}
@ -686,7 +686,7 @@ cv::Mat cv::findFundamentalMat( InputArray _points1, InputArray _points2,
if( npoints < 7 )
return Mat();
Ptr<PointSetRegistrator::Callback> cb = new FMEstimatorCallback;
Ptr<PointSetRegistrator::Callback> cb = makePtr<FMEstimatorCallback>();
int result;
if( npoints == 7 || method == FM_8POINT )

@ -95,7 +95,7 @@ public:
int ptype = param0.type();
CV_Assert( (param0.cols == 1 || param0.rows == 1) && (ptype == CV_32F || ptype == CV_64F));
CV_Assert( !cb.empty() );
CV_Assert( cb );
int lx = param0.rows + param0.cols - 1;
param0.convertTo(x, CV_64F);
@ -220,7 +220,7 @@ CV_INIT_ALGORITHM(LMSolverImpl, "LMSolver",
Ptr<LMSolver> createLMSolver(const Ptr<LMSolver::Callback>& cb, int maxIters)
{
CV_Assert( !LMSolverImpl_info_auto.name().empty() );
return new LMSolverImpl(cb, maxIters);
return makePtr<LMSolverImpl>(cb, maxIters);
}
}

@ -171,7 +171,7 @@ public:
RNG rng((uint64)-1);
CV_Assert( !cb.empty() );
CV_Assert( cb );
CV_Assert( confidence > 0 && confidence < 1 );
CV_Assert( count >= 0 && count2 == count );
@ -288,7 +288,7 @@ public:
RNG rng((uint64)-1);
CV_Assert( !cb.empty() );
CV_Assert( cb );
CV_Assert( confidence > 0 && confidence < 1 );
CV_Assert( count >= 0 && count2 == count );
@ -397,7 +397,8 @@ Ptr<PointSetRegistrator> createRANSACPointSetRegistrator(const Ptr<PointSetRegis
double _confidence, int _maxIters)
{
CV_Assert( !RANSACPointSetRegistrator_info_auto.name().empty() );
return new RANSACPointSetRegistrator(_cb, _modelPoints, _threshold, _confidence, _maxIters);
return Ptr<PointSetRegistrator>(
new RANSACPointSetRegistrator(_cb, _modelPoints, _threshold, _confidence, _maxIters));
}
@ -405,7 +406,8 @@ Ptr<PointSetRegistrator> createLMeDSPointSetRegistrator(const Ptr<PointSetRegist
int _modelPoints, double _confidence, int _maxIters)
{
CV_Assert( !LMeDSPointSetRegistrator_info_auto.name().empty() );
return new LMeDSPointSetRegistrator(_cb, _modelPoints, _confidence, _maxIters);
return Ptr<PointSetRegistrator>(
new LMeDSPointSetRegistrator(_cb, _modelPoints, _confidence, _maxIters));
}
class Affine3DEstimatorCallback : public PointSetRegistrator::Callback
@ -532,5 +534,5 @@ int cv::estimateAffine3D(InputArray _from, InputArray _to,
param1 = param1 <= 0 ? 3 : param1;
param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2;
return createRANSACPointSetRegistrator(new Affine3DEstimatorCallback, 4, param1, param2)->run(dFrom, dTo, _out, _inliers);
return createRANSACPointSetRegistrator(makePtr<Affine3DEstimatorCallback>(), 4, param1, param2)->run(dFrom, dTo, _out, _inliers);
}

@ -991,7 +991,7 @@ const char* StereoBMImpl::name_ = "StereoMatcher.BM";
cv::Ptr<cv::StereoBM> cv::createStereoBM(int _numDisparities, int _SADWindowSize)
{
return new StereoBMImpl(_numDisparities, _SADWindowSize);
return makePtr<StereoBMImpl>(_numDisparities, _SADWindowSize);
}
/* End of file. */

@ -947,11 +947,12 @@ Ptr<StereoSGBM> createStereoSGBM(int minDisparity, int numDisparities, int SADWi
int speckleWindowSize, int speckleRange,
int mode)
{
return new StereoSGBMImpl(minDisparity, numDisparities, SADWindowSize,
P1, P2, disp12MaxDiff,
preFilterCap, uniquenessRatio,
speckleWindowSize, speckleRange,
mode);
return Ptr<StereoSGBM>(
new StereoSGBMImpl(minDisparity, numDisparities, SADWindowSize,
P1, P2, disp12MaxDiff,
preFilterCap, uniquenessRatio,
speckleWindowSize, speckleRange,
mode));
}
Rect getValidDisparityROI( Rect roi1, Rect roi2,

@ -240,32 +240,32 @@ cvCorrectMatches(CvMat *F_, CvMat *points1_, CvMat *points2_, CvMat *new_points1
}
// Make sure F uses double precision
F = cvCreateMat(3,3,CV_64FC1);
F.reset(cvCreateMat(3,3,CV_64FC1));
cvConvert(F_, F);
// Make sure points1 uses double precision
points1 = cvCreateMat(points1_->rows,points1_->cols,CV_64FC2);
points1.reset(cvCreateMat(points1_->rows,points1_->cols,CV_64FC2));
cvConvert(points1_, points1);
// Make sure points2 uses double precision
points2 = cvCreateMat(points2_->rows,points2_->cols,CV_64FC2);
points2.reset(cvCreateMat(points2_->rows,points2_->cols,CV_64FC2));
cvConvert(points2_, points2);
tmp33 = cvCreateMat(3,3,CV_64FC1);
tmp31 = cvCreateMat(3,1,CV_64FC1), tmp31_2 = cvCreateMat(3,1,CV_64FC1);
T1i = cvCreateMat(3,3,CV_64FC1), T2i = cvCreateMat(3,3,CV_64FC1);
R1 = cvCreateMat(3,3,CV_64FC1), R2 = cvCreateMat(3,3,CV_64FC1);
TFT = cvCreateMat(3,3,CV_64FC1), TFTt = cvCreateMat(3,3,CV_64FC1), RTFTR = cvCreateMat(3,3,CV_64FC1);
U = cvCreateMat(3,3,CV_64FC1);
S = cvCreateMat(3,3,CV_64FC1);
V = cvCreateMat(3,3,CV_64FC1);
e1 = cvCreateMat(3,1,CV_64FC1), e2 = cvCreateMat(3,1,CV_64FC1);
tmp33.reset(cvCreateMat(3,3,CV_64FC1));
tmp31.reset(cvCreateMat(3,1,CV_64FC1)), tmp31_2.reset(cvCreateMat(3,1,CV_64FC1));
T1i.reset(cvCreateMat(3,3,CV_64FC1)), T2i.reset(cvCreateMat(3,3,CV_64FC1));
R1.reset(cvCreateMat(3,3,CV_64FC1)), R2.reset(cvCreateMat(3,3,CV_64FC1));
TFT.reset(cvCreateMat(3,3,CV_64FC1)), TFTt.reset(cvCreateMat(3,3,CV_64FC1)), RTFTR.reset(cvCreateMat(3,3,CV_64FC1));
U.reset(cvCreateMat(3,3,CV_64FC1));
S.reset(cvCreateMat(3,3,CV_64FC1));
V.reset(cvCreateMat(3,3,CV_64FC1));
e1.reset(cvCreateMat(3,1,CV_64FC1)), e2.reset(cvCreateMat(3,1,CV_64FC1));
double x1, y1, x2, y2;
double scale;
double f1, f2, a, b, c, d;
polynomial = cvCreateMat(1,7,CV_64FC1);
result = cvCreateMat(1,6,CV_64FC2);
polynomial.reset(cvCreateMat(1,7,CV_64FC1));
result.reset(cvCreateMat(1,6,CV_64FC2));
double t_min, s_val, t, s;
for (int p = 0; p < points1->cols; ++p) {
// Replace F by T2-t * F * T1-t

@ -276,7 +276,7 @@ TEST(DISABLED_Calib3d_SolvePnPRansac, concurrency)
{
// limit concurrency to get determenistic result
cv::theRNG().state = 20121010;
cv::Ptr<tbb::task_scheduler_init> one_thread = new tbb::task_scheduler_init(1);
tbb::task_scheduler_init one_thread(1);
solvePnPRansac(object, image, camera_mat, dist_coef, rvec1, tvec1);
}
@ -295,7 +295,7 @@ TEST(DISABLED_Calib3d_SolvePnPRansac, concurrency)
{
// single thread again
cv::theRNG().state = 20121010;
cv::Ptr<tbb::task_scheduler_init> one_thread = new tbb::task_scheduler_init(1);
tbb::task_scheduler_init one_thread(1);
solvePnPRansac(object, image, camera_mat, dist_coef, rvec2, tvec2);
}

@ -128,7 +128,7 @@ cv::DetectionBasedTracker::SeparateDetectionWork::SeparateDetectionWork(Detectio
stateThread(STATE_THREAD_STOPPED),
timeWhenDetectingThreadStartedWork(-1)
{
CV_Assert(!_detector.empty());
CV_Assert(_detector);
cascadeInThread = _detector;
@ -462,11 +462,11 @@ cv::DetectionBasedTracker::DetectionBasedTracker(cv::Ptr<IDetector> mainDetector
cascadeForTracking(trackingDetector)
{
CV_Assert( (params.maxTrackLifetime >= 0)
// && (!mainDetector.empty())
&& (!trackingDetector.empty()) );
// && mainDetector
&& trackingDetector );
if (!mainDetector.empty()) {
separateDetectionWork = new SeparateDetectionWork(*this, mainDetector);
if (mainDetector) {
separateDetectionWork.reset(new SeparateDetectionWork(*this, mainDetector));
}
weightsPositionsSmoothing.push_back(1);
@ -483,7 +483,7 @@ void DetectionBasedTracker::process(const Mat& imageGray)
{
CV_Assert(imageGray.type()==CV_8UC1);
if ( (!separateDetectionWork.empty()) && (!separateDetectionWork->isWorking()) ) {
if ( separateDetectionWork && !separateDetectionWork->isWorking() ) {
separateDetectionWork->run();
}
@ -501,7 +501,7 @@ void DetectionBasedTracker::process(const Mat& imageGray)
std::vector<Rect> rectsWhereRegions;
bool shouldHandleResult=false;
if (!separateDetectionWork.empty()) {
if (separateDetectionWork) {
shouldHandleResult = separateDetectionWork->communicateWithDetectingThread(imageGray, rectsWhereRegions);
}
@ -589,7 +589,7 @@ void cv::DetectionBasedTracker::getObjects(std::vector<ExtObject>& result) const
bool cv::DetectionBasedTracker::run()
{
if (!separateDetectionWork.empty()) {
if (separateDetectionWork) {
return separateDetectionWork->run();
}
return false;
@ -597,14 +597,14 @@ bool cv::DetectionBasedTracker::run()
void cv::DetectionBasedTracker::stop()
{
if (!separateDetectionWork.empty()) {
if (separateDetectionWork) {
separateDetectionWork->stop();
}
}
void cv::DetectionBasedTracker::resetTracking()
{
if (!separateDetectionWork.empty()) {
if (separateDetectionWork) {
separateDetectionWork->resetTracking();
}
trackedObjects.clear();
@ -876,11 +876,11 @@ bool cv::DetectionBasedTracker::setParameters(const Parameters& params)
return false;
}
if (!separateDetectionWork.empty()) {
if (separateDetectionWork) {
separateDetectionWork->lock();
}
parameters=params;
if (!separateDetectionWork.empty()) {
if (separateDetectionWork) {
separateDetectionWork->unlock();
}
return true;

@ -851,18 +851,18 @@ int LBPH::predict(InputArray _src) const {
Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components, double threshold)
{
return new Eigenfaces(num_components, threshold);
return makePtr<Eigenfaces>(num_components, threshold);
}
Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components, double threshold)
{
return new Fisherfaces(num_components, threshold);
return makePtr<Fisherfaces>(num_components, threshold);
}
Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius, int neighbors,
int grid_x, int grid_y, double threshold)
{
return new LBPH(radius, neighbors, grid_x, grid_y, threshold);
return makePtr<LBPH>(radius, neighbors, grid_x, grid_y, threshold);
}
CV_INIT_ALGORITHM(Eigenfaces, "FaceRecognizer.Eigenfaces",
@ -894,7 +894,7 @@ CV_INIT_ALGORITHM(LBPH, "FaceRecognizer.LBPH",
bool initModule_contrib()
{
Ptr<Algorithm> efaces = createEigenfaces_hidden(), ffaces = createFisherfaces_hidden(), lbph = createLBPH_hidden();
Ptr<Algorithm> efaces = createEigenfaces_ptr_hidden(), ffaces = createFisherfaces_ptr_hidden(), lbph = createLBPH_ptr_hidden();
return efaces->info() != 0 && ffaces->info() != 0 && lbph->info() != 0;
}

@ -54,7 +54,7 @@ CvFeatureTracker::CvFeatureTracker(CvFeatureTrackerParams _params) :
{
case CvFeatureTrackerParams::SIFT:
dd = Algorithm::create<Feature2D>("Feature2D.SIFT");
if( dd.empty() )
if( !dd )
CV_Error(CV_StsNotImplemented, "OpenCV has been compiled without SIFT support");
dd->set("nOctaveLayers", 5);
dd->set("contrastThreshold", 0.04);
@ -62,7 +62,7 @@ CvFeatureTracker::CvFeatureTracker(CvFeatureTrackerParams _params) :
break;
case CvFeatureTrackerParams::SURF:
dd = Algorithm::create<Feature2D>("Feature2D.SURF");
if( dd.empty() )
if( !dd )
CV_Error(CV_StsNotImplemented, "OpenCV has been compiled without SURF support");
dd->set("hessianThreshold", 400);
dd->set("nOctaves", 3);
@ -73,7 +73,7 @@ CvFeatureTracker::CvFeatureTracker(CvFeatureTrackerParams _params) :
break;
}
matcher = new BFMatcher(NORM_L2);
matcher = makePtr<BFMatcher>(int(NORM_L2));
}
CvFeatureTracker::~CvFeatureTracker()

