initial commit; ml has been refactored; it compiles and the tests run well; some other modules, apps and samples do not compile; to be fixed
parent
dce1824a91
commit
ba3783d205
25 changed files with 7530 additions and 21002 deletions
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,728 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
#if 0 |
||||
|
||||
ML_IMPL int |
||||
icvCmpIntegers (const void* a, const void* b) {return *(const int*)a - *(const int*)b;} |
||||
|
||||
/****************************************************************************************\
|
||||
* Cross-validation algorithms realizations * |
||||
\****************************************************************************************/ |
||||
|
||||
// Return pointer to trainIdx. Function DOES NOT FILL this matrix!
|
||||
ML_IMPL |
||||
const CvMat* cvCrossValGetTrainIdxMatrix (const CvStatModel* estimateModel) |
||||
{ |
||||
CvMat* result = NULL; |
||||
|
||||
CV_FUNCNAME ("cvCrossValGetTrainIdxMatrix"); |
||||
__BEGIN__ |
||||
|
||||
if (!CV_IS_CROSSVAL(estimateModel)) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); |
||||
} |
||||
|
||||
result = ((CvCrossValidationModel*)estimateModel)->sampleIdxTrain; |
||||
|
||||
__END__ |
||||
|
||||
return result; |
||||
} // End of cvCrossValGetTrainIdxMatrix
|
||||
|
||||
/****************************************************************************************/ |
||||
// Return pointer to checkIdx. Function DOES NOT FILL this matrix!
|
||||
ML_IMPL |
||||
const CvMat* cvCrossValGetCheckIdxMatrix (const CvStatModel* estimateModel) |
||||
{ |
||||
CvMat* result = NULL; |
||||
|
||||
CV_FUNCNAME ("cvCrossValGetCheckIdxMatrix"); |
||||
__BEGIN__ |
||||
|
||||
if (!CV_IS_CROSSVAL (estimateModel)) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); |
||||
} |
||||
|
||||
result = ((CvCrossValidationModel*)estimateModel)->sampleIdxEval; |
||||
|
||||
__END__ |
||||
|
||||
return result; |
||||
} // End of cvCrossValGetCheckIdxMatrix
|
||||
|
||||
/****************************************************************************************/ |
||||
// Create new Idx-matrix for next classifiers training and return code of result.
|
||||
// Result is 0 if function can't make next step (error input or folds are finished),
|
||||
// it is 1 if all was correct, and it is 2 if current fold wasn't' checked.
|
||||
ML_IMPL |
||||
int cvCrossValNextStep (CvStatModel* estimateModel) |
||||
{ |
||||
int result = 0; |
||||
|
||||
CV_FUNCNAME ("cvCrossValGetNextTrainIdx"); |
||||
__BEGIN__ |
||||
|
||||
CvCrossValidationModel* crVal = (CvCrossValidationModel*) estimateModel; |
||||
int k, fold; |
||||
|
||||
if (!CV_IS_CROSSVAL (estimateModel)) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); |
||||
} |
||||
|
||||
fold = ++crVal->current_fold; |
||||
|
||||
if (fold >= crVal->folds_all) |
||||
{ |
||||
if (fold == crVal->folds_all) |
||||
EXIT; |
||||
else |
||||
{ |
||||
CV_ERROR (CV_StsInternal, "All iterations has end long ago"); |
||||
} |
||||
} |
||||
|
||||
k = crVal->folds[fold + 1] - crVal->folds[fold]; |
||||
crVal->sampleIdxTrain->data.i = crVal->sampleIdxAll + crVal->folds[fold + 1]; |
||||
crVal->sampleIdxTrain->cols = crVal->samples_all - k; |
||||
crVal->sampleIdxEval->data.i = crVal->sampleIdxAll + crVal->folds[fold]; |
||||
crVal->sampleIdxEval->cols = k; |
||||
|
||||
if (crVal->is_checked) |
||||
{ |
||||
crVal->is_checked = 0; |
||||
result = 1; |
||||
} |
||||
else |
||||
{ |
||||
result = 2; |
||||
} |
||||
|
||||
__END__ |
||||
|
||||
return result; |
||||
} |
||||
|
||||
/****************************************************************************************/ |
||||
// Do checking part of loop of cross-validations metod.