@ -710,187 +710,328 @@ train descriptor index, train image index, and distance between descriptors. ::
};
.. _Ptr:
Ptr
---
.. ocv:class:: Ptr
Template class for smart reference-counting pointers ::
Template class for smart pointers with shared ownership. ::
template<typename _Tp> class Ptr
template<typename T>
struct Ptr
{
public:
// default constructor
typedef T element_type;
Ptr();
// constructor that wraps the object pointer
Ptr(_Tp* _obj);
// destructor: calls release()
template<typename Y>
explicit Ptr(Y* p);
template<typename Y, typename D>
Ptr(Y* p, D d);
Ptr(const Ptr& o);
template<typename Y>
Ptr(const Ptr<Y>& o);
template<typename Y>
Ptr(const Ptr<Y>& o, T* p);
~Ptr();
// copy constructor; increments ptr's reference counter
Ptr(const Ptr& ptr);
// assignment operator; decrements own reference counter
// (with release()) and increments ptr's reference counter
Ptr& operator = (const Ptr& ptr);
// increments reference counter
void addref();
// decrements reference counter; when it becomes 0,
// delete_obj() is called
Ptr& operator = (const Ptr& o);
template<typename Y>
Ptr& operator = (const Ptr<Y>& o);
void release();
// user-specified custom object deletion operation.
// by default, "delete obj;" is called
void delete_obj();
// returns true if obj == 0;
template<typename Y>
void reset(Y* p);
template<typename Y, typename D>
void reset(Y* p, D d);
void swap(Ptr& o);
T* get() const;
T& operator * () const;
T* operator -> () const;
operator T* () const;
bool empty() const;
// provide access to the object fields and methods
_Tp* operator -> ();
const _Tp* operator -> () const;
// return the underlying object pointer;
// thanks to the methods, the Ptr<_Tp> can be
// used instead of _Tp*
operator _Tp* ();
operator const _Tp*() const;
protected:
// the encapsulated object pointer
_Tp* obj;
// the associated reference counter
int* refcount;
template<typename Y>
Ptr<Y> staticCast() const;
template<typename Y>
Ptr<Y> constCast() const;
template<typename Y>
Ptr<Y> dynamicCast() const;
};
The ``Ptr<_Tp>`` class is a template class that wraps pointers of the corresponding type. It is
similar to ``shared_ptr`` that is part of the Boost library
(http://www.boost.org/doc/libs/1_40_0/libs/smart_ptr/shared_ptr.htm) and also part of the
`C++0x <http://en.wikipedia.org/wiki/C++0x>`_ standard.
A ``Ptr<T>`` pretends to be a pointer to an object of type T.
Unlike an ordinary pointer, however, the object will be automatically
cleaned up once all ``Ptr`` instances pointing to it are destroyed.
``Ptr`` is similar to ``boost::shared_ptr`` that is part of the Boost library
(http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm)
and ``std::shared_ptr`` from the `C++11 <http://en.wikipedia.org/wiki/C++11>`_ standard.
This class provides the following options:
This class provides the following advantages:
*
Default constructor, copy constructor, and assignment operator for an arbitrary C++ class
or a C structure. For some objects, like files, windows, mutexes, sockets, and others, a copy
or C structure. For some objects, like files, windows, mutexes, sockets, and others, a copy
constructor or an assignment operator are difficult to define. For some other objects, like
complex classifiers in OpenCV, copy constructors are absent and not easy to implement. Finally,
some of complex OpenCV and your own data structures may be written in C.
However, copy constructors and default constructors can simplify programming a lot.Besides,
they are often required (for example, by STL containers). By wrapping a pointer to such a
complex object ``TObj`` to ``Ptr<TObj>``, you automatically get all of the necessary
However, copy constructors and default constructors can simplify programming a lot. Besides,
they are often required (for example, by STL containers). By using a ``Ptr`` to such an
object instead of the object itself, you automatically get all of the necessary
constructors and the assignment operator.
*
*O(1)* complexity of the above-mentioned operations. While some structures, like ``std::vector``,
provide a copy constructor and an assignment operator, the operations may take a considerable
amount of time if the data structures are large. But if the structures are put into ``Ptr<>``,
amount of time if the data structures are large. But if the structures are put into a ``Ptr``,
the overhead is small and independent of the data size.
*
Automatic destruction, even for C structures. See the example below with ``FILE*``.
Automatic and customizable cleanup, even for C structures. See the example below with ``FILE*``.
*
Heterogeneous collections of objects. The standard STL and most other C++ and OpenCV containers
can store only objects of the same type and the same size. The classical solution to store objects
of different types in the same container is to store pointers to the base class ``base_class_t*``
instead but then you loose the automatic memory management. Again, by using ``Ptr<base_class_t>()``
instead of the raw pointers, you can solve the problem.
The ``Ptr`` class treats the wrapped object as a black box. The reference counter is allocated and
managed separately. The only thing the pointer class needs to know about the object is how to
deallocate it. This knowledge is encapsulated in the ``Ptr::delete_obj()`` method that is called when
the reference counter becomes 0. If the object is a C++ class instance, no additional coding is
needed, because the default implementation of this method calls ``delete obj;``. However, if the
object is deallocated in a different way, the specialized method should be created. For example,
if you want to wrap ``FILE``, the ``delete_obj`` may be implemented as follows: ::
template<> inline void Ptr<FILE>::delete_obj()
{
fclose(obj); // no need to clear the pointer afterwards,
// it is done externally.
}
...
// now use it:
Ptr<FILE> f(fopen("myfile.txt", "r"));
if(f.empty())
throw ...;
of different types in the same container is to store pointers to the base class (``Base*``)
instead but then you lose the automatic memory management. Again, by using ``Ptr<Base>``
instead of raw pointers, you can solve the problem.
A ``Ptr`` is said to *own* a pointer - that is, for each ``Ptr`` there is a pointer that will be deleted
once all ``Ptr`` instances that own it are destroyed. The owned pointer may be null, in which case nothing is deleted.
Each ``Ptr`` also *stores* a pointer. The stored pointer is the pointer the ``Ptr`` pretends to be;
that is, the one you get when you use :ocv:func:`Ptr::get` or the conversion to ``T*``. It's usually
the same as the owned pointer, but if you use casts or the general shared-ownership constructor, the two may diverge:
the ``Ptr`` will still own the original pointer, but will itself point to something else.
The owned pointer is treated as a black box. The only thing ``Ptr`` needs to know about it is how to
delete it. This knowledge is encapsulated in the *deleter* - an auxiliary object that is associated
with the owned pointer and shared between all ``Ptr`` instances that own it. The default deleter is
an instance of ``DefaultDeleter``, which uses the standard C++ ``delete`` operator; as such it
will work with any pointer allocated with the standard ``new`` operator.
However, if the pointer must be deleted in a different way, you must specify a custom deleter upon
``Ptr`` construction. A deleter is simply a callable object that accepts the pointer as its sole argument.
For example, if you want to wrap ``FILE``, you may do so as follows::
Ptr<FILE> f(fopen("myfile.txt", "w"), fclose);
if(!f) throw ...;
fprintf(f, ....);
...
// the file will be closed automatically by the Ptr<FILE> destructor.
// the file will be closed automatically by f's destructor.
Alternatively, if you want all pointers of a particular type to be deleted the same way,
you can specialize ``DefaultDeleter<T>::operator()`` for that type, like this::
.. note:: The reference increment/decrement operations are implemented as atomic operations,
and therefore it is normally safe to use the classes in multi-threaded applications.
The same is true for :ocv:class:`Mat` and other C++ OpenCV classes that operate on
the reference counters.
namespace cv {
template<> void DefaultDeleter<FILE>::operator ()(FILE * obj) const
{
fclose(obj);
}
}
Ptr::Ptr
--------
Various Ptr constructors.
For convenience, the following types from the OpenCV C API already have such a specialization
that calls the appropriate release function:
* ``CvCapture``
* :ocv:struct:`CvDTreeSplit`
* :ocv:struct:`CvFileStorage`
* ``CvHaarClassifierCascade``
* :ocv:struct:`CvMat`
* :ocv:struct:`CvMatND`
* :ocv:struct:`CvMemStorage`
* :ocv:struct:`CvSparseMat`
* ``CvVideoWriter``
* :ocv:struct:`IplImage`
.. note:: The shared ownership mechanism is implemented with reference counting. As such,
cyclic ownership (e.g. when object ``a`` contains a ``Ptr`` to object ``b``, which
contains a ``Ptr`` to object ``a``) will lead to all involved objects never being
cleaned up. Avoid such situations.
.. note:: It is safe to concurrently read (but not write) a ``Ptr`` instance from multiple threads
and therefore it is normally safe to use it in multi-threaded applications.
The same is true for :ocv:class:`Mat` and other C++ OpenCV classes that use internal
reference counts.
Ptr::Ptr (null)
------------------
.. ocv:function:: Ptr::Ptr()
.. ocv:function:: Ptr::Ptr(_Tp* _obj)
.. ocv:function:: Ptr::Ptr(const Ptr& ptr)
:param _obj: Object for copy.
:param ptr: Object for copy.
The default constructor creates a null ``Ptr`` - one that owns and stores a null pointer.
Ptr::Ptr (assuming ownership)
-----------------------------
.. ocv:function:: template<typename Y> Ptr::Ptr(Y* p)
.. ocv:function:: template<typename Y, typename D> Ptr::Ptr(Y* p, D d)
:param d: Deleter to use for the owned pointer.
:param p: Pointer to own.
If ``p`` is null, these are equivalent to the default constructor.
Otherwise, these constructors assume ownership of ``p`` - that is, the created ``Ptr`` owns
and stores ``p`` and assumes it is the sole owner of it. Don't use them if ``p`` is already
owned by another ``Ptr``, or else ``p`` will get deleted twice.
With the first constructor, ``DefaultDeleter<Y>()`` becomes the associated deleter (so ``p``
will eventually be deleted with the standard ``delete`` operator). ``Y`` must be a complete
type at the point of invocation.
With the second constructor, ``d`` becomes the associated deleter.
``Y*`` must be convertible to ``T*``.
.. note:: It is often easier to use :ocv:func:`makePtr` instead.
Ptr::Ptr (sharing ownership)
----------------------------
.. ocv:function:: Ptr::Ptr(const Ptr& o)
.. ocv:function:: template<typename Y> Ptr::Ptr(const Ptr<Y>& o)
.. ocv:function:: template<typename Y> Ptr::Ptr(const Ptr<Y>& o, T* p)
:param o: ``Ptr`` to share ownership with.
:param p: Pointer to store.
These constructors create a ``Ptr`` that shares ownership with another ``Ptr`` - that is,
own the same pointer as ``o``.
With the first two, the same pointer is stored, as well; for the second, ``Y*`` must be convertible to ``T*``.
With the third, ``p`` is stored, and ``Y`` may be any type. This constructor allows to have completely
unrelated owned and stored pointers, and should be used with care to avoid confusion. A relatively
benign use is to create a non-owning ``Ptr``, like this::
ptr = Ptr<T>(Ptr<T>(), dont_delete_me); // owns nothing; will not delete the pointer.
Ptr::~Ptr
---------
The Ptr destructor.
.. ocv:function:: Ptr::~Ptr()
The destructor is equivalent to calling :ocv:func:`Ptr::release`.
Ptr::operator =
----------------
Assignment operator.
.. ocv:function:: Ptr& Ptr::operator = (const Ptr& ptr)
.. ocv:function:: Ptr& Ptr::operator = (const Ptr& o)
.. ocv:function:: template<typename Y> Ptr& Ptr::operator = (const Ptr<Y>& o)
:param ptr: Object for assignment.
:param o: ``Ptr`` to share ownership with.
Decrements own reference counter (with ``release()``) and increments ptr's reference counter.
Ptr::addref
-----------
Increments reference counter.
Assignment replaces the current ``Ptr`` instance with one that owns and stores same
pointers as ``o`` and then destroys the old instance.
.. ocv:function:: void Ptr::addref()
Ptr::release
------------
Decrements reference counter; when it becomes 0, ``delete_obj()`` is called.
.. ocv:function:: void Ptr::release()
Ptr::delete_obj
---------------
User-specified custom object deletion operation. By default, ``delete obj;`` is called.
If no other ``Ptr`` instance owns the owned pointer, deletes it with the associated deleter.
Then sets both the owned and the stored pointers to ``NULL``.
Ptr::reset
----------
.. ocv:function:: template<typename Y> void Ptr::reset(Y* p)
.. ocv:function:: template<typename Y, typename D> void Ptr::reset(Y* p, D d)
:param d: Deleter to use for the owned pointer.
:param p: Pointer to own.
``ptr.reset(...)`` is equivalent to ``ptr = Ptr<T>(...)``.
Ptr::swap
---------
.. ocv:function:: void Ptr::swap(Ptr& o)
:param o: ``Ptr`` to swap with.
Swaps the owned and stored pointers (and deleters, if any) of this and ``o``.
Ptr::get
--------
.. ocv:function:: T* Ptr::get() const
.. ocv:function:: void Ptr::delete_obj()
Returns the stored pointer.
Ptr pointer emulation
---------------------
.. ocv:function:: T& Ptr::operator * () const
.. ocv:function:: T* Ptr::operator -> () const
.. ocv:function:: Ptr::operator T* () const
These operators are what allows ``Ptr`` to pretend to be a pointer.
If ``ptr`` is a ``Ptr<T>``, then ``*ptr`` is equivalent to ``*ptr.get()``
and ``ptr->foo`` is equivalent to ``ptr.get()->foo``. In addition, ``ptr``
is implicitly convertible to ``T*``, and such conversion is equivalent to
``ptr.get()``. As a corollary, ``if (ptr)`` is equivalent to ``if (ptr.get())``.
In other words, a ``Ptr`` behaves as if it was its own stored pointer.
Ptr::empty
----------
Returns true if obj == 0;
bool empty() const;
.. ocv:function:: bool Ptr::empty() const
Ptr::operator ->
----------------
Provide access to the object fields and methods.
``ptr.empty()`` is equivalent to ``!ptr.get()``.
.. ocv:function:: template<typename _Tp> _Tp* Ptr::operator -> ()
.. ocv:function:: template<typename _Tp> const _Tp* Ptr::operator -> () const
Ptr casts
---------
.. ocv:function:: template<typename Y> Ptr<Y> Ptr::staticCast() const
.. ocv:function:: template<typename Y> Ptr<Y> Ptr::constCast() const
.. ocv:function:: template<typename Y> Ptr<Y> Ptr::dynamicCast() const
Ptr::operator _Tp*
------------------
Returns the underlying object pointer. Thanks to the methods, the ``Ptr<_Tp>`` can be used instead
of ``_Tp*``.
If ``ptr`` is a ``Ptr``, then ``ptr.fooCast<Y>()`` is equivalent to
``Ptr<Y>(ptr, foo_cast<Y>(ptr.get()))``. That is, these functions create
a new ``Ptr`` with the same owned pointer and a cast stored pointer.
Ptr global swap
---------------
.. ocv:function:: template<typename T> void swap(Ptr<T>& ptr1, Ptr<T>& ptr2)
Equivalent to ``ptr1.swap(ptr2)``. Provided to help write generic algorithms.
Ptr comparisons
---------------
.. ocv:function:: template<typename T> bool operator == (const Ptr<T>& ptr1, const Ptr<T>& ptr2)
.. ocv:function:: template<typename T> bool operator != (const Ptr<T>& ptr1, const Ptr<T>& ptr2)
Return whether ``ptr1.get()`` and ``ptr2.get()`` are equal and not equal, respectively.
makePtr
-------
.. ocv:function:: template<typename T> Ptr<T> makePtr()
.. ocv:function:: template<typename T, typename A1> Ptr<T> makePtr(const A1& a1)
.. ocv:function:: template<typename T, typename A1, typename A2> Ptr<T> makePtr(const A1& a1, const A2& a2)
.. ocv:function:: template<typename T, typename A1, typename A2, typename A3> Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3)
(and so on...)
.. ocv:function:: template<typename _Tp> Ptr::operator _Tp* ()
.. ocv:function:: template<typename _Tp> Ptr::operator const _Tp*() const
``makePtr<T>(...)`` is equivalent to ``Ptr<T>(new T(...))``. It is shorter than the latter, and
it's marginally safer than using a constructor or :ocv:func:`Ptr::reset`, since it ensures that
the owned pointer is new and thus not owned by any other ``Ptr`` instance.
Unfortunately, perfect forwarding is impossible to implement in C++03, and so ``makePtr`` is limited
to constructors of ``T`` that have up to 10 arguments, none of which are non-const references.
Mat
---
@ -2967,7 +3108,7 @@ Creates algorithm instance by name
:param name: The algorithm name, one of the names returned by ``Algorithm::getList()``.
This static method creates a new instance of the specified algorithm. If there is no such algorithm, the method will silently return null pointer (that can be checked by ``Ptr::empty()`` method). Also, you should specify the particular ``Algorithm`` subclass as ``_Tp`` (or simply ``Algorithm`` if you do not know it at that point). ::
This static method creates a new instance of the specified algorithm. If there is no such algorithm, the method will silently return a null pointer. Also, you should specify the particular ``Algorithm`` subclass as ``_Tp`` (or simply ``Algorithm`` if you do not know it at that point). ::
Ptr<BackgroundSubtractor> bgfg = Algorithm::create<BackgroundSubtractor>("BackgroundSubtractor.MOG2");

@ -83,17 +83,22 @@ First of all, ``std::vector``, ``Mat``, and other data structures used by the fu
// matrix will be deallocated, since it is not referenced by anyone
C = C.clone();
You see that the use of ``Mat`` and other basic structures is simple. But what about high-level classes or even user data types created without taking automatic memory management into account? For them, OpenCV offers the ``Ptr<>`` template class that is similar to ``std::shared_ptr`` from C++ TR1. So, instead of using plain pointers::
You see that the use of ``Mat`` and other basic structures is simple. But what about high-level classes or even user
data types created without taking automatic memory management into account? For them, OpenCV offers the :ocv:class:`Ptr`
template class that is similar to ``std::shared_ptr`` from C++11. So, instead of using plain pointers::
T* ptr = new T(...);
you can use::
Ptr<T> ptr = new T(...);
Ptr<T> ptr(new T(...));
That is, ``Ptr<T> ptr`` encapsulates a pointer to a ``T`` instance and a reference counter associated with the pointer. See the
:ocv:class:`Ptr`
description for details.
or::
Ptr<T> ptr = makePtr<T>(...);
``Ptr<T>`` encapsulates a pointer to a ``T`` instance and a reference counter associated with the pointer. See the
:ocv:class:`Ptr` description for details.
.. _AutomaticAllocation:

@ -1882,13 +1882,13 @@ CV_EXPORTS void insertImageCOI(InputArray coiimg, CvArr* arr, int coi=-1);
//////// specializied implementations of Ptr::delete_obj() for classic OpenCV types ////////
////// specialized implementations of DefaultDeleter::operator() for classic OpenCV types //////
template<> CV_EXPORTS void Ptr<CvMat>::delete_obj();
template<> CV_EXPORTS void Ptr<IplImage>::delete_obj();
template<> CV_EXPORTS void Ptr<CvMatND>::delete_obj();
template<> CV_EXPORTS void Ptr<CvSparseMat>::delete_obj();
template<> CV_EXPORTS void Ptr<CvMemStorage>::delete_obj();
template<> CV_EXPORTS void DefaultDeleter<CvMat>::operator ()(CvMat* obj) const;
template<> CV_EXPORTS void DefaultDeleter<IplImage>::operator ()(IplImage* obj) const;
template<> CV_EXPORTS void DefaultDeleter<CvMatND>::operator ()(CvMatND* obj) const;
template<> CV_EXPORTS void DefaultDeleter<CvSparseMat>::operator ()(CvSparseMat* obj) const;
template<> CV_EXPORTS void DefaultDeleter<CvMemStorage>::operator ()(CvMemStorage* obj) const;
////////////// convenient wrappers for operating old-style dynamic structures //////////////

@ -158,69 +158,176 @@ public:
size_type max_size() const { return cv::max(static_cast<_Tp>(-1)/sizeof(_Tp), 1); }
};
namespace detail
{
// Metafunction to avoid taking a reference to void.
template<typename T>
struct RefOrVoid { typedef T& type; };
//////////////////// generic_type ref-counting pointer class for C/C++ objects ////////////////////////
template<>
struct RefOrVoid<void>{ typedef void type; };
/*!
Smart pointer to dynamically allocated objects.
template<>
struct RefOrVoid<const void>{ typedef const void type; };
This is template pointer-wrapping class that stores the associated reference counter along with the
object pointer. The class is similar to std::smart_ptr<> from the recent addons to the C++ standard,
but is shorter to write :) and self-contained (i.e. does add any dependency on the compiler or an external library).
template<>
struct RefOrVoid<volatile void>{ typedef volatile void type; };
Basically, you can use "Ptr<MyObjectType> ptr" (or faster "const Ptr<MyObjectType>& ptr" for read-only access)
everywhere instead of "MyObjectType* ptr", where MyObjectType is some C structure or a C++ class.
To make it all work, you need to specialize Ptr<>::delete_obj(), like:
template<>
struct RefOrVoid<const volatile void>{ typedef const volatile void type; };
\code
template<> CV_EXPORTS void Ptr<MyObjectType>::delete_obj() { call_destructor_func(obj); }
\endcode
// This class would be private to Ptr, if it didn't have to be a non-template.
struct PtrOwner;
}
template<typename Y>
struct DefaultDeleter
{
void operator () (Y* p) const;
};
\note{if MyObjectType is a C++ class with a destructor, you do not need to specialize delete_obj(),
since the default implementation calls "delete obj;"}
/*
A smart shared pointer class with reference counting.
\note{Another good property of the class is that the operations on the reference counter are atomic,
i.e. it is safe to use the class in multi-threaded applications}
A Ptr<T> stores a pointer and owns a (potentially different) pointer.
The stored pointer has type T and is the one returned by get() et al,
while the owned pointer can have any type and is the one deleted
when there are no more Ptrs that own it. You can't directly obtain the
owned pointer.
The interface of this class is mostly a subset of that of C++11's
std::shared_ptr.
*/
template<typename _Tp> class Ptr
template<typename T>
struct Ptr
{
public:
//! empty constructor
/* Generic programming support. */
typedef T element_type;
/* Ptr that owns NULL and stores NULL. */
Ptr();
//! take ownership of the pointer. The associated reference counter is allocated and set to 1
Ptr(_Tp* _obj);
//! calls release()
/* Ptr that owns p and stores p. The owned pointer will be deleted with
DefaultDeleter<Y>. Y must be a complete type and Y* must be
convertible to T*. */
template<typename Y>
explicit Ptr(Y* p);
/* Ptr that owns p and stores p. The owned pointer will be deleted by
calling d(p). Y* must be convertible to T*. */
template<typename Y, typename D>
Ptr(Y* p, D d);
/* Same as the constructor below; it exists to suppress the generation
of the implicit copy constructor. */
Ptr(const Ptr& o);
/* Ptr that owns the same pointer as o and stores the same pointer as o,
converted to T*. Naturally, Y* must be convertible to T*. */
template<typename Y>
Ptr(const Ptr<Y>& o);
/* Ptr that owns same pointer as o, and stores p. Useful for casts and
creating non-owning Ptrs. */
template<typename Y>
Ptr(const Ptr<Y>& o, T* p);
/* Equivalent to release(). */
~Ptr();
//! copy constructor. Copies the members and calls addref()
Ptr(const Ptr& ptr);
template<typename _Tp2> Ptr(const Ptr<_Tp2>& ptr);
//! copy operator. Calls ptr.addref() and release() before copying the members
Ptr& operator = (const Ptr& ptr);
//! increments the reference counter
void addref();
//! decrements the reference counter. If it reaches 0, delete_obj() is called
/* Same as assignment below; exists to suppress the generation of the
implicit assignment operator. */
Ptr& operator = (const Ptr& o);
template<typename Y>
Ptr& operator = (const Ptr<Y>& o);
/* Resets both the owned and stored pointers to NULL. Deletes the owned
pointer with the associated deleter if it's not owned by any other
Ptr and is non-zero. It's called reset() in std::shared_ptr; here
it is release() for compatibility with old OpenCV versions. */
void release();
//! deletes the object. Override if needed
void delete_obj();
//! returns true iff obj==NULL
/* Equivalent to assigning from Ptr<T>(p). */
template<typename Y>
void reset(Y* p);
/* Equivalent to assigning from Ptr<T>(p, d). */
template<typename Y, typename D>
void reset(Y* p, D d);
/* Swaps the stored and owned pointers of this and o. */
void swap(Ptr& o);
/* Returns the stored pointer. */
T* get() const;
/* Ordinary pointer emulation. */
typename detail::RefOrVoid<T>::type operator * () const;
T* operator -> () const;
/* Equivalent to get(). */
operator T* () const;
/* Equivalent to !*this. */
bool empty() const;
//! cast pointer to another type
template<typename _Tp2> Ptr<_Tp2> ptr();
template<typename _Tp2> const Ptr<_Tp2> ptr() const;
/* Returns a Ptr that owns the same pointer as this, and stores the same
pointer as this, except converted via static_cast to Y*. */
template<typename Y>
Ptr<Y> staticCast() const;
/* Ditto for const_cast. */
template<typename Y>
Ptr<Y> constCast() const;
//! helper operators making "Ptr<T> ptr" use very similar to "T* ptr".
_Tp* operator -> ();
const _Tp* operator -> () const;
/* Ditto for dynamic_cast. */
template<typename Y>
Ptr<Y> dynamicCast() const;
operator _Tp* ();
operator const _Tp*() const;
private:
detail::PtrOwner* owner;
T* stored;
_Tp* obj; //< the object pointer.
int* refcount; //< the associated reference counter
template<typename Y>
friend struct Ptr; // have to do this for the cross-type copy constructor
};
/* Overload of the generic swap. */
template<typename T>
void swap(Ptr<T>& ptr1, Ptr<T>& ptr2);
/* Obvious comparisons. */
template<typename T>
bool operator == (const Ptr<T>& ptr1, const Ptr<T>& ptr2);
template<typename T>
bool operator != (const Ptr<T>& ptr1, const Ptr<T>& ptr2);
/* Convenience creation functions. In the far future, there may be variadic templates here. */
template<typename T>
Ptr<T> makePtr();
template<typename T, typename A1>
Ptr<T> makePtr(const A1& a1);
template<typename T, typename A1, typename A2>
Ptr<T> makePtr(const A1& a1, const A2& a2);
template<typename T, typename A1, typename A2, typename A3>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3);
template<typename T, typename A1, typename A2, typename A3, typename A4>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4);
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5);
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6);
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7);
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8);
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9);
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10);
//////////////////////////////// string class ////////////////////////////////
@ -324,176 +431,6 @@ private:
};
/////////////////////////// cv::Ptr implementation ///////////////////////////
template<typename _Tp> inline
Ptr<_Tp>::Ptr()
: obj(0), refcount(0) {}
template<typename _Tp> inline
Ptr<_Tp>::Ptr(_Tp* _obj)
: obj(_obj)
{
if(obj)
{
refcount = (int*)fastMalloc(sizeof(*refcount));
*refcount = 1;
}
else
refcount = 0;
}
template<typename _Tp> template<typename _Tp2>
Ptr<_Tp>::Ptr(const Ptr<_Tp2>& p)
: obj(0), refcount(0)
{
if (p.empty())
return;
_Tp* p_casted = dynamic_cast<_Tp*>(p.obj);
if (!p_casted)
return;
obj = p_casted;
refcount = p.refcount;
addref();
}
template<typename _Tp> inline
Ptr<_Tp>::~Ptr()
{
release();
}
template<typename _Tp> inline
void Ptr<_Tp>::addref()
{
if( refcount )
CV_XADD(refcount, 1);
}
template<typename _Tp> inline
void Ptr<_Tp>::release()
{
if( refcount && CV_XADD(refcount, -1) == 1 )
{
delete_obj();
fastFree(refcount);
}
refcount = 0;
obj = 0;
}
template<typename _Tp> inline
void Ptr<_Tp>::delete_obj()
{
if( obj )
delete obj;
}
template<typename _Tp> inline
Ptr<_Tp>::Ptr(const Ptr<_Tp>& _ptr)
{
obj = _ptr.obj;
refcount = _ptr.refcount;
addref();
}
template<typename _Tp> inline
Ptr<_Tp>& Ptr<_Tp>::operator = (const Ptr<_Tp>& _ptr)
{
int* _refcount = _ptr.refcount;
if( _refcount )
CV_XADD(_refcount, 1);
release();
obj = _ptr.obj;
refcount = _refcount;
return *this;
}
template<typename _Tp> inline
_Tp* Ptr<_Tp>::operator -> ()
{
return obj;
}
template<typename _Tp> inline
const _Tp* Ptr<_Tp>::operator -> () const
{
return obj;
}
template<typename _Tp> inline
Ptr<_Tp>::operator _Tp* ()
{
return obj;
}
template<typename _Tp> inline
Ptr<_Tp>::operator const _Tp*() const
{
return obj;
}
template<typename _Tp> inline
bool Ptr<_Tp>::empty() const
{
return obj == 0;
}
template<typename _Tp> template<typename _Tp2> inline
Ptr<_Tp2> Ptr<_Tp>::ptr()
{
Ptr<_Tp2> p;
if( !obj )
return p;
_Tp2* obj_casted = dynamic_cast<_Tp2*>(obj);
if (!obj_casted)
return p;
if( refcount )
CV_XADD(refcount, 1);
p.obj = obj_casted;
p.refcount = refcount;
return p;
}
template<typename _Tp> template<typename _Tp2> inline
const Ptr<_Tp2> Ptr<_Tp>::ptr() const
{
Ptr<_Tp2> p;
if( !obj )
return p;
_Tp2* obj_casted = dynamic_cast<_Tp2*>(obj);
if (!obj_casted)
return p;
if( refcount )
CV_XADD(refcount, 1);
p.obj = obj_casted;
p.refcount = refcount;
return p;
}
template<class _Tp, class _Tp2> static inline
bool operator == (const Ptr<_Tp>& a, const Ptr<_Tp2>& b)
{
return a.refcount == b.refcount;
}
template<class _Tp, class _Tp2> static inline
bool operator != (const Ptr<_Tp>& a, const Ptr<_Tp2>& b)
{
return a.refcount != b.refcount;
}
////////////////////////// cv::String implementation /////////////////////////
inline
@ -940,4 +877,6 @@ namespace cv
}
}
#include "opencv2/core/ptr.inl.hpp"
#endif //__OPENCV_CORE_CVSTD_HPP__

@ -666,12 +666,6 @@ CV_EXPORTS void printShortCudaDeviceInfo(int device);
}} // namespace cv { namespace gpu {
namespace cv {
template <> CV_EXPORTS void Ptr<cv::gpu::Stream::Impl>::delete_obj();
template <> CV_EXPORTS void Ptr<cv::gpu::Event::Impl>::delete_obj();
}
#include "opencv2/core/gpu.inl.hpp"

@ -283,12 +283,6 @@ CV_EXPORTS void setGlDevice(int device = 0);
}}
namespace cv {
template <> CV_EXPORTS void Ptr<cv::ogl::Buffer::Impl>::delete_obj();
template <> CV_EXPORTS void Ptr<cv::ogl::Texture2D::Impl>::delete_obj();
}
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////

@ -445,14 +445,14 @@ int print(const Matx<_Tp, m, n>& matx, FILE* stream = stdout)
template<typename _Tp> inline
Ptr<_Tp> Algorithm::create(const String& name)
{
return _create(name).ptr<_Tp>();
return _create(name).dynamicCast<_Tp>();
}
template<typename _Tp> inline
void Algorithm::set(const char* _name, const Ptr<_Tp>& value)
{
Ptr<Algorithm> algo_ptr = value. template ptr<cv::Algorithm>();
if (algo_ptr.empty()) {
Ptr<Algorithm> algo_ptr = value. template dynamicCast<cv::Algorithm>();
if (!algo_ptr) {
CV_Error( Error::StsUnsupportedFormat, "unknown/unsupported Ptr type of the second parameter of the method Algorithm::set");
}
info()->set(this, _name, ParamType<Algorithm>::type, &algo_ptr);
@ -468,7 +468,7 @@ template<typename _Tp> inline
void Algorithm::setAlgorithm(const char* _name, const Ptr<_Tp>& value)
{
Ptr<Algorithm> algo_ptr = value. template ptr<cv::Algorithm>();
if (algo_ptr.empty()) {
if (!algo_ptr) {
CV_Error( Error::StsUnsupportedFormat, "unknown/unsupported Ptr type of the second parameter of the method Algorithm::set");
}
info()->set(this, _name, ParamType<Algorithm>::type, &algo_ptr);

@ -186,7 +186,7 @@ public:
//! the full constructor that opens file storage for reading or writing
CV_WRAP FileStorage(const String& source, int flags, const String& encoding=String());
//! the constructor that takes pointer to the C FileStorage structure
FileStorage(CvFileStorage* fs);
FileStorage(CvFileStorage* fs, bool owning=true);
//! the destructor. calls release()
virtual ~FileStorage();
@ -209,9 +209,9 @@ public:
CV_WRAP FileNode operator[](const char* nodename) const;
//! returns pointer to the underlying C FileStorage structure
CvFileStorage* operator *() { return fs; }
CvFileStorage* operator *() { return fs.get(); }
//! returns pointer to the underlying C FileStorage structure
const CvFileStorage* operator *() const { return fs; }
const CvFileStorage* operator *() const { return fs.get(); }
//! writes one or more numbers of the specified format to the currently written structure
void writeRaw( const String& fmt, const uchar* vec, size_t len );
//! writes the registered C structure (CvMat, CvMatND, CvSeq). See cvWrite()
@ -226,7 +226,7 @@ public:
int state; //!< the writer state
};
template<> CV_EXPORTS void Ptr<CvFileStorage>::delete_obj();
template<> CV_EXPORTS void DefaultDeleter<CvFileStorage>::operator ()(CvFileStorage* obj) const;
/*!
File Storage Node class

@ -128,12 +128,17 @@ namespace cv
} //namespace cv
#define CV_INIT_ALGORITHM(classname, algname, memberinit) \
static ::cv::Algorithm* create##classname##_hidden() \
static inline ::cv::Algorithm* create##classname##_hidden() \
{ \
return new classname; \
} \
\
static ::cv::AlgorithmInfo& classname##_info() \
static inline ::cv::Ptr< ::cv::Algorithm> create##classname##_ptr_hidden() \
{ \
return ::cv::makePtr<classname>(); \
} \
\
static inline ::cv::AlgorithmInfo& classname##_info() \
{ \
static ::cv::AlgorithmInfo classname##_info_var(algname, create##classname##_hidden); \
return classname##_info_var; \

@ -0,0 +1,338 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, NVIDIA Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the copyright holders or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_PTR_INL_HPP__
#define __OPENCV_CORE_PTR_INL_HPP__
#include <algorithm>
namespace cv {
template<typename Y>
void DefaultDeleter<Y>::operator () (Y* p) const
{
delete p;
}
namespace detail
{
struct PtrOwner
{
PtrOwner() : refCount(1)
{}
void incRef()
{
CV_XADD(&refCount, 1);
}
void decRef()
{
if (CV_XADD(&refCount, -1) == 1) deleteSelf();
}
protected:
/* This doesn't really need to be virtual, since PtrOwner is never deleted
directly, but it doesn't hurt and it helps avoid warnings. */
virtual ~PtrOwner()
{}
virtual void deleteSelf() = 0;
private:
unsigned int refCount;
// noncopyable
PtrOwner(const PtrOwner&);
PtrOwner& operator = (const PtrOwner&);
};
template<typename Y, typename D>
struct PtrOwnerImpl : PtrOwner
{
PtrOwnerImpl(Y* p, D d) : owned(p), deleter(d)
{}
void deleteSelf()
{
deleter(owned);
delete this;
}
private:
Y* owned;
D deleter;
};
}
template<typename T>
Ptr<T>::Ptr() : owner(NULL), stored(NULL)
{}
template<typename T>
template<typename Y>
Ptr<T>::Ptr(Y* p)
: owner(p
? new detail::PtrOwnerImpl<Y, DefaultDeleter<Y> >(p, DefaultDeleter<Y>())
: NULL),
stored(p)
{}
template<typename T>
template<typename Y, typename D>
Ptr<T>::Ptr(Y* p, D d)
: owner(p
? new detail::PtrOwnerImpl<Y, D>(p, d)
: NULL),
stored(p)
{}
template<typename T>
Ptr<T>::Ptr(const Ptr& o) : owner(o.owner), stored(o.stored)
{
if (owner) owner->incRef();
}
template<typename T>
template<typename Y>
Ptr<T>::Ptr(const Ptr<Y>& o) : owner(o.owner), stored(o.stored)
{
if (owner) owner->incRef();
}
template<typename T>
template<typename Y>
Ptr<T>::Ptr(const Ptr<Y>& o, T* p) : owner(o.owner), stored(p)
{
if (owner) owner->incRef();
}
template<typename T>
Ptr<T>::~Ptr()
{
release();
}
template<typename T>
Ptr<T>& Ptr<T>::operator = (const Ptr<T>& o)
{
Ptr(o).swap(*this);
return *this;
}
template<typename T>
template<typename Y>
Ptr<T>& Ptr<T>::operator = (const Ptr<Y>& o)
{
Ptr(o).swap(*this);
return *this;
}
template<typename T>
void Ptr<T>::release()
{
if (owner) owner->decRef();
owner = NULL;
stored = NULL;
}
template<typename T>
template<typename Y>
void Ptr<T>::reset(Y* p)
{
Ptr(p).swap(*this);
}
template<typename T>
template<typename Y, typename D>
void Ptr<T>::reset(Y* p, D d)
{
Ptr(p, d).swap(*this);
}
template<typename T>
void Ptr<T>::swap(Ptr<T>& o)
{
std::swap(owner, o.owner);
std::swap(stored, o.stored);
}
template<typename T>
T* Ptr<T>::get() const
{
return stored;
}
template<typename T>
typename detail::RefOrVoid<T>::type Ptr<T>::operator * () const
{
return *stored;
}
template<typename T>
T* Ptr<T>::operator -> () const
{
return stored;
}
template<typename T>
Ptr<T>::operator T* () const
{
return stored;
}
template<typename T>
bool Ptr<T>::empty() const
{
return !stored;
}
template<typename T>
template<typename Y>
Ptr<Y> Ptr<T>::staticCast() const
{
return Ptr<Y>(*this, static_cast<Y*>(stored));
}
template<typename T>
template<typename Y>
Ptr<Y> Ptr<T>::constCast() const
{
return Ptr<Y>(*this, const_cast<Y*>(stored));
}
template<typename T>
template<typename Y>
Ptr<Y> Ptr<T>::dynamicCast() const
{
return Ptr<Y>(*this, dynamic_cast<Y*>(stored));
}
template<typename T>
void swap(Ptr<T>& ptr1, Ptr<T>& ptr2){
ptr1.swap(ptr2);
}
template<typename T>
bool operator == (const Ptr<T>& ptr1, const Ptr<T>& ptr2)
{
return ptr1.get() == ptr2.get();
}
template<typename T>
bool operator != (const Ptr<T>& ptr1, const Ptr<T>& ptr2)
{
return ptr1.get() != ptr2.get();
}
template<typename T>
Ptr<T> makePtr()
{
return Ptr<T>(new T());
}
template<typename T, typename A1>
Ptr<T> makePtr(const A1& a1)
{
return Ptr<T>(new T(a1));
}
template<typename T, typename A1, typename A2>
Ptr<T> makePtr(const A1& a1, const A2& a2)
{
return Ptr<T>(new T(a1, a2));
}
template<typename T, typename A1, typename A2, typename A3>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3)
{
return Ptr<T>(new T(a1, a2, a3));
}
template<typename T, typename A1, typename A2, typename A3, typename A4>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4)
{
return Ptr<T>(new T(a1, a2, a3, a4));
}
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5)
{
return Ptr<T>(new T(a1, a2, a3, a4, a5));
}
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6)
{
return Ptr<T>(new T(a1, a2, a3, a4, a5, a6));
}
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7)
{
return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7));
}
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8)
{
return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7, a8));
}
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9)
{
return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9));
}
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10)
{
return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10));
}
} // namespace cv
#endif // __OPENCV_CORE_PTR_INL_HPP__

@ -163,7 +163,7 @@ Ptr<Algorithm> Algorithm::_create(const String& name)
Algorithm::Constructor c = 0;
if( !alglist().find(name, c) )
return Ptr<Algorithm>();
return c();
return Ptr<Algorithm>(c());
}
Algorithm::Algorithm()
@ -490,7 +490,7 @@ void AlgorithmInfo::read(Algorithm* algo, const FileNode& fn) const
else if( p.type == Param::ALGORITHM )
{
Ptr<Algorithm> nestedAlgo = Algorithm::_create((String)n["name"]);
CV_Assert( !nestedAlgo.empty() );
CV_Assert( nestedAlgo );
nestedAlgo->read(n);
info->set(algo, pname.c_str(), p.type, &nestedAlgo, true);
}