|
||||
ML_IMPL |
||||
void cvCrossValCheckClassifier (CvStatModel* estimateModel, |
||||
const CvStatModel* model, |
||||
const CvMat* trainData, |
||||
int sample_t_flag, |
||||
const CvMat* trainClasses) |
||||
{ |
||||
CV_FUNCNAME ("cvCrossValCheckClassifier "); |
||||
__BEGIN__ |
||||
|
||||
CvCrossValidationModel* crVal = (CvCrossValidationModel*) estimateModel; |
||||
int i, j, k; |
||||
int* data; |
||||
float* responses_fl; |
||||
int step; |
||||
float* responses_result; |
||||
int* responses_i; |
||||
double te, te1; |
||||
double sum_c, sum_p, sum_pp, sum_cp, sum_cc, sq_err; |
||||
|
||||
// Check input data to correct values.
|
||||
if (!CV_IS_CROSSVAL (estimateModel)) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg,"First parameter point to not CvCrossValidationModel"); |
||||
} |
||||
if (!CV_IS_STAT_MODEL (model)) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, "Second parameter point to not CvStatModel"); |
||||
} |
||||
if (!CV_IS_MAT (trainData)) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, "Third parameter point to not CvMat"); |
||||
} |
||||
if (!CV_IS_MAT (trainClasses)) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, "Fifth parameter point to not CvMat"); |
||||
} |
||||
if (crVal->is_checked) |
||||
{ |
||||
CV_ERROR (CV_StsInternal, "This iterations already was checked"); |
||||
} |
||||
|
||||
// Initialize.
|
||||
k = crVal->sampleIdxEval->cols; |
||||
data = crVal->sampleIdxEval->data.i; |
||||
|
||||
// Eval tested feature vectors.
|
||||
CV_CALL (cvStatModelMultiPredict (model, trainData, sample_t_flag, |
||||
crVal->predict_results, NULL, crVal->sampleIdxEval)); |
||||
// Count number if correct results.
|
||||
responses_result = crVal->predict_results->data.fl; |
||||
if (crVal->is_regression) |
||||
{ |
||||
sum_c = sum_p = sum_pp = sum_cp = sum_cc = sq_err = 0; |
||||
if (CV_MAT_TYPE (trainClasses->type) == CV_32FC1) |
||||
{ |
||||
responses_fl = trainClasses->data.fl; |
||||
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(float); |
||||
for (i = 0; i < k; i++) |
||||
{ |
||||
te = responses_result[*data]; |
||||
te1 = responses_fl[*data * step]; |
||||
sum_c += te1; |
||||
sum_p += te; |
||||
sum_cc += te1 * te1; |
||||
sum_pp += te * te; |
||||
sum_cp += te1 * te; |
||||
te -= te1; |
||||
sq_err += te * te; |
||||
|
||||
data++; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
responses_i = trainClasses->data.i; |
||||
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(int); |
||||
for (i = 0; i < k; i++) |
||||
{ |
||||
te = responses_result[*data]; |
||||
te1 = responses_i[*data * step]; |
||||
sum_c += te1; |
||||
sum_p += te; |
||||
sum_cc += te1 * te1; |
||||
sum_pp += te * te; |
||||
sum_cp += te1 * te; |
||||
te -= te1; |
||||
sq_err += te * te; |
||||
|
||||
data++; |
||||
} |
||||
} |
||||
// Fixing new internal values of accuracy.