@ -3190,22 +3190,22 @@ cvCheckTermCriteria( CvTermCriteria criteria, double default_eps,
namespace cv
{
template<> void Ptr<CvMat>::delete_obj()
template<> void DefaultDeleter<CvMat>::operator ()(CvMat* obj) const
{ cvReleaseMat(&obj); }
template<> void Ptr<IplImage>::delete_obj()
template<> void DefaultDeleter<IplImage>::operator ()(IplImage* obj) const
{ cvReleaseImage(&obj); }
template<> void Ptr<CvMatND>::delete_obj()
template<> void DefaultDeleter<CvMatND>::operator ()(CvMatND* obj) const
{ cvReleaseMatND(&obj); }
template<> void Ptr<CvSparseMat>::delete_obj()
template<> void DefaultDeleter<CvSparseMat>::operator ()(CvSparseMat* obj) const
{ cvReleaseSparseMat(&obj); }
template<> void Ptr<CvMemStorage>::delete_obj()
template<> void DefaultDeleter<CvMemStorage>::operator ()(CvMemStorage* obj) const
{ cvReleaseMemStorage(&obj); }
template<> void Ptr<CvFileStorage>::delete_obj()
template<> void DefaultDeleter<CvFileStorage>::operator ()(CvFileStorage* obj) const
{ cvReleaseFileStorage(&obj); }
}

@ -100,7 +100,7 @@ cv::gpu::Stream::Stream()
#ifndef HAVE_CUDA
throw_no_cuda();
#else
impl_ = new Impl;
impl_ = makePtr<Impl>();
#endif
}
@ -182,7 +182,7 @@ void cv::gpu::Stream::enqueueHostCallback(StreamCallback callback, void* userDat
Stream& cv::gpu::Stream::Null()
{
static Stream s(new Impl(0));
static Stream s(Ptr<Impl>(new Impl(0)));
return s;
}
@ -195,10 +195,6 @@ cv::gpu::Stream::operator bool_type() const
#endif
}
template <> void cv::Ptr<Stream::Impl>::delete_obj()
{
if (obj) delete obj;
}
////////////////////////////////////////////////////////////////
// Stream
@ -249,7 +245,7 @@ cv::gpu::Event::Event(CreateFlags flags)
(void) flags;
throw_no_cuda();
#else
impl_ = new Impl(flags);
impl_ = makePtr<Impl>(flags);
#endif
}
@ -301,8 +297,3 @@ float cv::gpu::Event::elapsedTime(const Event& start, const Event& end)
return ms;
#endif
}
template <> void cv::Ptr<Event::Impl>::delete_obj()
{
if (obj) delete obj;
}

@ -836,10 +836,6 @@ unsigned int cv::ogl::Buffer::bufId() const
#endif
}
template <> void cv::Ptr<cv::ogl::Buffer::Impl>::delete_obj()
{
if (obj) delete obj;
}
//////////////////////////////////////////////////////////////////////////////////////////
// ogl::Texture
@ -1243,10 +1239,6 @@ unsigned int cv::ogl::Texture2D::texId() const
#endif
}
template <> void cv::Ptr<cv::ogl::Texture2D::Impl>::delete_obj()
{
if (obj) delete obj;
}
////////////////////////////////////////////////////////////////////////
// ogl::Arrays

@ -256,7 +256,7 @@ namespace
cv::Ptr<cv::Formatted> format(const cv::Mat& mtx) const
{
char braces[5] = {'\0', '\0', ';', '\0', '\0'};
return new FormattedImpl("[", "]", mtx, braces,
return cv::makePtr<FormattedImpl>("[", "]", mtx, &*braces,
mtx.cols == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
}
};
@ -270,7 +270,7 @@ namespace
char braces[5] = {'[', ']', '\0', '[', ']'};
if (mtx.cols == 1)
braces[0] = braces[1] = '\0';
return new FormattedImpl("[", "]", mtx, braces,
return cv::makePtr<FormattedImpl>("[", "]", mtx, &*braces,
mtx.cols*mtx.channels() == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
}
};
@ -288,7 +288,8 @@ namespace
char braces[5] = {'[', ']', '\0', '[', ']'};
if (mtx.cols == 1)
braces[0] = braces[1] = '\0';
return new FormattedImpl("array([", cv::format("], type='%s')", numpyTypes[mtx.depth()]), mtx, braces,
return cv::makePtr<FormattedImpl>("array([",
cv::format("], type='%s')", numpyTypes[mtx.depth()]), mtx, &*braces,
mtx.cols*mtx.channels() == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
}
};
@ -300,7 +301,8 @@ namespace
cv::Ptr<cv::Formatted> format(const cv::Mat& mtx) const
{
char braces[5] = {'\0', '\0', '\0', '\0', '\0'};
return new FormattedImpl(cv::String(), mtx.rows > 1 ? cv::String("\n") : cv::String(), mtx, braces,
return cv::makePtr<FormattedImpl>(cv::String(),
mtx.rows > 1 ? cv::String("\n") : cv::String(), mtx, &*braces,
mtx.cols*mtx.channels() == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
}
};
@ -312,7 +314,7 @@ namespace
cv::Ptr<cv::Formatted> format(const cv::Mat& mtx) const
{
char braces[5] = {'\0', '\0', ',', '\0', '\0'};
return new FormattedImpl("{", "}", mtx, braces,
return cv::makePtr<FormattedImpl>("{", "}", mtx, &*braces,
mtx.cols == 1 || !multiline, mtx.depth() == CV_64F ? prec64f : prec32f );
}
};
@ -330,16 +332,16 @@ namespace cv
switch(fmt)
{
case FMT_MATLAB:
return new MatlabFormatter();
return makePtr<MatlabFormatter>();
case FMT_CSV:
return new CSVFormatter();
return makePtr<CSVFormatter>();
case FMT_PYTHON:
return new PythonFormatter();
return makePtr<PythonFormatter>();
case FMT_NUMPY:
return new NumpyFormatter();
return makePtr<NumpyFormatter>();
case FMT_C:
return new CFormatter();
return makePtr<CFormatter>();
}
return new MatlabFormatter();
return makePtr<MatlabFormatter>();
}
} // cv

@ -5129,9 +5129,11 @@ FileStorage::FileStorage(const String& filename, int flags, const String& encodi
open( filename, flags, encoding );
}
FileStorage::FileStorage(CvFileStorage* _fs)
FileStorage::FileStorage(CvFileStorage* _fs, bool owning)
{
fs = Ptr<CvFileStorage>(_fs);
if (owning) fs.reset(_fs);
else fs = Ptr<CvFileStorage>(Ptr<CvFileStorage>(), _fs);
state = _fs ? NAME_EXPECTED + INSIDE_MAP : UNDEFINED;
}
@ -5147,8 +5149,8 @@ FileStorage::~FileStorage()
bool FileStorage::open(const String& filename, int flags, const String& encoding)
{
release();
fs = Ptr<CvFileStorage>(cvOpenFileStorage( filename.c_str(), 0, flags,
!encoding.empty() ? encoding.c_str() : 0));
fs.reset(cvOpenFileStorage( filename.c_str(), 0, flags,
!encoding.empty() ? encoding.c_str() : 0));
bool ok = isOpened();
state = ok ? NAME_EXPECTED + INSIDE_MAP : UNDEFINED;
return ok;
@ -5156,7 +5158,7 @@ bool FileStorage::open(const String& filename, int flags, const String& encoding
bool FileStorage::isOpened() const
{
return !fs.empty() && fs.obj->is_opened;
return fs && fs->is_opened;
}
void FileStorage::release()
@ -5169,8 +5171,8 @@ void FileStorage::release()
String FileStorage::releaseAndGetString()
{
String buf;
if( fs.obj && fs.obj->outbuf )
icvClose(fs.obj, &buf);
if( fs && fs->outbuf )
icvClose(fs, &buf);
release();
return buf;
@ -5479,7 +5481,7 @@ void write( FileStorage& fs, const String& name, const Mat& value )
// TODO: the 4 functions below need to be implemented more efficiently
void write( FileStorage& fs, const String& name, const SparseMat& value )
{
Ptr<CvSparseMat> mat = cvCreateSparseMat(value);
Ptr<CvSparseMat> mat(cvCreateSparseMat(value));
cvWrite( *fs, name.size() ? name.c_str() : 0, mat );
}
@ -5529,8 +5531,8 @@ void read( const FileNode& node, SparseMat& mat, const SparseMat& default_mat )
default_mat.copyTo(mat);
return;
}
Ptr<CvSparseMat> m = (CvSparseMat*)cvRead((CvFileStorage*)node.fs, (CvFileNode*)*node);
CV_Assert(CV_IS_SPARSE_MAT(m.obj));
Ptr<CvSparseMat> m((CvSparseMat*)cvRead((CvFileStorage*)node.fs, (CvFileNode*)*node));
CV_Assert(CV_IS_SPARSE_MAT(m));
m->copyToSparseMat(mat);
}

@ -358,8 +358,6 @@ Core_DynStructBaseTest::Core_DynStructBaseTest()
iterations = max_struct_size*2;
gen = struct_idx = iter = -1;
test_progress = -1;
storage = 0;
}
@ -999,7 +997,7 @@ void Core_SeqBaseTest::run( int )
{
t = cvtest::randReal(rng)*(max_log_storage_block_size - min_log_storage_block_size)
+ min_log_storage_block_size;
storage = cvCreateMemStorage( cvRound( exp(t * CV_LOG2) ) );
storage.reset(cvCreateMemStorage( cvRound( exp(t * CV_LOG2) ) ));
}
iter = struct_idx = -1;
@ -1083,11 +1081,11 @@ void Core_SeqSortInvTest::run( int )
{
struct_idx = iter = -1;
if( storage.empty() )
if( !storage )
{
t = cvtest::randReal(rng)*(max_log_storage_block_size - min_log_storage_block_size)
+ min_log_storage_block_size;
storage = cvCreateMemStorage( cvRound( exp(t * CV_LOG2) ) );
storage.reset(cvCreateMemStorage( cvRound( exp(t * CV_LOG2) ) ));
}
for( iter = 0; iter < iterations/10; iter++ )
@ -1384,7 +1382,7 @@ void Core_SetTest::run( int )
{
struct_idx = iter = -1;
t = cvtest::randReal(rng)*(max_log_storage_block_size - min_log_storage_block_size) + min_log_storage_block_size;
storage = cvCreateMemStorage( cvRound( exp(t * CV_LOG2) ) );
storage.reset(cvCreateMemStorage( cvRound( exp(t * CV_LOG2) ) ));
for( int i = 0; i < struct_count; i++ )
{
@ -1398,7 +1396,7 @@ void Core_SetTest::run( int )
cvTsReleaseSimpleSet( (CvTsSimpleSet**)&simple_struct[i] );
simple_struct[i] = cvTsCreateSimpleSet( max_struct_size, pure_elem_size );
cxcore_struct[i] = cvCreateSet( 0, sizeof(CvSet), elem_size, storage );
cxcore_struct[i] = cvCreateSet( 0, sizeof(CvSet), elem_size, storage );
}
if( test_set_ops( iterations*100 ) < 0 )
@ -1811,7 +1809,7 @@ void Core_GraphTest::run( int )
int block_size = cvRound( exp(t * CV_LOG2) );
block_size = MAX(block_size, (int)(sizeof(CvGraph) + sizeof(CvMemBlock) + sizeof(CvSeqBlock)));
storage = cvCreateMemStorage(block_size);
storage.reset(cvCreateMemStorage(block_size));
for( i = 0; i < struct_count; i++ )
{
@ -1929,7 +1927,7 @@ void Core_GraphScanTest::run( int )
storage_blocksize = MAX(storage_blocksize, (int)(sizeof(CvGraph) + sizeof(CvMemBlock) + sizeof(CvSeqBlock)));
storage_blocksize = MAX(storage_blocksize, (int)(sizeof(CvGraphEdge) + sizeof(CvMemBlock) + sizeof(CvSeqBlock)));
storage_blocksize = MAX(storage_blocksize, (int)(sizeof(CvGraphVtx) + sizeof(CvMemBlock) + sizeof(CvSeqBlock)));
storage = cvCreateMemStorage(storage_blocksize);
storage.reset(cvCreateMemStorage(storage_blocksize));
if( gen == 0 )
{

@ -270,16 +270,16 @@ protected:
cvRelease((void**)&m_nd);
Ptr<CvSparseMat> m_s = (CvSparseMat*)fs["test_sparse_mat"].readObj();
Ptr<CvSparseMat> _test_sparse_ = cvCreateSparseMat(test_sparse_mat);
Ptr<CvSparseMat> _test_sparse = (CvSparseMat*)cvClone(_test_sparse_);
Ptr<CvSparseMat> m_s((CvSparseMat*)fs["test_sparse_mat"].readObj());
Ptr<CvSparseMat> _test_sparse_(cvCreateSparseMat(test_sparse_mat));
Ptr<CvSparseMat> _test_sparse((CvSparseMat*)cvClone(_test_sparse_));
SparseMat m_s2;
fs["test_sparse_mat"] >> m_s2;
Ptr<CvSparseMat> _m_s2 = cvCreateSparseMat(m_s2);
Ptr<CvSparseMat> _m_s2(cvCreateSparseMat(m_s2));
if( !m_s || !CV_IS_SPARSE_MAT(m_s) ||
!cvTsCheckSparse(m_s, _test_sparse,0) ||
!cvTsCheckSparse(_m_s2, _test_sparse,0))
!cvTsCheckSparse(m_s, _test_sparse, 0) ||
!cvTsCheckSparse(_m_s2, _test_sparse, 0))
{
ts->printf( cvtest::TS::LOG, "the read sparse matrix is not correct\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );

@ -669,7 +669,7 @@ void Core_ArrayOpTest::run( int /* start_from */)
cvSetReal3D(&matA, idx1[0], idx1[1], idx1[2], -val0);
cvSetND(&matB, idx0, val1);
cvSet3D(&matB, idx1[0], idx1[1], idx1[2], -val1);
Ptr<CvMatND> matC = cvCloneMatND(&matB);
Ptr<CvMatND> matC(cvCloneMatND(&matB));
if( A.at<float>(idx0[0], idx0[1], idx0[2]) != val0 ||
A.at<float>(idx1[0], idx1[1], idx1[2]) != -val0 ||
@ -762,7 +762,7 @@ void Core_ArrayOpTest::run( int /* start_from */)
}
}
Ptr<CvSparseMat> M2 = cvCreateSparseMat(M);
Ptr<CvSparseMat> M2(cvCreateSparseMat(M));
MatND Md;
M.copyTo(Md);
SparseMat M3; SparseMat(Md).convertTo(M3, Md.type(), 2);

@ -0,0 +1,389 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, NVIDIA Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the copyright holders or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace cv;
namespace {
struct Reporter {
Reporter(bool* deleted) : deleted_(deleted)
{ *deleted_ = false; }
// the destructor is virtual, so that we can test dynamic_cast later
virtual ~Reporter()
{ *deleted_ = true; }
private:
bool* deleted_;
Reporter(const Reporter&);
Reporter& operator = (const Reporter&);
};
struct ReportingDeleter {
ReportingDeleter(bool* deleted) : deleted_(deleted)
{ *deleted_ = false; }
void operator()(void*)
{ *deleted_ = true; }
private:
bool* deleted_;
};
int dummyObject;
}
TEST(Core_Ptr, default_ctor)
{
Ptr<int> p;
EXPECT_EQ(NULL, p.get());
}
TEST(Core_Ptr, owning_ctor)
{
bool deleted = false;
{
Reporter* r = new Reporter(&deleted);
Ptr<void> p(r);
EXPECT_EQ(r, p.get());
}
EXPECT_TRUE(deleted);
{
Ptr<int> p(&dummyObject, ReportingDeleter(&deleted));
EXPECT_EQ(&dummyObject, p.get());
}
EXPECT_TRUE(deleted);
{
Ptr<void> p((void*)0, ReportingDeleter(&deleted));
EXPECT_EQ(NULL, p.get());
}
EXPECT_FALSE(deleted);
}
TEST(Core_Ptr, sharing_ctor)
{
bool deleted = false;
{
Ptr<Reporter> p1(new Reporter(&deleted));
Ptr<Reporter> p2(p1);
EXPECT_EQ(p1.get(), p2.get());
p1.release();
EXPECT_FALSE(deleted);
}
EXPECT_TRUE(deleted);
{
Ptr<Reporter> p1(new Reporter(&deleted));
Ptr<void> p2(p1);
EXPECT_EQ(p1.get(), p2.get());
p1.release();
EXPECT_FALSE(deleted);
}
EXPECT_TRUE(deleted);
{
Ptr<Reporter> p1(new Reporter(&deleted));
Ptr<int> p2(p1, &dummyObject);
EXPECT_EQ(&dummyObject, p2.get());
p1.release();
EXPECT_FALSE(deleted);
}
EXPECT_TRUE(deleted);
}
TEST(Core_Ptr, assignment)
{
bool deleted1 = false, deleted2 = false;
{
Ptr<Reporter> p1(new Reporter(&deleted1));
p1 = p1;
EXPECT_FALSE(deleted1);
}
EXPECT_TRUE(deleted1);
{
Ptr<Reporter> p1(new Reporter(&deleted1));
Ptr<Reporter> p2(new Reporter(&deleted2));
p2 = p1;
EXPECT_TRUE(deleted2);
EXPECT_EQ(p1.get(), p2.get());
p1.release();
EXPECT_FALSE(deleted1);
}
EXPECT_TRUE(deleted1);
{
Ptr<Reporter> p1(new Reporter(&deleted1));
Ptr<void> p2(new Reporter(&deleted2));
p2 = p1;
EXPECT_TRUE(deleted2);
EXPECT_EQ(p1.get(), p2.get());
p1.release();
EXPECT_FALSE(deleted1);
}
EXPECT_TRUE(deleted1);
}
TEST(Core_Ptr, release)
{
bool deleted = false;
Ptr<Reporter> p1(new Reporter(&deleted));
p1.release();
EXPECT_TRUE(deleted);
EXPECT_EQ(NULL, p1.get());
}
TEST(Core_Ptr, reset)
{
bool deleted_old = false, deleted_new = false;
{
Ptr<void> p(new Reporter(&deleted_old));
Reporter* r = new Reporter(&deleted_new);
p.reset(r);
EXPECT_TRUE(deleted_old);
EXPECT_EQ(r, p.get());
}
EXPECT_TRUE(deleted_new);
{
Ptr<void> p(new Reporter(&deleted_old));
p.reset(&dummyObject, ReportingDeleter(&deleted_new));
EXPECT_TRUE(deleted_old);
EXPECT_EQ(&dummyObject, p.get());
}
EXPECT_TRUE(deleted_new);
}
TEST(Core_Ptr, swap)
{
bool deleted1 = false, deleted2 = false;
{
Reporter* r1 = new Reporter(&deleted1);
Reporter* r2 = new Reporter(&deleted2);
Ptr<Reporter> p1(r1), p2(r2);
p1.swap(p2);
EXPECT_EQ(r1, p2.get());
EXPECT_EQ(r2, p1.get());
EXPECT_FALSE(deleted1);
EXPECT_FALSE(deleted2);
p1.release();
EXPECT_TRUE(deleted2);
}
EXPECT_TRUE(deleted1);
{
Reporter* r1 = new Reporter(&deleted1);
Reporter* r2 = new Reporter(&deleted2);
Ptr<Reporter> p1(r1), p2(r2);
swap(p1, p2);
EXPECT_EQ(r1, p2.get());
EXPECT_EQ(r2, p1.get());
EXPECT_FALSE(deleted1);
EXPECT_FALSE(deleted2);
p1.release();
EXPECT_TRUE(deleted2);
}
EXPECT_TRUE(deleted1);
}
TEST(Core_Ptr, accessors)
{
{
Ptr<int> p;
EXPECT_EQ(NULL, static_cast<int*>(p));
EXPECT_TRUE(p.empty());
}
{
Size* s = new Size();
Ptr<Size> p(s);
EXPECT_EQ(s, static_cast<Size*>(p));
EXPECT_EQ(s, &*p);
EXPECT_EQ(&s->width, &p->width);
EXPECT_FALSE(p.empty());
}
}
namespace {
struct SubReporterBase {
virtual ~SubReporterBase() {}
int padding;
};
/* multiple inheritance, so that casts do something interesting */
struct SubReporter : SubReporterBase, Reporter
{
SubReporter(bool* deleted) : Reporter(deleted)
{}
};
}
TEST(Core_Ptr, casts)
{
bool deleted = false;
{
Ptr<const Reporter> p1(new Reporter(&deleted));
Ptr<Reporter> p2 = p1.constCast<Reporter>();
EXPECT_EQ(p1.get(), p2.get());
p1.release();
EXPECT_FALSE(deleted);
}
EXPECT_TRUE(deleted);
{
SubReporter* sr = new SubReporter(&deleted);
Ptr<Reporter> p1(sr);
// This next check isn't really for Ptr itself; it checks that Reporter
// is at a non-zero offset within SubReporter, so that the next
// check will give us more confidence that the cast actually did something.
EXPECT_NE(static_cast<void*>(sr), static_cast<void*>(p1.get()));
Ptr<SubReporter> p2 = p1.staticCast<SubReporter>();
EXPECT_EQ(sr, p2.get());
p1.release();
EXPECT_FALSE(deleted);
}
EXPECT_TRUE(deleted);
{
SubReporter* sr = new SubReporter(&deleted);
Ptr<Reporter> p1(sr);
EXPECT_NE(static_cast<void*>(sr), static_cast<void*>(p1.get()));
Ptr<void> p2 = p1.dynamicCast<void>();
EXPECT_EQ(sr, p2.get());
p1.release();
EXPECT_FALSE(deleted);
}
EXPECT_TRUE(deleted);
{
Ptr<Reporter> p1(new Reporter(&deleted));
Ptr<SubReporter> p2 = p1.dynamicCast<SubReporter>();
EXPECT_EQ(NULL, p2.get());
p1.release();
EXPECT_FALSE(deleted);
}
EXPECT_TRUE(deleted);
}
TEST(Core_Ptr, comparisons)
{
Ptr<int> p1, p2(new int), p3(new int);
Ptr<int> p4(p2, p3.get());
// Not using EXPECT_EQ here, since none of them are really "expected" or "actual".
EXPECT_TRUE(p1 == p1);
EXPECT_TRUE(p2 == p2);
EXPECT_TRUE(p2 != p3);
EXPECT_TRUE(p2 != p4);
EXPECT_TRUE(p3 == p4);
}
TEST(Core_Ptr, make)
{
bool deleted = true;
{
Ptr<void> p = makePtr<Reporter>(&deleted);
EXPECT_FALSE(deleted);
}
EXPECT_TRUE(deleted);
}
namespace {
struct SpeciallyDeletable
{
SpeciallyDeletable() : deleted(false)
{}
bool deleted;
};
}
namespace cv {
template<>
void DefaultDeleter<SpeciallyDeletable>::operator()(SpeciallyDeletable * obj) const
{ obj->deleted = true; }
}
TEST(Core_Ptr, specialized_deleter)
{
SpeciallyDeletable sd;
{ Ptr<void> p(&sd); }
ASSERT_TRUE(sd.deleted);
}

@ -646,7 +646,7 @@ public:
* gridRows Grid rows count.
* gridCols Grid column count.
*/
CV_WRAP GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector=0,
CV_WRAP GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector=Ptr<FeatureDetector>(),
int maxTotalKeypoints=1000,
int gridRows=4, int gridCols=4 );
@ -1143,8 +1143,8 @@ protected:
class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
{
public:
CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );
CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=makePtr<flann::KDTreeIndexParams>(),
const Ptr<flann::SearchParams>& searchParams=makePtr<flann::SearchParams>() );
virtual void add( const std::vector<Mat>& descriptors );
virtual void clear();

@ -2003,7 +2003,7 @@ BriskLayer::BriskLayer(const cv::Mat& img_in, float scale_in, float offset_in)
scale_ = scale_in;
offset_ = offset_in;
// create an agast detector
fast_9_16_ = new FastFeatureDetector(1, true, FastFeatureDetector::TYPE_9_16);
fast_9_16_ = makePtr<FastFeatureDetector>(1, true, FastFeatureDetector::TYPE_9_16);
makeOffsets(pixel_5_8_, (int)img_.step, 8);
makeOffsets(pixel_9_16_, (int)img_.step, 16);
}
@ -2025,7 +2025,7 @@ BriskLayer::BriskLayer(const BriskLayer& layer, int mode)
offset_ = 0.5f * scale_ - 0.5f;
}
scores_ = cv::Mat::zeros(img_.rows, img_.cols, CV_8U);
fast_9_16_ = new FastFeatureDetector(1, false, FastFeatureDetector::TYPE_9_16);
fast_9_16_ = makePtr<FastFeatureDetector>(1, false, FastFeatureDetector::TYPE_9_16);
makeOffsets(pixel_5_8_, (int)img_.step, 8);
makeOffsets(pixel_9_16_, (int)img_.step, 16);
}

@ -99,7 +99,7 @@ Ptr<DescriptorExtractor> DescriptorExtractor::create(const String& descriptorExt
{
size_t pos = String("Opponent").size();
String type = descriptorExtractorType.substr(pos);
return new OpponentColorDescriptorExtractor(DescriptorExtractor::create(type));
return makePtr<OpponentColorDescriptorExtractor>(DescriptorExtractor::create(type));
}
return Algorithm::create<DescriptorExtractor>("Feature2D." + descriptorExtractorType);
@ -119,7 +119,7 @@ CV_WRAP void Feature2D::compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<
OpponentColorDescriptorExtractor::OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& _descriptorExtractor ) :
descriptorExtractor(_descriptorExtractor)
{
CV_Assert( !descriptorExtractor.empty() );
CV_Assert( descriptorExtractor );
}
static void convertBGRImageToOpponentColorSpace( const Mat& bgrImage, std::vector<Mat>& opponentChannels )
@ -249,7 +249,7 @@ int OpponentColorDescriptorExtractor::descriptorType() const
bool OpponentColorDescriptorExtractor::empty() const
{
return descriptorExtractor.empty() || (DescriptorExtractor*)(descriptorExtractor)->empty();
return !descriptorExtractor || descriptorExtractor->empty();
}
}

@ -90,19 +90,19 @@ Ptr<FeatureDetector> FeatureDetector::create( const String& detectorType )
{
if( detectorType.find("Grid") == 0 )
{
return new GridAdaptedFeatureDetector(FeatureDetector::create(
return makePtr<GridAdaptedFeatureDetector>(FeatureDetector::create(
detectorType.substr(strlen("Grid"))));
}
if( detectorType.find("Pyramid") == 0 )
{
return new PyramidAdaptedFeatureDetector(FeatureDetector::create(
return makePtr<PyramidAdaptedFeatureDetector>(FeatureDetector::create(
detectorType.substr(strlen("Pyramid"))));
}
if( detectorType.find("Dynamic") == 0 )
{
return new DynamicAdaptedFeatureDetector(AdjusterAdapter::create(
return makePtr<DynamicAdaptedFeatureDetector>(AdjusterAdapter::create(
detectorType.substr(strlen("Dynamic"))));
}
@ -190,7 +190,7 @@ GridAdaptedFeatureDetector::GridAdaptedFeatureDetector( const Ptr<FeatureDetecto
bool GridAdaptedFeatureDetector::empty() const
{
return detector.empty() || (FeatureDetector*)detector->empty();
return !detector || detector->empty();
}
struct ResponseComparator
@ -295,7 +295,7 @@ PyramidAdaptedFeatureDetector::PyramidAdaptedFeatureDetector( const Ptr<FeatureD
bool PyramidAdaptedFeatureDetector::empty() const
{
return detector.empty() || (FeatureDetector*)detector->empty();
return !detector || detector->empty();
}
void PyramidAdaptedFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const

@ -51,7 +51,7 @@ DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector(const Ptr<AdjusterA
bool DynamicAdaptedFeatureDetector::empty() const
{
return adjuster_.empty() || adjuster_->empty();
return !adjuster_ || adjuster_->empty();
}
void DynamicAdaptedFeatureDetector::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
@ -124,7 +124,7 @@ bool FastAdjuster::good() const
Ptr<AdjusterAdapter> FastAdjuster::clone() const
{
Ptr<AdjusterAdapter> cloned_obj = new FastAdjuster( init_thresh_, nonmax_, min_thresh_, max_thresh_ );
Ptr<AdjusterAdapter> cloned_obj(new FastAdjuster( init_thresh_, nonmax_, min_thresh_, max_thresh_ ));
return cloned_obj;
}
@ -158,7 +158,7 @@ bool StarAdjuster::good() const
Ptr<AdjusterAdapter> StarAdjuster::clone() const
{
Ptr<AdjusterAdapter> cloned_obj = new StarAdjuster( init_thresh_, min_thresh_, max_thresh_ );
Ptr<AdjusterAdapter> cloned_obj(new StarAdjuster( init_thresh_, min_thresh_, max_thresh_ ));
return cloned_obj;
}
@ -195,7 +195,7 @@ bool SurfAdjuster::good() const
Ptr<AdjusterAdapter> SurfAdjuster::clone() const
{
Ptr<AdjusterAdapter> cloned_obj = new SurfAdjuster( init_thresh_, min_thresh_, max_thresh_ );
Ptr<AdjusterAdapter> cloned_obj(new SurfAdjuster( init_thresh_, min_thresh_, max_thresh_ ));
return cloned_obj;
}
@ -205,15 +205,15 @@ Ptr<AdjusterAdapter> AdjusterAdapter::create( const String& detectorType )
if( !detectorType.compare( "FAST" ) )
{
adapter = new FastAdjuster();
adapter = makePtr<FastAdjuster>();
}
else if( !detectorType.compare( "STAR" ) )
{
adapter = new StarAdjuster();
adapter = makePtr<StarAdjuster>();
}
else if( !detectorType.compare( "SURF" ) )
{
adapter = new SurfAdjuster();
adapter = makePtr<SurfAdjuster>();
}
return adapter;

@ -461,7 +461,7 @@ void cv::evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H
keypoints1 = _keypoints1 != 0 ? _keypoints1 : &buf1;
keypoints2 = _keypoints2 != 0 ? _keypoints2 : &buf2;
if( (keypoints1->empty() || keypoints2->empty()) && fdetector.empty() )
if( (keypoints1->empty() || keypoints2->empty()) && !fdetector )
CV_Error( Error::StsBadArg, "fdetector must not be empty when keypoints1 or keypoints2 is empty" );
if( keypoints1->empty() )
@ -575,7 +575,7 @@ void cv::evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, con
if( keypoints1.empty() )
CV_Error( Error::StsBadArg, "keypoints1 must not be empty" );
if( matches1to2->empty() && dmatcher.empty() )
if( matches1to2->empty() && !dmatcher )
CV_Error( Error::StsBadArg, "dmatch must not be empty when matches1to2 is empty" );
bool computeKeypoints2ByPrj = keypoints2.empty();

@ -326,7 +326,7 @@ BFMatcher::BFMatcher( int _normType, bool _crossCheck )
Ptr<DescriptorMatcher> BFMatcher::clone( bool emptyTrainData ) const
{
BFMatcher* matcher = new BFMatcher(normType, crossCheck);
Ptr<BFMatcher> matcher = makePtr<BFMatcher>(normType, crossCheck);
if( !emptyTrainData )
{
matcher->trainDescCollection.resize(trainDescCollection.size());
@ -458,31 +458,31 @@ void BFMatcher::radiusMatchImpl( const Mat& queryDescriptors, std::vector<std::v
*/
Ptr<DescriptorMatcher> DescriptorMatcher::create( const String& descriptorMatcherType )
{
DescriptorMatcher* dm = 0;
Ptr<DescriptorMatcher> dm;
if( !descriptorMatcherType.compare( "FlannBased" ) )
{
dm = new FlannBasedMatcher();
dm = makePtr<FlannBasedMatcher>();
}
else if( !descriptorMatcherType.compare( "BruteForce" ) ) // L2
{
dm = new BFMatcher(NORM_L2);
dm = makePtr<BFMatcher>(int(NORM_L2)); // anonymous enums can't be template parameters
}
else if( !descriptorMatcherType.compare( "BruteForce-SL2" ) ) // Squared L2
{
dm = new BFMatcher(NORM_L2SQR);
dm = makePtr<BFMatcher>(int(NORM_L2SQR));
}
else if( !descriptorMatcherType.compare( "BruteForce-L1" ) )
{
dm = new BFMatcher(NORM_L1);
dm = makePtr<BFMatcher>(int(NORM_L1));
}
else if( !descriptorMatcherType.compare("BruteForce-Hamming") ||
!descriptorMatcherType.compare("BruteForce-HammingLUT") )
{
dm = new BFMatcher(NORM_HAMMING);
dm = makePtr<BFMatcher>(int(NORM_HAMMING));
}
else if( !descriptorMatcherType.compare("BruteForce-Hamming(2)") )
{
dm = new BFMatcher(NORM_HAMMING2);
dm = makePtr<BFMatcher>(int(NORM_HAMMING2));
}
else
CV_Error( Error::StsBadArg, "Unknown matcher name" );
@ -497,8 +497,8 @@ Ptr<DescriptorMatcher> DescriptorMatcher::create( const String& descriptorMatche
FlannBasedMatcher::FlannBasedMatcher( const Ptr<flann::IndexParams>& _indexParams, const Ptr<flann::SearchParams>& _searchParams )
: indexParams(_indexParams), searchParams(_searchParams), addedDescCount(0)
{
CV_Assert( !_indexParams.empty() );
CV_Assert( !_searchParams.empty() );
CV_Assert( _indexParams );
CV_Assert( _searchParams );
}
void FlannBasedMatcher::add( const std::vector<Mat>& descriptors )
@ -522,17 +522,17 @@ void FlannBasedMatcher::clear()
void FlannBasedMatcher::train()
{
if( flannIndex.empty() || mergedDescriptors.size() < addedDescCount )
if( !flannIndex || mergedDescriptors.size() < addedDescCount )
{
mergedDescriptors.set( trainDescCollection );
flannIndex = new flann::Index( mergedDescriptors.getDescriptors(), *indexParams );
flannIndex = makePtr<flann::Index>( mergedDescriptors.getDescriptors(), *indexParams );
}
}
void FlannBasedMatcher::read( const FileNode& fn)
{
if (indexParams.empty())
indexParams = new flann::IndexParams();
if (!indexParams)
indexParams = makePtr<flann::IndexParams>();
FileNode ip = fn["indexParams"];
CV_Assert(ip.type() == FileNode::SEQ);
@ -570,8 +570,8 @@ void FlannBasedMatcher::read( const FileNode& fn)
};
}
if (searchParams.empty())
searchParams = new flann::SearchParams();
if (!searchParams)
searchParams = makePtr<flann::SearchParams>();
FileNode sp = fn["searchParams"];
CV_Assert(sp.type() == FileNode::SEQ);
@ -725,7 +725,7 @@ bool FlannBasedMatcher::isMaskSupported() const
Ptr<DescriptorMatcher> FlannBasedMatcher::clone( bool emptyTrainData ) const
{
FlannBasedMatcher* matcher = new FlannBasedMatcher(indexParams, searchParams);
Ptr<FlannBasedMatcher> matcher = makePtr<FlannBasedMatcher>(indexParams, searchParams);
if( !emptyTrainData )
{
CV_Error( Error::StsNotImplemented, "deep clone functionality is not implemented, because "
@ -1066,7 +1066,7 @@ Ptr<GenericDescriptorMatcher> GenericDescriptorMatcher::create( const String& ge
Ptr<GenericDescriptorMatcher> descriptorMatcher =
Algorithm::create<GenericDescriptorMatcher>("DescriptorMatcher." + genericDescritptorMatcherType);
if( !paramsFilename.empty() && !descriptorMatcher.empty() )
if( !paramsFilename.empty() && descriptorMatcher )
{
FileStorage fs = FileStorage( paramsFilename, FileStorage::READ );
if( fs.isOpened() )
@ -1086,7 +1086,7 @@ VectorDescriptorMatcher::VectorDescriptorMatcher( const Ptr<DescriptorExtractor>
const Ptr<DescriptorMatcher>& _matcher )
: extractor( _extractor ), matcher( _matcher )
{
CV_Assert( !extractor.empty() && !matcher.empty() );
CV_Assert( extractor && matcher );
}
VectorDescriptorMatcher::~VectorDescriptorMatcher()
@ -1152,14 +1152,14 @@ void VectorDescriptorMatcher::write (FileStorage& fs) const
bool VectorDescriptorMatcher::empty() const
{
return extractor.empty() || extractor->empty() ||
matcher.empty() || matcher->empty();
return !extractor || extractor->empty() ||
!matcher || matcher->empty();
}
Ptr<GenericDescriptorMatcher> VectorDescriptorMatcher::clone( bool emptyTrainData ) const
{
// TODO clone extractor
return new VectorDescriptorMatcher( extractor, matcher->clone(emptyTrainData) );
return makePtr<VectorDescriptorMatcher>( extractor, matcher->clone(emptyTrainData) );
}
}

@ -141,7 +141,7 @@ protected:
void emptyDataTest()
{
assert( !dextractor.empty() );
assert( dextractor );
// One image.
Mat image;
@ -186,7 +186,7 @@ protected:
void regressionTest()
{
assert( !dextractor.empty() );
assert( dextractor );
// Read the test image.
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
@ -267,7 +267,7 @@ protected:
void run(int)
{
createDescriptorExtractor();
if( dextractor.empty() )
if( !dextractor )
{
ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n");
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );

@ -230,7 +230,7 @@ void CV_FeatureDetectorTest::regressionTest()
void CV_FeatureDetectorTest::run( int /*start_from*/ )
{
if( fdetector.empty() )
if( !fdetector )
{
ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );

@ -62,7 +62,7 @@ protected:
virtual void run(int)
{
cv::initModule_features2d();
CV_Assert(!detector.empty());
CV_Assert(detector);
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
// Read the test image.