|
||||
crVal->sum_correct += sum_c; |
||||
crVal->sum_predict += sum_p; |
||||
crVal->sum_cc += sum_cc; |
||||
crVal->sum_pp += sum_pp; |
||||
crVal->sum_cp += sum_cp; |
||||
crVal->sq_error += sq_err; |
||||
} |
||||
else |
||||
{ |
||||
if (CV_MAT_TYPE (trainClasses->type) == CV_32FC1) |
||||
{ |
||||
responses_fl = trainClasses->data.fl; |
||||
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(float); |
||||
for (i = 0, j = 0; i < k; i++) |
||||
{ |
||||
if (cvRound (responses_result[*data]) == cvRound (responses_fl[*data * step])) |
||||
j++; |
||||
data++; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
responses_i = trainClasses->data.i; |
||||
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(int); |
||||
for (i = 0, j = 0; i < k; i++) |
||||
{ |
||||
if (cvRound (responses_result[*data]) == responses_i[*data * step]) |
||||
j++; |
||||
data++; |
||||
} |
||||
} |
||||
// Fixing new internal values of accuracy.
|
||||
crVal->correct_results += j; |
||||
} |
||||
// Fixing that this fold already checked.
|
||||
crVal->all_results += k; |
||||
crVal->is_checked = 1; |
||||
|
||||
__END__ |
||||
} // End of cvCrossValCheckClassifier
|
||||
|
||||
/****************************************************************************************/ |
||||
// Return current accuracy.
|
||||
ML_IMPL |
||||
float cvCrossValGetResult (const CvStatModel* estimateModel, |
||||
float* correlation) |
||||
{ |
||||
float result = 0; |
||||
|
||||
CV_FUNCNAME ("cvCrossValGetResult"); |
||||
__BEGIN__ |
||||
|
||||
double te, te1; |
||||
CvCrossValidationModel* crVal = (CvCrossValidationModel*)estimateModel; |
||||
|
||||
if (!CV_IS_CROSSVAL (estimateModel)) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); |
||||
} |
||||
|
||||
if (crVal->all_results) |
||||
{ |
||||
if (crVal->is_regression) |
||||
{ |
||||
result = ((float)crVal->sq_error) / crVal->all_results; |
||||
if (correlation) |
||||
{ |
||||
te = crVal->all_results * crVal->sum_cp - |
||||
crVal->sum_correct * crVal->sum_predict; |
||||
te *= te; |
||||
te1 = (crVal->all_results * crVal->sum_cc - |
||||
crVal->sum_correct * crVal->sum_correct) * |
||||
(crVal->all_results * crVal->sum_pp - |
||||
crVal->sum_predict * crVal->sum_predict); |
||||
*correlation = (float)(te / te1); |
||||
|
||||
} |
||||
} |
||||
else |
||||
{ |
||||
result = ((float)crVal->correct_results) / crVal->all_results; |
||||
} |
||||
} |
||||
|
||||
__END__ |
||||
|
||||
return result; |
||||
} |
||||
|
||||
/****************************************************************************************/ |
||||
// Reset cross-validation EstimateModel to state the same as it was immidiatly after
|
||||
// its creating.
|
||||
ML_IMPL |
||||
void cvCrossValReset (CvStatModel* estimateModel) |
||||
{ |
||||
CV_FUNCNAME ("cvCrossValReset"); |
||||
__BEGIN__ |
||||
|
||||
CvCrossValidationModel* crVal = (CvCrossValidationModel*)estimateModel; |
||||
|
||||
if (!CV_IS_CROSSVAL (estimateModel)) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); |
||||
} |
||||
|
||||
crVal->current_fold = -1; |
||||
crVal->is_checked = 1; |
||||
crVal->all_results = 0; |
||||
crVal->correct_results = 0; |
||||
crVal->sq_error = 0; |
||||
crVal->sum_correct = 0; |
||||
crVal->sum_predict = 0; |
||||
crVal->sum_cc = 0; |
||||
crVal->sum_pp = 0; |
||||
crVal->sum_cp = 0; |
||||
|
||||
__END__ |
||||
} |
||||
|
||||
/****************************************************************************************/ |
||||
// This function is standart CvStatModel field to release cross-validation EstimateModel.