@ -196,7 +196,7 @@ public:
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minAngleInliersRatio(_minAngleInliersRatio)
{
CV_Assert(!featureDetector.empty());
CV_Assert(featureDetector);
}
protected:
@ -307,8 +307,8 @@ public:
normType(_normType),
minDescInliersRatio(_minDescInliersRatio)
{
CV_Assert(!featureDetector.empty());
CV_Assert(!descriptorExtractor.empty());
CV_Assert(featureDetector);
CV_Assert(descriptorExtractor);
}
protected:
@ -392,7 +392,7 @@ public:
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minScaleInliersRatio(_minScaleInliersRatio)
{
CV_Assert(!featureDetector.empty());
CV_Assert(featureDetector);
}
protected:
@ -510,8 +510,8 @@ public:
normType(_normType),
minDescInliersRatio(_minDescInliersRatio)
{
CV_Assert(!featureDetector.empty());
CV_Assert(!descriptorExtractor.empty());
CV_Assert(featureDetector);
CV_Assert(descriptorExtractor);
}
protected:

@ -207,8 +207,8 @@ private:
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, static_cast<int>(devProp.textureAlignment));
cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast<int>(devProp.textureAlignment));
gpuCascadeAllocator = makePtr<NCVMemNativeAllocator>(NCVMemoryTypeDevice, static_cast<int>(devProp.textureAlignment));
cpuCascadeAllocator = makePtr<NCVMemNativeAllocator>(NCVMemoryTypeHostPinned, static_cast<int>(devProp.textureAlignment));
ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR);
@ -217,9 +217,9 @@ private:
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR);
h_haarStages = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
h_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes);
h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures);
h_haarStages.reset (new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages));
h_haarNodes.reset (new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes));
h_haarFeatures.reset(new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures));
ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
@ -228,9 +228,9 @@ private:
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR);
d_haarStages = new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages);
d_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes);
d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures);
d_haarStages.reset (new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages));
d_haarNodes.reset (new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes));
d_haarFeatures.reset(new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures));
ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
@ -279,8 +279,8 @@ private:
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
gpuAllocator = makePtr<NCVMemStackAllocator>(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
cpuAllocator = makePtr<NCVMemStackAllocator>(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);

@ -629,7 +629,7 @@ Ptr<Convolution> cv::gpu::createConvolution(Size user_block_size)
CV_Error(Error::StsNotImplemented, "The library was build without CUFFT");
return Ptr<Convolution>();
#else
return new ConvolutionImpl(user_block_size);
return makePtr<ConvolutionImpl>(user_block_size);
#endif
}

@ -497,7 +497,7 @@ namespace
Ptr<LookUpTable> cv::gpu::createLookUpTable(InputArray lut)
{
return new LookUpTableImpl(lut);
return makePtr<LookUpTableImpl>(lut);
}
////////////////////////////////////////////////////////////////////////

@ -76,7 +76,7 @@ using namespace perf;
namespace cv
{
template<> void Ptr<CvBGStatModel>::delete_obj()
template<> void DefaultDeleter<CvBGStatModel>::operator ()(CvBGStatModel* obj) const
{
cvReleaseBGStatModel(&obj);
}

@ -725,7 +725,7 @@ namespace
Ptr<gpu::BackgroundSubtractorFGD> cv::gpu::createBackgroundSubtractorFGD(const FGDParams& params)
{
return new FGDImpl(params);
return makePtr<FGDImpl>(params);
}
#endif // HAVE_CUDA

@ -271,7 +271,7 @@ namespace
Ptr<gpu::BackgroundSubtractorGMG> cv::gpu::createBackgroundSubtractorGMG(int initializationFrames, double decisionThreshold)
{
return new GMGImpl(initializationFrames, decisionThreshold);
return makePtr<GMGImpl>(initializationFrames, decisionThreshold);
}
#endif

@ -203,7 +203,7 @@ namespace
Ptr<gpu::BackgroundSubtractorMOG> cv::gpu::createBackgroundSubtractorMOG(int history, int nmixtures, double backgroundRatio, double noiseSigma)
{
return new MOGImpl(history, nmixtures, backgroundRatio, noiseSigma);
return makePtr<MOGImpl>(history, nmixtures, backgroundRatio, noiseSigma);
}
#endif

@ -247,7 +247,7 @@ namespace
Ptr<gpu::BackgroundSubtractorMOG2> cv::gpu::createBackgroundSubtractorMOG2(int history, double varThreshold, bool detectShadows)
{
return new MOG2Impl(history, varThreshold, detectShadows);
return makePtr<MOG2Impl>(history, varThreshold, detectShadows);
}
#endif

@ -70,7 +70,7 @@ using namespace cvtest;
namespace cv
{
template<> void Ptr<CvBGStatModel>::delete_obj()
template<> void DefaultDeleter<CvBGStatModel>::operator ()(CvBGStatModel* obj) const
{
cvReleaseBGStatModel(&obj);
}

@ -167,9 +167,4 @@ void cv::gpucodec::detail::Thread::sleep(int ms)
#endif
}
template <> void cv::Ptr<cv::gpucodec::detail::Thread::Impl>::delete_obj()
{
if (obj) delete obj;
}
#endif // HAVE_NVCUVID

@ -67,8 +67,4 @@ private:
}}}
namespace cv {
template <> void Ptr<cv::gpucodec::detail::Thread::Impl>::delete_obj();
}
#endif // __THREAD_WRAPPERS_HPP__

@ -169,7 +169,7 @@ Ptr<Filter> cv::gpu::createBoxFilter(int srcType, int dstType, Size ksize, Point
dstType = CV_MAKE_TYPE(CV_MAT_DEPTH(dstType), CV_MAT_CN(srcType));
return new NPPBoxFilter(srcType, dstType, ksize, anchor, borderMode, borderVal);
return makePtr<NPPBoxFilter>(srcType, dstType, ksize, anchor, borderMode, borderVal);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -277,7 +277,7 @@ Ptr<Filter> cv::gpu::createLinearFilter(int srcType, int dstType, InputArray ker
dstType = CV_MAKE_TYPE(CV_MAT_DEPTH(dstType), CV_MAT_CN(srcType));
return new LinearFilter(srcType, dstType, kernel, anchor, borderMode, borderVal);
return makePtr<LinearFilter>(srcType, dstType, kernel, anchor, borderMode, borderVal);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -428,7 +428,7 @@ Ptr<Filter> cv::gpu::createSeparableLinearFilter(int srcType, int dstType, Input
if (columnBorderMode < 0)
columnBorderMode = rowBorderMode;
return new SeparableLinearFilter(srcType, dstType, rowKernel, columnKernel, anchor, rowBorderMode, columnBorderMode);
return makePtr<SeparableLinearFilter>(srcType, dstType, rowKernel, columnKernel, anchor, rowBorderMode, columnBorderMode);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -748,27 +748,27 @@ Ptr<Filter> cv::gpu::createMorphologyFilter(int op, int srcType, InputArray kern
{
case MORPH_ERODE:
case MORPH_DILATE:
return new MorphologyFilter(op, srcType, kernel, anchor, iterations);
return makePtr<MorphologyFilter>(op, srcType, kernel, anchor, iterations);
break;
case MORPH_OPEN:
return new MorphologyOpenFilter(srcType, kernel, anchor, iterations);
return makePtr<MorphologyOpenFilter>(srcType, kernel, anchor, iterations);
break;
case MORPH_CLOSE:
return new MorphologyCloseFilter(srcType, kernel, anchor, iterations);
return makePtr<MorphologyCloseFilter>(srcType, kernel, anchor, iterations);
break;
case MORPH_GRADIENT:
return new MorphologyGradientFilter(srcType, kernel, anchor, iterations);
return makePtr<MorphologyGradientFilter>(srcType, kernel, anchor, iterations);
break;
case MORPH_TOPHAT:
return new MorphologyTophatFilter(srcType, kernel, anchor, iterations);
return makePtr<MorphologyTophatFilter>(srcType, kernel, anchor, iterations);
break;
case MORPH_BLACKHAT:
return new MorphologyBlackhatFilter(srcType, kernel, anchor, iterations);
return makePtr<MorphologyBlackhatFilter>(srcType, kernel, anchor, iterations);
break;
default:
@ -782,7 +782,7 @@ Ptr<Filter> cv::gpu::createMorphologyFilter(int op, int srcType, InputArray kern
namespace
{
enum
enum RankType
{
RANK_MAX,
RANK_MIN
@ -862,12 +862,12 @@ namespace
Ptr<Filter> cv::gpu::createBoxMaxFilter(int srcType, Size ksize, Point anchor, int borderMode, Scalar borderVal)
{
return new NPPRankFilter(RANK_MAX, srcType, ksize, anchor, borderMode, borderVal);
return makePtr<NPPRankFilter>(RANK_MAX, srcType, ksize, anchor, borderMode, borderVal);
}
Ptr<Filter> cv::gpu::createBoxMinFilter(int srcType, Size ksize, Point anchor, int borderMode, Scalar borderVal)
{
return new NPPRankFilter(RANK_MIN, srcType, ksize, anchor, borderMode, borderVal);
return makePtr<NPPRankFilter>(RANK_MIN, srcType, ksize, anchor, borderMode, borderVal);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -931,7 +931,7 @@ namespace
Ptr<Filter> cv::gpu::createRowSumFilter(int srcType, int dstType, int ksize, int anchor, int borderMode, Scalar borderVal)
{
return new NppRowSumFilter(srcType, dstType, ksize, anchor, borderMode, borderVal);
return makePtr<NppRowSumFilter>(srcType, dstType, ksize, anchor, borderMode, borderVal);
}
namespace
@ -992,7 +992,7 @@ namespace
Ptr<Filter> cv::gpu::createColumnSumFilter(int srcType, int dstType, int ksize, int anchor, int borderMode, Scalar borderVal)
{
return new NppColumnSumFilter(srcType, dstType, ksize, anchor, borderMode, borderVal);
return makePtr<NppColumnSumFilter>(srcType, dstType, ksize, anchor, borderMode, borderVal);
}
#endif

@ -228,7 +228,7 @@ namespace
Ptr<CannyEdgeDetector> cv::gpu::createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
{
return new CannyImpl(low_thresh, high_thresh, apperture_size, L2gradient);
return makePtr<CannyImpl>(low_thresh, high_thresh, apperture_size, L2gradient);
}
#endif /* !defined (HAVE_CUDA) */

@ -178,12 +178,12 @@ namespace
Ptr<gpu::CornernessCriteria> cv::gpu::createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType)
{
return new Harris(srcType, blockSize, ksize, k, borderType);
return makePtr<Harris>(srcType, blockSize, ksize, k, borderType);
}
Ptr<gpu::CornernessCriteria> cv::gpu::createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType)
{
return new MinEigenVal(srcType, blockSize, ksize, borderType);
return makePtr<MinEigenVal>(srcType, blockSize, ksize, borderType);
}
#endif /* !defined (HAVE_CUDA) */

@ -554,7 +554,7 @@ namespace
Ptr<GeneralizedHoughBallard> cv::gpu::createGeneralizedHoughBallard()
{
return new GeneralizedHoughBallardImpl;
return makePtr<GeneralizedHoughBallardImpl>();
}
// GeneralizedHoughGuil
@ -900,7 +900,7 @@ namespace
Ptr<GeneralizedHoughGuil> cv::gpu::createGeneralizedHoughGuil()
{
return new GeneralizedHoughGuilImpl;
return makePtr<GeneralizedHoughGuilImpl>();
}
#endif /* !defined (HAVE_CUDA) */

@ -209,7 +209,8 @@ namespace
Ptr<gpu::CornersDetector> cv::gpu::createGoodFeaturesToTrackDetector(int srcType, int maxCorners, double qualityLevel, double minDistance,
int blockSize, bool useHarrisDetector, double harrisK)
{
return new GoodFeaturesToTrackDetector(srcType, maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector, harrisK);
return Ptr<gpu::CornersDetector>(
new GoodFeaturesToTrackDetector(srcType, maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector, harrisK));
}
#endif /* !defined (HAVE_CUDA) */

@ -257,7 +257,7 @@ namespace
cv::Ptr<cv::gpu::CLAHE> cv::gpu::createCLAHE(double clipLimit, cv::Size tileGridSize)
{
return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height);
return makePtr<CLAHE_Impl>(clipLimit, tileGridSize.width, tileGridSize.height);
}
////////////////////////////////////////////////////////////////////////

@ -291,7 +291,7 @@ namespace
Ptr<HoughCirclesDetector> cv::gpu::createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
{
return new HoughCirclesDetectorImpl(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
return makePtr<HoughCirclesDetectorImpl>(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
}
#endif /* !defined (HAVE_CUDA) */

@ -196,7 +196,7 @@ namespace
Ptr<HoughLinesDetector> cv::gpu::createHoughLinesDetector(float rho, float theta, int threshold, bool doSort, int maxLines)
{
return new HoughLinesDetectorImpl(rho, theta, threshold, doSort, maxLines);
return makePtr<HoughLinesDetectorImpl>(rho, theta, threshold, doSort, maxLines);
}
#endif /* !defined (HAVE_CUDA) */

@ -177,7 +177,7 @@ namespace
Ptr<HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines)
{
return new HoughSegmentDetectorImpl(rho, theta, minLineLength, maxLineGap, maxLines);
return makePtr<HoughSegmentDetectorImpl>(rho, theta, minLineLength, maxLineGap, maxLines);
}
#endif /* !defined (HAVE_CUDA) */

@ -607,10 +607,10 @@ Ptr<gpu::TemplateMatching> cv::gpu::createTemplateMatching(int srcType, int meth
switch (method)
{
case TM_SQDIFF:
return new Match_SQDIFF_32F;
return makePtr<Match_SQDIFF_32F>();
case TM_CCORR:
return new Match_CCORR_32F(user_block_size);
return makePtr<Match_CCORR_32F>(user_block_size);
default:
CV_Error( Error::StsBadFlag, "Unsopported method" );
@ -622,22 +622,22 @@ Ptr<gpu::TemplateMatching> cv::gpu::createTemplateMatching(int srcType, int meth
switch (method)
{
case TM_SQDIFF:
return new Match_SQDIFF_8U(user_block_size);
return makePtr<Match_SQDIFF_8U>(user_block_size);
case TM_SQDIFF_NORMED:
return new Match_SQDIFF_NORMED_8U(user_block_size);
return makePtr<Match_SQDIFF_NORMED_8U>(user_block_size);
case TM_CCORR:
return new Match_CCORR_8U(user_block_size);
return makePtr<Match_CCORR_8U>(user_block_size);
case TM_CCORR_NORMED:
return new Match_CCORR_NORMED_8U(user_block_size);
return makePtr<Match_CCORR_NORMED_8U>(user_block_size);
case TM_CCOEFF:
return new Match_CCOEFF_8U(user_block_size);
return makePtr<Match_CCOEFF_8U>(user_block_size);
case TM_CCOEFF_NORMED:
return new Match_CCOEFF_NORMED_8U(user_block_size);
return makePtr<Match_CCOEFF_NORMED_8U>(user_block_size);
default:
CV_Error( Error::StsBadFlag, "Unsopported method" );

@ -2138,8 +2138,8 @@ static NCVStatus loadFromXML(const cv::String &filename,
haarClassifierNodes.resize(0);
haarFeatures.resize(0);
cv::Ptr<CvHaarClassifierCascade> oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0);
if (oldCascade.empty())
cv::Ptr<CvHaarClassifierCascade> oldCascade((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0));
if (!oldCascade)
{
return NCV_HAAR_XML_LOADING_EXCEPTION;
}

@ -200,7 +200,7 @@ namespace
Ptr<gpu::DisparityBilateralFilter> cv::gpu::createDisparityBilateralFilter(int ndisp, int radius, int iters)
{
return new DispBilateralFilterImpl(ndisp, radius, iters);
return makePtr<DispBilateralFilterImpl>(ndisp, radius, iters);
}
#endif /* !defined (HAVE_CUDA) */

@ -179,7 +179,7 @@ namespace
Ptr<gpu::StereoBM> cv::gpu::createStereoBM(int numDisparities, int blockSize)
{
return new StereoBMImpl(numDisparities, blockSize);
return makePtr<StereoBMImpl>(numDisparities, blockSize);
}
#endif /* !defined (HAVE_CUDA) */

@ -361,7 +361,7 @@ namespace
Ptr<gpu::StereoBeliefPropagation> cv::gpu::createStereoBeliefPropagation(int ndisp, int iters, int levels, int msg_type)
{
return new StereoBPImpl(ndisp, iters, levels, msg_type);
return makePtr<StereoBPImpl>(ndisp, iters, levels, msg_type);
}
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)

@ -366,7 +366,7 @@ namespace
Ptr<gpu::StereoConstantSpaceBP> cv::gpu::createStereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, int msg_type)
{
return new StereoCSBPImpl(ndisp, iters, levels, nr_plane, msg_type);
return makePtr<StereoCSBPImpl>(ndisp, iters, levels, nr_plane, msg_type);
}
void cv::gpu::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane)

@ -237,7 +237,7 @@ Ptr<ImagePyramid> cv::gpu::createImagePyramid(InputArray img, int nLayers, Strea
throw_no_cuda();
return Ptr<ImagePyramid>();
#else
return new ImagePyramidImpl(img, nLayers, stream);
return Ptr<ImagePyramid>(new ImagePyramidImpl(img, nLayers, stream));
#endif
}