|
||||
ML_IMPL |
||||
void cvReleaseCrossValidationModel (CvStatModel** model) |
||||
{ |
||||
CvCrossValidationModel* pModel; |
||||
|
||||
CV_FUNCNAME ("cvReleaseCrossValidationModel"); |
||||
__BEGIN__ |
||||
|
||||
if (!model) |
||||
{ |
||||
CV_ERROR (CV_StsNullPtr, ""); |
||||
} |
||||
|
||||
pModel = (CvCrossValidationModel*)*model; |
||||
if (!pModel) |
||||
{ |
||||
return; |
||||
} |
||||
if (!CV_IS_CROSSVAL (pModel)) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, ""); |
||||
} |
||||
|
||||
cvFree (&pModel->sampleIdxAll); |
||||
cvFree (&pModel->folds); |
||||
cvReleaseMat (&pModel->sampleIdxEval); |
||||
cvReleaseMat (&pModel->sampleIdxTrain); |
||||
cvReleaseMat (&pModel->predict_results); |
||||
|
||||
cvFree (model); |
||||
|
||||
__END__ |
||||
} // End of cvReleaseCrossValidationModel.
|
||||
|
||||
/****************************************************************************************/ |
||||
// This function create cross-validation EstimateModel.
|
||||
ML_IMPL CvStatModel* |
||||
cvCreateCrossValidationEstimateModel( |
||||
int samples_all, |
||||
const CvStatModelParams* estimateParams, |
||||
const CvMat* sampleIdx) |
||||
{ |
||||
CvStatModel* model = NULL; |
||||
CvCrossValidationModel* crVal = NULL; |
||||
|
||||
CV_FUNCNAME ("cvCreateCrossValidationEstimateModel"); |
||||
__BEGIN__ |
||||
|
||||
int k_fold = 10; |
||||
|
||||
int i, j, k, s_len; |
||||
int samples_selected; |
||||
CvRNG rng; |
||||
CvRNG* prng; |
||||
int* res_s_data; |
||||
int* te_s_data; |
||||
int* folds; |
||||
|
||||
rng = cvRNG(cvGetTickCount()); |
||||
cvRandInt (&rng); cvRandInt (&rng); cvRandInt (&rng); cvRandInt (&rng); |
||||
// Check input parameters.
|
||||
if (estimateParams) |
||||
k_fold = ((CvCrossValidationParams*)estimateParams)->k_fold; |
||||
if (!k_fold) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, "Error in parameters of cross-validation (k_fold == 0)!"); |
||||
} |
||||
if (samples_all <= 0) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, "<samples_all> should be positive!"); |
||||
} |
||||
|
||||
// Alloc memory and fill standart StatModel's fields.
|
||||
CV_CALL (crVal = (CvCrossValidationModel*)cvCreateStatModel ( |
||||
CV_STAT_MODEL_MAGIC_VAL | CV_CROSSVAL_MAGIC_VAL, |
||||
sizeof(CvCrossValidationModel), |
||||
cvReleaseCrossValidationModel, |
||||
NULL, NULL)); |
||||
crVal->current_fold = -1; |
||||
crVal->folds_all = k_fold; |
||||
if (estimateParams && ((CvCrossValidationParams*)estimateParams)->is_regression) |
||||
crVal->is_regression = 1; |
||||
else |
||||
crVal->is_regression = 0; |
||||
if (estimateParams && ((CvCrossValidationParams*)estimateParams)->rng) |
||||
prng = ((CvCrossValidationParams*)estimateParams)->rng; |
||||
else |
||||
prng = &rng; |
||||
|
||||
// Check and preprocess sample indices.
|
||||
if (sampleIdx) |
||||
{ |
||||
int s_step; |
||||
int s_type = 0; |
||||
|
||||
if (!CV_IS_MAT (sampleIdx)) |
||||
CV_ERROR (CV_StsBadArg, "Invalid sampleIdx array"); |
||||
|
||||
if (sampleIdx->rows != 1 && sampleIdx->cols != 1) |
||||
CV_ERROR (CV_StsBadSize, "sampleIdx array must be 1-dimensional"); |
||||
|
||||
s_len = sampleIdx->rows + sampleIdx->cols - 1; |
||||
s_step = sampleIdx->rows == 1 ? |
||||
1 : sampleIdx->step / CV_ELEM_SIZE(sampleIdx->type); |
||||
|
||||
s_type = CV_MAT_TYPE (sampleIdx->type); |
||||
|
||||
switch (s_type) |
||||
{ |
||||
case CV_8UC1: |
||||
case CV_8SC1: |
||||
{ |
||||
uchar* s_data = sampleIdx->data.ptr; |
||||
|
||||
// sampleIdx is array of 1's and 0's -
|
||||
// i.e. it is a mask of the selected samples
|
||||
if( s_len != samples_all ) |
||||
CV_ERROR (CV_StsUnmatchedSizes, |
||||
"Sample mask should contain as many elements as the total number of samples"); |
||||
|
||||
samples_selected = 0; |
||||
for (i = 0; i < s_len; i++) |
||||
samples_selected += s_data[i * s_step] != 0; |
||||
|
||||
if (samples_selected == 0) |
||||
CV_ERROR (CV_StsOutOfRange, "No samples is selected!"); |
||||
} |
||||
s_len = samples_selected; |
||||
break; |
||||
case CV_32SC1: |
||||
if (s_len > samples_all) |
||||
CV_ERROR (CV_StsOutOfRange, |
||||
"sampleIdx array may not contain more elements than the total number of samples"); |
||||
samples_selected = s_len; |
||||
break; |
||||
default: |
||||
CV_ERROR (CV_StsUnsupportedFormat, "Unsupported sampleIdx array data type " |
||||
"(it should be 8uC1, 8sC1 or 32sC1)"); |
||||
} |
||||
|
||||
// Alloc additional memory for internal Idx and fill it.
|
||||
/*!!*/ CV_CALL (res_s_data = crVal->sampleIdxAll = |
||||
(int*)cvAlloc (2 * s_len * sizeof(int))); |
||||
|
||||
if (s_type < CV_32SC1) |
||||
{ |
||||
uchar* s_data = sampleIdx->data.ptr; |
||||
for (i = 0; i < s_len; i++) |
||||
if (s_data[i * s_step]) |
||||
{ |
||||
*res_s_data++ = i; |
||||
} |
||||
res_s_data = crVal->sampleIdxAll; |
||||
} |
||||
else |
||||
{ |
||||
int* s_data = sampleIdx->data.i; |
||||
int out_of_order = 0; |
||||
|
||||
for (i = 0; i < s_len; i++) |
||||
{ |
||||
res_s_data[i] = s_data[i * s_step]; |
||||
if (i > 0 && res_s_data[i] < res_s_data[i - 1]) |
||||
out_of_order = 1; |
||||
} |
||||
|
||||
if (out_of_order) |
||||
qsort (res_s_data, s_len, sizeof(res_s_data[0]), icvCmpIntegers); |
||||
|
||||
if (res_s_data[0] < 0 || |
||||
res_s_data[s_len - 1] >= samples_all) |
||||
CV_ERROR (CV_StsBadArg, "There are out-of-range sample indices"); |
||||
for (i = 1; i < s_len; i++) |
||||
if (res_s_data[i] <= res_s_data[i - 1]) |
||||
CV_ERROR (CV_StsBadArg, "There are duplicated"); |
||||
} |
||||
} |
||||
else // if (sampleIdx)
|
||||
{ |
||||
// Alloc additional memory for internal Idx and fill it.
|
||||
s_len = samples_all; |
||||
CV_CALL (res_s_data = crVal->sampleIdxAll = (int*)cvAlloc (2 * s_len * sizeof(int))); |
||||
for (i = 0; i < s_len; i++) |
||||
{ |
||||
*res_s_data++ = i; |
||||
} |
||||
res_s_data = crVal->sampleIdxAll; |
||||
} // if (sampleIdx) ... else
|
||||
|
||||
// Resort internal Idx.