@ -544,8 +544,8 @@ protected:
Ptr<CvVideoWriter> writer;
};
template<> CV_EXPORTS void Ptr<CvCapture>::delete_obj();
template<> CV_EXPORTS void Ptr<CvVideoWriter>::delete_obj();
template<> CV_EXPORTS void DefaultDeleter<CvCapture>::operator ()(CvCapture* obj) const;
template<> CV_EXPORTS void DefaultDeleter<CvVideoWriter>::operator ()(CvVideoWriter* obj) const;
} // cv

@ -49,10 +49,10 @@
namespace cv
{
template<> void Ptr<CvCapture>::delete_obj()
template<> void DefaultDeleter<CvCapture>::operator ()(CvCapture* obj) const
{ cvReleaseCapture(&obj); }
template<> void Ptr<CvVideoWriter>::delete_obj()
template<> void DefaultDeleter<CvVideoWriter>::operator ()(CvVideoWriter* obj) const
{ cvReleaseVideoWriter(&obj); }
}
@ -492,14 +492,14 @@ VideoCapture::~VideoCapture()
bool VideoCapture::open(const String& filename)
{
if (isOpened()) release();
cap = cvCreateFileCapture(filename.c_str());
cap.reset(cvCreateFileCapture(filename.c_str()));
return isOpened();
}
bool VideoCapture::open(int device)
{
if (isOpened()) release();
cap = cvCreateCameraCapture(device);
cap.reset(cvCreateCameraCapture(device));
return isOpened();
}
@ -578,7 +578,7 @@ VideoWriter::~VideoWriter()
bool VideoWriter::open(const String& filename, int _fourcc, double fps, Size frameSize, bool isColor)
{
writer = cvCreateVideoWriter(filename.c_str(), _fourcc, fps, frameSize, isColor);
writer.reset(cvCreateVideoWriter(filename.c_str(), _fourcc, fps, frameSize, isColor));
return isOpened();
}

@ -70,7 +70,7 @@ void BmpDecoder::close()
ImageDecoder BmpDecoder::newDecoder() const
{
return new BmpDecoder;
return makePtr<BmpDecoder>();
}
bool BmpDecoder::readHeader()
@ -496,7 +496,7 @@ BmpEncoder::~BmpEncoder()
ImageEncoder BmpEncoder::newEncoder() const
{
return new BmpEncoder;
return makePtr<BmpEncoder>();
}
bool BmpEncoder::write( const Mat& img, const std::vector<int>& )

@ -551,7 +551,7 @@ void ExrDecoder::RGBToGray( float *in, float *out )
ImageDecoder ExrDecoder::newDecoder() const
{
return new ExrDecoder;
return makePtr<ExrDecoder>();
}
/////////////////////// ExrEncoder ///////////////////
@ -726,7 +726,7 @@ bool ExrEncoder::write( const Mat& img, const std::vector<int>& )
ImageEncoder ExrEncoder::newEncoder() const
{
return new ExrEncoder;
return makePtr<ExrEncoder>();
}
}

@ -208,7 +208,7 @@ void JpegDecoder::close()
ImageDecoder JpegDecoder::newDecoder() const
{
return new JpegDecoder;
return makePtr<JpegDecoder>();
}
bool JpegDecoder::readHeader()
@ -539,7 +539,7 @@ JpegEncoder::~JpegEncoder()
ImageEncoder JpegEncoder::newEncoder() const
{
return new JpegEncoder;
return makePtr<JpegEncoder>();
}
bool JpegEncoder::write( const Mat& img, const std::vector<int>& params )

@ -88,7 +88,7 @@ Jpeg2KDecoder::~Jpeg2KDecoder()
ImageDecoder Jpeg2KDecoder::newDecoder() const
{
return new Jpeg2KDecoder;
return makePtr<Jpeg2KDecoder>();
}
void Jpeg2KDecoder::close()
@ -403,7 +403,7 @@ Jpeg2KEncoder::~Jpeg2KEncoder()
ImageEncoder Jpeg2KEncoder::newEncoder() const
{
return new Jpeg2KEncoder;
return makePtr<Jpeg2KEncoder>();
}
bool Jpeg2KEncoder::isFormatSupported( int depth ) const

@ -101,7 +101,7 @@ PngDecoder::~PngDecoder()
ImageDecoder PngDecoder::newDecoder() const
{
return new PngDecoder;
return makePtr<PngDecoder>();
}
void PngDecoder::close()
@ -317,7 +317,7 @@ bool PngEncoder::isFormatSupported( int depth ) const
ImageEncoder PngEncoder::newEncoder() const
{
return new PngEncoder;
return makePtr<PngEncoder>();
}

@ -116,7 +116,7 @@ bool PxMDecoder::checkSignature( const String& signature ) const
ImageDecoder PxMDecoder::newDecoder() const
{
return new PxMDecoder;
return makePtr<PxMDecoder>();
}
void PxMDecoder::close()
@ -357,7 +357,7 @@ PxMEncoder::~PxMEncoder()
ImageEncoder PxMEncoder::newEncoder() const
{
return new PxMEncoder;
return makePtr<PxMEncoder>();
}

@ -63,7 +63,7 @@ SunRasterDecoder::~SunRasterDecoder()
ImageDecoder SunRasterDecoder::newDecoder() const
{
return new SunRasterDecoder;
return makePtr<SunRasterDecoder>();
}
void SunRasterDecoder::close()
@ -388,7 +388,7 @@ SunRasterEncoder::SunRasterEncoder()
ImageEncoder SunRasterEncoder::newEncoder() const
{
return new SunRasterEncoder;
return makePtr<SunRasterEncoder>();
}
SunRasterEncoder::~SunRasterEncoder()

@ -108,7 +108,7 @@ int TiffDecoder::normalizeChannelsNumber(int channels) const
ImageDecoder TiffDecoder::newDecoder() const
{
return new TiffDecoder;
return makePtr<TiffDecoder>();
}
bool TiffDecoder::readHeader()
@ -400,7 +400,7 @@ TiffEncoder::~TiffEncoder()
ImageEncoder TiffEncoder::newEncoder() const
{
return new TiffEncoder;
return makePtr<TiffEncoder>();
}
bool TiffEncoder::isFormatSupported( int depth ) const

@ -90,7 +90,7 @@ bool WebPDecoder::checkSignature(const String & signature) const
ImageDecoder WebPDecoder::newDecoder() const
{
return new WebPDecoder;
return makePtr<WebPDecoder>();
}
bool WebPDecoder::readHeader()
@ -201,7 +201,7 @@ WebPEncoder::~WebPEncoder() { }
ImageEncoder WebPEncoder::newEncoder() const
{
return new WebPEncoder();
return makePtr<WebPEncoder>();
}
bool WebPEncoder::write(const Mat& img, const std::vector<int>& params)

@ -58,35 +58,35 @@ struct ImageCodecInitializer
{
ImageCodecInitializer()
{
decoders.push_back( new BmpDecoder );
encoders.push_back( new BmpEncoder );
decoders.push_back( makePtr<BmpDecoder>() );
encoders.push_back( makePtr<BmpEncoder>() );
#ifdef HAVE_JPEG
decoders.push_back( new JpegDecoder );
encoders.push_back( new JpegEncoder );
decoders.push_back( makePtr<JpegDecoder>() );
encoders.push_back( makePtr<JpegEncoder>() );
#endif
#ifdef HAVE_WEBP
decoders.push_back( new WebPDecoder );
encoders.push_back( new WebPEncoder );
decoders.push_back( makePtr<WebPDecoder>() );
encoders.push_back( makePtr<WebPEncoder>() );
#endif
decoders.push_back( new SunRasterDecoder );
encoders.push_back( new SunRasterEncoder );
decoders.push_back( new PxMDecoder );
encoders.push_back( new PxMEncoder );
decoders.push_back( makePtr<SunRasterDecoder>() );
encoders.push_back( makePtr<SunRasterEncoder>() );
decoders.push_back( makePtr<PxMDecoder>() );
encoders.push_back( makePtr<PxMEncoder>() );
#ifdef HAVE_TIFF
decoders.push_back( new TiffDecoder );
decoders.push_back( makePtr<TiffDecoder>() );
#endif
encoders.push_back( new TiffEncoder );
encoders.push_back( makePtr<TiffEncoder>() );
#ifdef HAVE_PNG
decoders.push_back( new PngDecoder );
encoders.push_back( new PngEncoder );
decoders.push_back( makePtr<PngDecoder>() );
encoders.push_back( makePtr<PngEncoder>() );
#endif
#ifdef HAVE_JASPER
decoders.push_back( new Jpeg2KDecoder );
encoders.push_back( new Jpeg2KEncoder );
decoders.push_back( makePtr<Jpeg2KDecoder>() );
encoders.push_back( makePtr<Jpeg2KEncoder>() );
#endif
#ifdef HAVE_OPENEXR
decoders.push_back( new ExrDecoder );
encoders.push_back( new ExrEncoder );
decoders.push_back( makePtr<ExrDecoder>() );
encoders.push_back( makePtr<ExrEncoder>() );
#endif
}
@ -198,7 +198,7 @@ imread_( const String& filename, int flags, int hdrtype, Mat* mat=0 )
Mat temp, *data = &temp;
ImageDecoder decoder = findDecoder(filename);
if( decoder.empty() )
if( !decoder )
return 0;
decoder->setSource(filename);
if( !decoder->readHeader() )
@ -269,7 +269,7 @@ static bool imwrite_( const String& filename, const Mat& image,
CV_Assert( image.channels() == 1 || image.channels() == 3 || image.channels() == 4 );
ImageEncoder encoder = findEncoder( filename );
if( encoder.empty() )
if( !encoder )
CV_Error( CV_StsError, "could not find a writer for the specified extension" );
if( !encoder->isFormatSupported(image.depth()) )
@ -309,7 +309,7 @@ imdecode_( const Mat& buf, int flags, int hdrtype, Mat* mat=0 )
String filename;
ImageDecoder decoder = findDecoder(buf);
if( decoder.empty() )
if( !decoder )
return 0;
if( !decoder->setSource(buf) )
@ -409,7 +409,7 @@ bool imencode( const String& ext, InputArray _image,
CV_Assert( channels == 1 || channels == 3 || channels == 4 );
ImageEncoder encoder = findEncoder( ext );
if( encoder.empty() )
if( !encoder )
CV_Error( CV_StsError, "could not find encoder for the specified extension" );
if( !encoder->isFormatSupported(image.depth()) )

@ -71,8 +71,8 @@ void CV_FramecountTest::run(int)
{
string file_path = src_dir+"video/big_buck_bunny."+ext[i];
cap = cvCreateFileCapture(file_path.c_str());
if (cap.empty())
cap.reset(cvCreateFileCapture(file_path.c_str()));
if (!cap)
{
ts->printf(cvtest::TS::LOG, "\nFile information (video %d): \n\nName: big_buck_bunny.%s\nFAILED\n\n", i+1, ext[i].c_str());
ts->printf(cvtest::TS::LOG, "Error: cannot read source video file.\n");

@ -656,7 +656,7 @@ public:
Point dstOfs = Point(0,0),
bool isolated = false);
//! returns true if the filter is separable
bool isSeparable() const { return (const BaseFilter*)filter2D == 0; }
bool isSeparable() const { return !filter2D; }
//! returns the number
int remainingInputRows() const;
int remainingOutputRows() const;

@ -330,5 +330,5 @@ namespace
cv::Ptr<cv::CLAHE> cv::createCLAHE(double clipLimit, cv::Size tileGridSize)
{
return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height);
return makePtr<CLAHE_Impl>(clipLimit, tileGridSize.width, tileGridSize.height);
}

@ -1339,8 +1339,8 @@ icvFindContoursInInterval( const CvArr* src,
if( contourHeaderSize < (int)sizeof(CvContour))
CV_Error( CV_StsBadSize, "Contour header size must be >= sizeof(CvContour)" );
storage00 = cvCreateChildMemStorage(storage);
storage01 = cvCreateChildMemStorage(storage);
storage00.reset(cvCreateChildMemStorage(storage));
storage01.reset(cvCreateChildMemStorage(storage));
CvMat stub, *mat;