|
||||
te_s_data = res_s_data + s_len; |
||||
for (i = s_len; i > 1; i--) |
||||
{ |
||||
j = cvRandInt (prng) % i; |
||||
k = *(--te_s_data); |
||||
*te_s_data = res_s_data[j]; |
||||
res_s_data[j] = k; |
||||
} |
||||
|
||||
// Duplicate resorted internal Idx.
|
||||
// It will be used to simplify operation of getting trainIdx.
|
||||
te_s_data = res_s_data + s_len; |
||||
for (i = 0; i < s_len; i++) |
||||
{ |
||||
*te_s_data++ = *res_s_data++; |
||||
} |
||||
|
||||
// Cut sampleIdxAll to parts.
|
||||
if (k_fold > 0) |
||||
{ |
||||
if (k_fold > s_len) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, |
||||
"Error in parameters of cross-validation ('k_fold' > #samples)!"); |
||||
} |
||||
folds = crVal->folds = (int*) cvAlloc ((k_fold + 1) * sizeof (int)); |
||||
*folds++ = 0; |
||||
for (i = 1; i < k_fold; i++) |
||||
{ |
||||
*folds++ = cvRound (i * s_len * 1. / k_fold); |
||||
} |
||||
*folds = s_len; |
||||
folds = crVal->folds; |
||||
|
||||
crVal->max_fold_size = (s_len - 1) / k_fold + 1; |
||||
} |
||||
else |
||||
{ |
||||
k = -k_fold; |
||||
crVal->max_fold_size = k; |
||||
if (k >= s_len) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, |
||||
"Error in parameters of cross-validation (-'k_fold' > #samples)!"); |
||||
} |
||||
crVal->folds_all = k = (s_len - 1) / k + 1; |
||||
|
||||
folds = crVal->folds = (int*) cvAlloc ((k + 1) * sizeof (int)); |
||||
for (i = 0; i < k; i++) |
||||
{ |
||||
*folds++ = -i * k_fold; |
||||
} |
||||
*folds = s_len; |
||||
folds = crVal->folds; |
||||
} |
||||
|
||||
// Prepare other internal fields to working.
|
||||
CV_CALL (crVal->predict_results = cvCreateMat (1, samples_all, CV_32FC1)); |
||||
CV_CALL (crVal->sampleIdxEval = cvCreateMatHeader (1, 1, CV_32SC1)); |
||||
CV_CALL (crVal->sampleIdxTrain = cvCreateMatHeader (1, 1, CV_32SC1)); |
||||
crVal->sampleIdxEval->cols = 0; |
||||
crVal->sampleIdxTrain->cols = 0; |
||||
crVal->samples_all = s_len; |
||||
crVal->is_checked = 1; |
||||
|
||||
crVal->getTrainIdxMat = cvCrossValGetTrainIdxMatrix; |
||||
crVal->getCheckIdxMat = cvCrossValGetCheckIdxMatrix; |
||||
crVal->nextStep = cvCrossValNextStep; |
||||
crVal->check = cvCrossValCheckClassifier; |
||||
crVal->getResult = cvCrossValGetResult; |
||||
crVal->reset = cvCrossValReset; |
||||
|
||||
model = (CvStatModel*)crVal; |
||||
|
||||
__END__ |
||||
|
||||
if (!model) |
||||
{ |
||||
cvReleaseCrossValidationModel ((CvStatModel**)&crVal); |
||||
} |
||||
|
||||
return model; |
||||
} // End of cvCreateCrossValidationEstimateModel
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* Extended interface with backcalls for models * |
||||
\****************************************************************************************/ |
||||
ML_IMPL float |
||||
cvCrossValidation (const CvMat* trueData, |
||||
int tflag, |
||||
const CvMat* trueClasses, |
||||
CvStatModel* (*createClassifier) (const CvMat*, |
||||
int, |
||||
const CvMat*, |
||||
const CvClassifierTrainParams*, |
||||
const CvMat*, |
||||
const CvMat*, |
||||
const CvMat*, |
||||
const CvMat*), |
||||
const CvClassifierTrainParams* estimateParams, |