@ -117,7 +117,7 @@ void FilterEngine::init( const Ptr<BaseFilter>& _filter2D,
if( isSeparable() )
{
CV_Assert( !rowFilter.empty() && !columnFilter.empty() );
CV_Assert( rowFilter && columnFilter );
ksize = Size(rowFilter->ksize, columnFilter->ksize);
anchor = Point(rowFilter->anchor, columnFilter->anchor);
}
@ -244,9 +244,9 @@ int FilterEngine::start(Size _wholeSize, Rect _roi, int _maxBufRows)
rowCount = dstY = 0;
startY = startY0 = std::max(roi.y - anchor.y, 0);
endY = std::min(roi.y + roi.height + ksize.height - anchor.y - 1, wholeSize.height);
if( !columnFilter.empty() )
if( columnFilter )
columnFilter->reset();
if( !filter2D.empty() )
if( filter2D )
filter2D->reset();
return startY;
@ -2735,42 +2735,42 @@ cv::Ptr<cv::BaseRowFilter> cv::getLinearRowFilter( int srcType, int bufType,
if( (symmetryType & (KERNEL_SYMMETRICAL|KERNEL_ASYMMETRICAL)) != 0 && ksize <= 5 )
{
if( sdepth == CV_8U && ddepth == CV_32S )
return Ptr<BaseRowFilter>(new SymmRowSmallFilter<uchar, int, SymmRowSmallVec_8u32s>
(kernel, anchor, symmetryType, SymmRowSmallVec_8u32s(kernel, symmetryType)));
return makePtr<SymmRowSmallFilter<uchar, int, SymmRowSmallVec_8u32s> >
(kernel, anchor, symmetryType, SymmRowSmallVec_8u32s(kernel, symmetryType));
if( sdepth == CV_32F && ddepth == CV_32F )
return Ptr<BaseRowFilter>(new SymmRowSmallFilter<float, float, SymmRowSmallVec_32f>
(kernel, anchor, symmetryType, SymmRowSmallVec_32f(kernel, symmetryType)));
return makePtr<SymmRowSmallFilter<float, float, SymmRowSmallVec_32f> >
(kernel, anchor, symmetryType, SymmRowSmallVec_32f(kernel, symmetryType));
}
if( sdepth == CV_8U && ddepth == CV_32S )
return Ptr<BaseRowFilter>(new RowFilter<uchar, int, RowVec_8u32s>
(kernel, anchor, RowVec_8u32s(kernel)));
return makePtr<RowFilter<uchar, int, RowVec_8u32s> >
(kernel, anchor, RowVec_8u32s(kernel));
if( sdepth == CV_8U && ddepth == CV_32F )
return Ptr<BaseRowFilter>(new RowFilter<uchar, float, RowNoVec>(kernel, anchor));
return makePtr<RowFilter<uchar, float, RowNoVec> >(kernel, anchor);
if( sdepth == CV_8U && ddepth == CV_64F )
return Ptr<BaseRowFilter>(new RowFilter<uchar, double, RowNoVec>(kernel, anchor));
return makePtr<RowFilter<uchar, double, RowNoVec> >(kernel, anchor);
if( sdepth == CV_16U && ddepth == CV_32F )
return Ptr<BaseRowFilter>(new RowFilter<ushort, float, RowNoVec>(kernel, anchor));
return makePtr<RowFilter<ushort, float, RowNoVec> >(kernel, anchor);
if( sdepth == CV_16U && ddepth == CV_64F )
return Ptr<BaseRowFilter>(new RowFilter<ushort, double, RowNoVec>(kernel, anchor));
return makePtr<RowFilter<ushort, double, RowNoVec> >(kernel, anchor);
if( sdepth == CV_16S && ddepth == CV_32F )
return Ptr<BaseRowFilter>(new RowFilter<short, float, RowVec_16s32f>
(kernel, anchor, RowVec_16s32f(kernel)));
return makePtr<RowFilter<short, float, RowVec_16s32f> >
(kernel, anchor, RowVec_16s32f(kernel));
if( sdepth == CV_16S && ddepth == CV_64F )
return Ptr<BaseRowFilter>(new RowFilter<short, double, RowNoVec>(kernel, anchor));
return makePtr<RowFilter<short, double, RowNoVec> >(kernel, anchor);
if( sdepth == CV_32F && ddepth == CV_32F )
return Ptr<BaseRowFilter>(new RowFilter<float, float, RowVec_32f>
(kernel, anchor, RowVec_32f(kernel)));
return makePtr<RowFilter<float, float, RowVec_32f> >
(kernel, anchor, RowVec_32f(kernel));
if( sdepth == CV_32F && ddepth == CV_64F )
return Ptr<BaseRowFilter>(new RowFilter<float, double, RowNoVec>(kernel, anchor));
return makePtr<RowFilter<float, double, RowNoVec> >(kernel, anchor);
if( sdepth == CV_64F && ddepth == CV_64F )
return Ptr<BaseRowFilter>(new RowFilter<double, double, RowNoVec>(kernel, anchor));
return makePtr<RowFilter<double, double, RowNoVec> >(kernel, anchor);
CV_Error_( CV_StsNotImplemented,
("Unsupported combination of source format (=%d), and buffer format (=%d)",
srcType, bufType));
return Ptr<BaseRowFilter>(0);
return Ptr<BaseRowFilter>();
}
@ -2789,24 +2789,24 @@ cv::Ptr<cv::BaseColumnFilter> cv::getLinearColumnFilter( int bufType, int dstTyp
if( !(symmetryType & (KERNEL_SYMMETRICAL|KERNEL_ASYMMETRICAL)) )
{
if( ddepth == CV_8U && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(new ColumnFilter<FixedPtCastEx<int, uchar>, ColumnNoVec>
(kernel, anchor, delta, FixedPtCastEx<int, uchar>(bits)));
return makePtr<ColumnFilter<FixedPtCastEx<int, uchar>, ColumnNoVec> >
(kernel, anchor, delta, FixedPtCastEx<int, uchar>(bits));
if( ddepth == CV_8U && sdepth == CV_32F )
return Ptr<BaseColumnFilter>(new ColumnFilter<Cast<float, uchar>, ColumnNoVec>(kernel, anchor, delta));
return makePtr<ColumnFilter<Cast<float, uchar>, ColumnNoVec> >(kernel, anchor, delta);
if( ddepth == CV_8U && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new ColumnFilter<Cast<double, uchar>, ColumnNoVec>(kernel, anchor, delta));
return makePtr<ColumnFilter<Cast<double, uchar>, ColumnNoVec> >(kernel, anchor, delta);
if( ddepth == CV_16U && sdepth == CV_32F )
return Ptr<BaseColumnFilter>(new ColumnFilter<Cast<float, ushort>, ColumnNoVec>(kernel, anchor, delta));
return makePtr<ColumnFilter<Cast<float, ushort>, ColumnNoVec> >(kernel, anchor, delta);
if( ddepth == CV_16U && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new ColumnFilter<Cast<double, ushort>, ColumnNoVec>(kernel, anchor, delta));
return makePtr<ColumnFilter<Cast<double, ushort>, ColumnNoVec> >(kernel, anchor, delta);
if( ddepth == CV_16S && sdepth == CV_32F )
return Ptr<BaseColumnFilter>(new ColumnFilter<Cast<float, short>, ColumnNoVec>(kernel, anchor, delta));
return makePtr<ColumnFilter<Cast<float, short>, ColumnNoVec> >(kernel, anchor, delta);
if( ddepth == CV_16S && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new ColumnFilter<Cast<double, short>, ColumnNoVec>(kernel, anchor, delta));
return makePtr<ColumnFilter<Cast<double, short>, ColumnNoVec> >(kernel, anchor, delta);
if( ddepth == CV_32F && sdepth == CV_32F )
return Ptr<BaseColumnFilter>(new ColumnFilter<Cast<float, float>, ColumnNoVec>(kernel, anchor, delta));
return makePtr<ColumnFilter<Cast<float, float>, ColumnNoVec> >(kernel, anchor, delta);
if( ddepth == CV_64F && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new ColumnFilter<Cast<double, double>, ColumnNoVec>(kernel, anchor, delta));
return makePtr<ColumnFilter<Cast<double, double>, ColumnNoVec> >(kernel, anchor, delta);
}
else
{
@ -2814,60 +2814,60 @@ cv::Ptr<cv::BaseColumnFilter> cv::getLinearColumnFilter( int bufType, int dstTyp
if( ksize == 3 )
{
if( ddepth == CV_8U && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(new SymmColumnSmallFilter<
FixedPtCastEx<int, uchar>, SymmColumnVec_32s8u>
return makePtr<SymmColumnSmallFilter<
FixedPtCastEx<int, uchar>, SymmColumnVec_32s8u> >
(kernel, anchor, delta, symmetryType, FixedPtCastEx<int, uchar>(bits),
SymmColumnVec_32s8u(kernel, symmetryType, bits, delta)));
SymmColumnVec_32s8u(kernel, symmetryType, bits, delta));
if( ddepth == CV_16S && sdepth == CV_32S && bits == 0 )
return Ptr<BaseColumnFilter>(new SymmColumnSmallFilter<Cast<int, short>,
SymmColumnSmallVec_32s16s>(kernel, anchor, delta, symmetryType,
Cast<int, short>(), SymmColumnSmallVec_32s16s(kernel, symmetryType, bits, delta)));
return makePtr<SymmColumnSmallFilter<Cast<int, short>,
SymmColumnSmallVec_32s16s> >(kernel, anchor, delta, symmetryType,
Cast<int, short>(), SymmColumnSmallVec_32s16s(kernel, symmetryType, bits, delta));
if( ddepth == CV_32F && sdepth == CV_32F )
return Ptr<BaseColumnFilter>(new SymmColumnSmallFilter<
Cast<float, float>,SymmColumnSmallVec_32f>
return makePtr<SymmColumnSmallFilter<
Cast<float, float>,SymmColumnSmallVec_32f> >
(kernel, anchor, delta, symmetryType, Cast<float, float>(),
SymmColumnSmallVec_32f(kernel, symmetryType, 0, delta)));
SymmColumnSmallVec_32f(kernel, symmetryType, 0, delta));
}
if( ddepth == CV_8U && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(new SymmColumnFilter<FixedPtCastEx<int, uchar>, SymmColumnVec_32s8u>
return makePtr<SymmColumnFilter<FixedPtCastEx<int, uchar>, SymmColumnVec_32s8u> >
(kernel, anchor, delta, symmetryType, FixedPtCastEx<int, uchar>(bits),
SymmColumnVec_32s8u(kernel, symmetryType, bits, delta)));
SymmColumnVec_32s8u(kernel, symmetryType, bits, delta));
if( ddepth == CV_8U && sdepth == CV_32F )
return Ptr<BaseColumnFilter>(new SymmColumnFilter<Cast<float, uchar>, ColumnNoVec>
(kernel, anchor, delta, symmetryType));
return makePtr<SymmColumnFilter<Cast<float, uchar>, ColumnNoVec> >
(kernel, anchor, delta, symmetryType);
if( ddepth == CV_8U && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new SymmColumnFilter<Cast<double, uchar>, ColumnNoVec>
(kernel, anchor, delta, symmetryType));
return makePtr<SymmColumnFilter<Cast<double, uchar>, ColumnNoVec> >
(kernel, anchor, delta, symmetryType);
if( ddepth == CV_16U && sdepth == CV_32F )
return Ptr<BaseColumnFilter>(new SymmColumnFilter<Cast<float, ushort>, ColumnNoVec>
(kernel, anchor, delta, symmetryType));
return makePtr<SymmColumnFilter<Cast<float, ushort>, ColumnNoVec> >
(kernel, anchor, delta, symmetryType);
if( ddepth == CV_16U && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new SymmColumnFilter<Cast<double, ushort>, ColumnNoVec>
(kernel, anchor, delta, symmetryType));
return makePtr<SymmColumnFilter<Cast<double, ushort>, ColumnNoVec> >
(kernel, anchor, delta, symmetryType);
if( ddepth == CV_16S && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(new SymmColumnFilter<Cast<int, short>, ColumnNoVec>
(kernel, anchor, delta, symmetryType));
return makePtr<SymmColumnFilter<Cast<int, short>, ColumnNoVec> >
(kernel, anchor, delta, symmetryType);
if( ddepth == CV_16S && sdepth == CV_32F )
return Ptr<BaseColumnFilter>(new SymmColumnFilter<Cast<float, short>, SymmColumnVec_32f16s>
return makePtr<SymmColumnFilter<Cast<float, short>, SymmColumnVec_32f16s> >
(kernel, anchor, delta, symmetryType, Cast<float, short>(),
SymmColumnVec_32f16s(kernel, symmetryType, 0, delta)));
SymmColumnVec_32f16s(kernel, symmetryType, 0, delta));
if( ddepth == CV_16S && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new SymmColumnFilter<Cast<double, short>, ColumnNoVec>
(kernel, anchor, delta, symmetryType));
return makePtr<SymmColumnFilter<Cast<double, short>, ColumnNoVec> >
(kernel, anchor, delta, symmetryType);
if( ddepth == CV_32F && sdepth == CV_32F )
return Ptr<BaseColumnFilter>(new SymmColumnFilter<Cast<float, float>, SymmColumnVec_32f>
return makePtr<SymmColumnFilter<Cast<float, float>, SymmColumnVec_32f> >
(kernel, anchor, delta, symmetryType, Cast<float, float>(),
SymmColumnVec_32f(kernel, symmetryType, 0, delta)));
SymmColumnVec_32f(kernel, symmetryType, 0, delta));
if( ddepth == CV_64F && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new SymmColumnFilter<Cast<double, double>, ColumnNoVec>
(kernel, anchor, delta, symmetryType));
return makePtr<SymmColumnFilter<Cast<double, double>, ColumnNoVec> >
(kernel, anchor, delta, symmetryType);
}
CV_Error_( CV_StsNotImplemented,
("Unsupported combination of buffer format (=%d), and destination format (=%d)",
bufType, dstType));
return Ptr<BaseColumnFilter>(0);
return Ptr<BaseColumnFilter>();
}
@ -2933,7 +2933,7 @@ cv::Ptr<cv::FilterEngine> cv::createSeparableLinearFilter(
Ptr<BaseColumnFilter> _columnFilter = getLinearColumnFilter(
_bufType, _dstType, columnKernel, _anchor.y, ctype, _delta, bits );
return Ptr<FilterEngine>( new FilterEngine(Ptr<BaseFilter>(0), _rowFilter, _columnFilter,
return Ptr<FilterEngine>( new FilterEngine(Ptr<BaseFilter>(), _rowFilter, _columnFilter,
_srcType, _dstType, _bufType, _rowBorderType, _columnBorderType, _borderValue ));
}
@ -3085,13 +3085,13 @@ cv::Ptr<cv::BaseFilter> cv::getLinearFilter(int srcType, int dstType,
anchor = normalizeAnchor(anchor, _kernel.size());
/*if( sdepth == CV_8U && ddepth == CV_8U && kdepth == CV_32S )
return Ptr<BaseFilter>(new Filter2D<uchar, FixedPtCastEx<int, uchar>, FilterVec_8u>
return makePtr<Filter2D<uchar, FixedPtCastEx<int, uchar>, FilterVec_8u> >
(_kernel, anchor, delta, FixedPtCastEx<int, uchar>(bits),
FilterVec_8u(_kernel, bits, delta)));
FilterVec_8u(_kernel, bits, delta));
if( sdepth == CV_8U && ddepth == CV_16S && kdepth == CV_32S )
return Ptr<BaseFilter>(new Filter2D<uchar, FixedPtCastEx<int, short>, FilterVec_8u16s>
return makePtr<Filter2D<uchar, FixedPtCastEx<int, short>, FilterVec_8u16s> >
(_kernel, anchor, delta, FixedPtCastEx<int, short>(bits),
FilterVec_8u16s(_kernel, bits, delta)));*/
FilterVec_8u16s(_kernel, bits, delta));*/
kdepth = sdepth == CV_64F || ddepth == CV_64F ? CV_64F : CV_32F;
Mat kernel;
@ -3101,53 +3101,53 @@ cv::Ptr<cv::BaseFilter> cv::getLinearFilter(int srcType, int dstType,
_kernel.convertTo(kernel, kdepth, _kernel.type() == CV_32S ? 1./(1 << bits) : 1.);
if( sdepth == CV_8U && ddepth == CV_8U )
return Ptr<BaseFilter>(new Filter2D<uchar, Cast<float, uchar>, FilterVec_8u>
(kernel, anchor, delta, Cast<float, uchar>(), FilterVec_8u(kernel, 0, delta)));
return makePtr<Filter2D<uchar, Cast<float, uchar>, FilterVec_8u> >
(kernel, anchor, delta, Cast<float, uchar>(), FilterVec_8u(kernel, 0, delta));
if( sdepth == CV_8U && ddepth == CV_16U )
return Ptr<BaseFilter>(new Filter2D<uchar,
Cast<float, ushort>, FilterNoVec>(kernel, anchor, delta));
return makePtr<Filter2D<uchar,
Cast<float, ushort>, FilterNoVec> >(kernel, anchor, delta);
if( sdepth == CV_8U && ddepth == CV_16S )
return Ptr<BaseFilter>(new Filter2D<uchar, Cast<float, short>, FilterVec_8u16s>
(kernel, anchor, delta, Cast<float, short>(), FilterVec_8u16s(kernel, 0, delta)));
return makePtr<Filter2D<uchar, Cast<float, short>, FilterVec_8u16s> >
(kernel, anchor, delta, Cast<float, short>(), FilterVec_8u16s(kernel, 0, delta));
if( sdepth == CV_8U && ddepth == CV_32F )
return Ptr<BaseFilter>(new Filter2D<uchar,
Cast<float, float>, FilterNoVec>(kernel, anchor, delta));
return makePtr<Filter2D<uchar,
Cast<float, float>, FilterNoVec> >(kernel, anchor, delta);
if( sdepth == CV_8U && ddepth == CV_64F )
return Ptr<BaseFilter>(new Filter2D<uchar,
Cast<double, double>, FilterNoVec>(kernel, anchor, delta));
return makePtr<Filter2D<uchar,
Cast<double, double>, FilterNoVec> >(kernel, anchor, delta);
if( sdepth == CV_16U && ddepth == CV_16U )
return Ptr<BaseFilter>(new Filter2D<ushort,
Cast<float, ushort>, FilterNoVec>(kernel, anchor, delta));
return makePtr<Filter2D<ushort,
Cast<float, ushort>, FilterNoVec> >(kernel, anchor, delta);
if( sdepth == CV_16U && ddepth == CV_32F )
return Ptr<BaseFilter>(new Filter2D<ushort,
Cast<float, float>, FilterNoVec>(kernel, anchor, delta));
return makePtr<Filter2D<ushort,
Cast<float, float>, FilterNoVec> >(kernel, anchor, delta);
if( sdepth == CV_16U && ddepth == CV_64F )
return Ptr<BaseFilter>(new Filter2D<ushort,
Cast<double, double>, FilterNoVec>(kernel, anchor, delta));
return makePtr<Filter2D<ushort,
Cast<double, double>, FilterNoVec> >(kernel, anchor, delta);
if( sdepth == CV_16S && ddepth == CV_16S )
return Ptr<BaseFilter>(new Filter2D<short,
Cast<float, short>, FilterNoVec>(kernel, anchor, delta));
return makePtr<Filter2D<short,
Cast<float, short>, FilterNoVec> >(kernel, anchor, delta);
if( sdepth == CV_16S && ddepth == CV_32F )
return Ptr<BaseFilter>(new Filter2D<short,
Cast<float, float>, FilterNoVec>(kernel, anchor, delta));
return makePtr<Filter2D<short,
Cast<float, float>, FilterNoVec> >(kernel, anchor, delta);
if( sdepth == CV_16S && ddepth == CV_64F )
return Ptr<BaseFilter>(new Filter2D<short,
Cast<double, double>, FilterNoVec>(kernel, anchor, delta));
return makePtr<Filter2D<short,
Cast<double, double>, FilterNoVec> >(kernel, anchor, delta);
if( sdepth == CV_32F && ddepth == CV_32F )
return Ptr<BaseFilter>(new Filter2D<float, Cast<float, float>, FilterVec_32f>
(kernel, anchor, delta, Cast<float, float>(), FilterVec_32f(kernel, 0, delta)));
return makePtr<Filter2D<float, Cast<float, float>, FilterVec_32f> >
(kernel, anchor, delta, Cast<float, float>(), FilterVec_32f(kernel, 0, delta));
if( sdepth == CV_64F && ddepth == CV_64F )
return Ptr<BaseFilter>(new Filter2D<double,
Cast<double, double>, FilterNoVec>(kernel, anchor, delta));
return makePtr<Filter2D<double,
Cast<double, double>, FilterNoVec> >(kernel, anchor, delta);
CV_Error_( CV_StsNotImplemented,
("Unsupported combination of source format (=%d), and destination format (=%d)",
srcType, dstType));
return Ptr<BaseFilter>(0);
return Ptr<BaseFilter>();
}
@ -3178,9 +3178,9 @@ cv::Ptr<cv::FilterEngine> cv::createLinearFilter( int _srcType, int _dstType,
Ptr<BaseFilter> _filter2D = getLinearFilter(_srcType, _dstType,
kernel, _anchor, _delta, bits);
return Ptr<FilterEngine>(new FilterEngine(_filter2D, Ptr<BaseRowFilter>(0),
Ptr<BaseColumnFilter>(0), _srcType, _dstType, _srcType,
_rowBorderType, _columnBorderType, _borderValue ));
return makePtr<FilterEngine>(_filter2D, Ptr<BaseRowFilter>(),
Ptr<BaseColumnFilter>(), _srcType, _dstType, _srcType,
_rowBorderType, _columnBorderType, _borderValue );
}

@ -491,7 +491,7 @@ namespace
Ptr<GeneralizedHoughBallard> cv::createGeneralizedHoughBallard()
{
return new GeneralizedHoughBallardImpl;
return makePtr<GeneralizedHoughBallardImpl>();
}
// GeneralizedHoughGuil
@ -940,5 +940,5 @@ namespace
Ptr<GeneralizedHoughGuil> cv::createGeneralizedHoughGuil()
{
return new GeneralizedHoughGuilImpl;
return makePtr<GeneralizedHoughGuilImpl>();
}

@ -766,21 +766,21 @@ icvHoughCirclesGradient( CvMat* img, float dp, float min_dist,
float idp, dr;
CvSeqReader reader;
edges = cvCreateMat( img->rows, img->cols, CV_8UC1 );
edges.reset(cvCreateMat( img->rows, img->cols, CV_8UC1 ));
cvCanny( img, edges, MAX(canny_threshold/2,1), canny_threshold, 3 );
dx = cvCreateMat( img->rows, img->cols, CV_16SC1 );
dy = cvCreateMat( img->rows, img->cols, CV_16SC1 );
dx.reset(cvCreateMat( img->rows, img->cols, CV_16SC1 ));
dy.reset(cvCreateMat( img->rows, img->cols, CV_16SC1 ));
cvSobel( img, dx, 1, 0, 3 );
cvSobel( img, dy, 0, 1, 3 );
if( dp < 1.f )
dp = 1.f;
idp = 1.f/dp;
accum = cvCreateMat( cvCeil(img->rows*idp)+2, cvCeil(img->cols*idp)+2, CV_32SC1 );
accum.reset(cvCreateMat( cvCeil(img->rows*idp)+2, cvCeil(img->cols*idp)+2, CV_32SC1 ));
cvZero(accum);
storage = cvCreateMemStorage();
storage.reset(cvCreateMemStorage());
nz = cvCreateSeq( CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage );
centers = cvCreateSeq( CV_32SC1, sizeof(CvSeq), sizeof(int), storage );
@ -866,7 +866,7 @@ icvHoughCirclesGradient( CvMat* img, float dp, float min_dist,
cvClearSeq( centers );
cvSeqPushMulti( centers, &sort_buf[0], center_count );
dist_buf = cvCreateMat( 1, nz_count, CV_32FC1 );
dist_buf.reset(cvCreateMat( 1, nz_count, CV_32FC1 ));
ddata = dist_buf->data.fl;
dr = dp;
@ -1060,7 +1060,7 @@ void cv::HoughCircles( InputArray _image, OutputArray _circles,
double param1, double param2,
int minRadius, int maxRadius )
{
Ptr<CvMemStorage> storage = cvCreateMemStorage(STORAGE_SIZE);
Ptr<CvMemStorage> storage(cvCreateMemStorage(STORAGE_SIZE));
Mat image = _image.getMat();
CvMat c_image = image;
CvSeq* seq = cvHoughCircles( &c_image, storage, method,

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save