||||
const CvClassifierTrainParams* trainParams, |
||||
const CvMat* compIdx, |
||||
const CvMat* sampleIdx, |
||||
CvStatModel** pCrValModel, |
||||
const CvMat* typeMask, |
||||
const CvMat* missedMeasurementMask) |
||||
{ |
||||
CvCrossValidationModel* crVal = NULL; |
||||
float result = 0; |
||||
CvStatModel* pClassifier = NULL; |
||||
|
||||
CV_FUNCNAME ("cvCrossValidation"); |
||||
__BEGIN__ |
||||
|
||||
const CvMat* trainDataIdx; |
||||
int samples_all; |
||||
|
||||
// checking input data
|
||||
if ((createClassifier) == NULL) |
||||
{ |
||||
CV_ERROR (CV_StsNullPtr, "Null pointer to functiion which create classifier"); |
||||
} |
||||
if (pCrValModel && *pCrValModel && !CV_IS_CROSSVAL(*pCrValModel)) |
||||
{ |
||||
CV_ERROR (CV_StsBadArg, |
||||
"<pCrValModel> point to not cross-validation model"); |
||||
} |
||||
|
||||
// initialization
|
||||
if (pCrValModel && *pCrValModel) |
||||
{ |
||||
crVal = (CvCrossValidationModel*)*pCrValModel; |
||||
crVal->reset ((CvStatModel*)crVal); |
||||
} |
||||
else |
||||
{ |
||||
samples_all = ((tflag) ? trueData->rows : trueData->cols); |
||||
CV_CALL (crVal = (CvCrossValidationModel*) |
||||
cvCreateCrossValidationEstimateModel (samples_all, estimateParams, sampleIdx)); |
||||
} |
||||
|
||||
CV_CALL (trainDataIdx = crVal->getTrainIdxMat ((CvStatModel*)crVal)); |
||||
|
||||
// operation loop
|
||||
for (; crVal->nextStep((CvStatModel*)crVal) != 0; ) |
||||
{ |
||||
CV_CALL (pClassifier = createClassifier (trueData, tflag, trueClasses, |
||||
trainParams, compIdx, trainDataIdx, typeMask, missedMeasurementMask)); |
||||
CV_CALL (crVal->check ((CvStatModel*)crVal, pClassifier, |
||||
trueData, tflag, trueClasses)); |
||||
|
||||
pClassifier->release (&pClassifier); |
||||
} |
||||
|
||||
// Get result and fill output field.
|
||||
CV_CALL (result = crVal->getResult ((CvStatModel*)crVal, 0)); |
||||
|
||||
if (pCrValModel && !*pCrValModel) |
||||
*pCrValModel = (CvStatModel*)crVal; |
||||
|
||||
__END__ |
||||
|
||||
// Free all memory that should be freed.
|
||||
if (pClassifier) |
||||
pClassifier->release (&pClassifier); |
||||
if (crVal && (!pCrValModel || !*pCrValModel)) |
||||
crVal->release ((CvStatModel**)&crVal); |
||||
|
||||
return result; |
||||
} // End of cvCrossValidation
|
||||
|
||||
#endif |
||||
|
||||
/* End of file */ |
File diff suppressed because it is too large
Load Diff
@ -1,63 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
CV_INIT_ALGORITHM(EM, "StatModel.EM", |
||||
obj.info()->addParam(obj, "nclusters", obj.nclusters); |
||||
obj.info()->addParam(obj, "covMatType", obj.covMatType); |
||||
obj.info()->addParam(obj, "maxIters", obj.maxIters); |
||||
obj.info()->addParam(obj, "epsilon", obj.epsilon); |
||||
obj.info()->addParam(obj, "weights", obj.weights, true); |
||||
obj.info()->addParam(obj, "means", obj.means, true); |
||||
obj.info()->addParam(obj, "covs", obj.covs, true)) |
||||
|
||||
bool initModule_ml(void) |
||||
{ |
||||
Ptr<Algorithm> em = createEM_ptr_hidden(); |
||||
return em->info() != 0; |
||||
} |
||||
|
||||
} |
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue