|
|
|
@ -1,31 +1,31 @@ |
|
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
//
|
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
|
//
|
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
|
// copy or use the software.
|
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
|
// copy or use the software.
|
|
|
|
|
//
|
|
|
|
|
//
|
|
|
|
|
// License Agreement
|
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
|
// License Agreement
|
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
|
//
|
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
|
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
|
|
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
//
|
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
|
//
|
|
|
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
|
//
|
|
|
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
|
//
|
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
|
//
|
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
@ -37,6 +37,7 @@ |
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
|
//
|
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
|
|
#include <precomp.hpp> |
|
|
|
@ -137,6 +138,43 @@ struct Level |
|
|
|
|
workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))), |
|
|
|
|
objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale))) |
|
|
|
|
{} |
|
|
|
|
|
|
|
|
|
void markDetection(const int x, const int dx, std::vector<cv::Rect>& detections) const |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct CascadeIntrinsics |
|
|
|
|
{ |
|
|
|
|
static const float lambda = 1.099f, a = 0.89f; |
|
|
|
|
|
|
|
|
|
static float getFor(int channel, float scaling) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(channel < 10); |
|
|
|
|
|
|
|
|
|
if ((scaling - 1.f) < FLT_EPSILON) |
|
|
|
|
return 1.f; |
|
|
|
|
|
|
|
|
|
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
|
|
|
|
|
static const float A[2][2] = |
|
|
|
|
{ //channel <= 6, otherwise
|
|
|
|
|
{ 0.89f, 1.f}, // down
|
|
|
|
|
{ 1.00f, 1.f} // up
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
static const float B[2][2] = |
|
|
|
|
{ //channel <= 6, otherwise
|
|
|
|
|
{ 1.099f / log(2), 2.f}, // down
|
|
|
|
|
{ 2.f, 2.f} // up
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
float a = A[(int)(scaling >= 1)][(int)(channel >= 6)]; |
|
|
|
|
float b = B[(int)(scaling >= 1)][(int)(channel >= 6)]; |
|
|
|
|
|
|
|
|
|
return a * pow(scaling, b); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
// Feature rescale(float relScale)
|
|
|
|
@ -148,42 +186,6 @@ struct Level |
|
|
|
|
// return res;
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
|
|
|
|
|
// struct CascadeIntrinsics
|
|
|
|
|
// {
|
|
|
|
|
// static const float lambda = 1.099f, a = 0.89f;
|
|
|
|
|
// static const float intrinsics[10][4];
|
|
|
|
|
|
|
|
|
|
// static float getFor(int channel, float scaling)
|
|
|
|
|
// {
|
|
|
|
|
// CV_Assert(channel < 10);
|
|
|
|
|
|
|
|
|
|
// if ((scaling - 1.f) < FLT_EPSILON)
|
|
|
|
|
// return 1.f;
|
|
|
|
|
|
|
|
|
|
// int ud = (int)(scaling < 1.f);
|
|
|
|
|
// return intrinsics[channel][(ud << 1)] * pow(scaling, intrinsics[channel][(ud << 1) + 1]);
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// };
|
|
|
|
|
|
|
|
|
|
// const float CascadeIntrinsics::intrinsics[10][4] =
|
|
|
|
|
// { //da, db, ua, ub
|
|
|
|
|
// // hog-like orientation bins
|
|
|
|
|
// {a, lambda / log(2), 1, 2},
|
|
|
|
|
// {a, lambda / log(2), 1, 2},
|
|
|
|
|
// {a, lambda / log(2), 1, 2},
|
|
|
|
|
// {a, lambda / log(2), 1, 2},
|
|
|
|
|
// {a, lambda / log(2), 1, 2},
|
|
|
|
|
// {a, lambda / log(2), 1, 2},
|
|
|
|
|
// // gradient magnitude
|
|
|
|
|
// {a, lambda / log(2), 1, 2},
|
|
|
|
|
// // luv color channels
|
|
|
|
|
// {1, 2, 1, 2},
|
|
|
|
|
// {1, 2, 1, 2},
|
|
|
|
|
// {1, 2, 1, 2}
|
|
|
|
|
// };
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void calcHistBins(const cv::Mat& grey, cv::Mat& magIntegral, std::vector<cv::Mat>& histInts, |
|
|
|
|
const int bins, int shrinkage) |
|
|
|
@ -236,6 +238,7 @@ void calcHistBins(const cv::Mat& grey, cv::Mat& magIntegral, std::vector<cv::Mat |
|
|
|
|
cv::resize(mag, shrMag, cv::Size(), scale, scale, cv::INTER_AREA); |
|
|
|
|
|
|
|
|
|
cv::integral(shrMag, magIntegral, mag.depth()); |
|
|
|
|
histInts.push_back(magIntegral); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
struct ChannelStorage |
|
|
|
@ -246,25 +249,40 @@ struct ChannelStorage |
|
|
|
|
|
|
|
|
|
int shrinkage; |
|
|
|
|
|
|
|
|
|
enum {HOG_BINS = 6}; |
|
|
|
|
enum {HOG_BINS = 6, HOG_LUV_BINS = 10}; |
|
|
|
|
|
|
|
|
|
ChannelStorage() {} |
|
|
|
|
ChannelStorage(const cv::Mat& colored, int shr) : shrinkage(shr) |
|
|
|
|
{ |
|
|
|
|
cv::Mat _luv; |
|
|
|
|
cv::Mat _luv, shrLuv; |
|
|
|
|
cv::cvtColor(colored, _luv, CV_BGR2Luv); |
|
|
|
|
cv::resize(_luv, shrLuv, cv::Size(), 1.f / shr, 1.f / shr, cv::INTER_AREA); |
|
|
|
|
|
|
|
|
|
cv::integral(shrLuv, luv); |
|
|
|
|
|
|
|
|
|
cv::integral(luv, luv); |
|
|
|
|
std::vector<cv::Mat> splited; |
|
|
|
|
split(luv, splited); |
|
|
|
|
|
|
|
|
|
cv::Mat grey; |
|
|
|
|
cv::cvtColor(colored, grey, CV_RGB2GRAY); |
|
|
|
|
|
|
|
|
|
calcHistBins(grey, magnitude, hog, HOG_BINS, shrinkage); |
|
|
|
|
|
|
|
|
|
hog.insert(hog.end(), splited.begin(), splited.end()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float get(int chennel, cv::Rect area) const |
|
|
|
|
float get(const int x, const int y, const int channel, const cv::Rect& area) const |
|
|
|
|
{ |
|
|
|
|
return 1.f; |
|
|
|
|
CV_Assert(channel < HOG_LUV_BINS); |
|
|
|
|
|
|
|
|
|
const cv::Mat m = hog[channel]; |
|
|
|
|
|
|
|
|
|
float a = m.ptr(y + area.y)[x + area.x]; |
|
|
|
|
float b = m.ptr(y + area.y)[x + area.width]; |
|
|
|
|
float c = m.ptr(y + area.height)[x + area.width]; |
|
|
|
|
float d = m.ptr(y + area.height)[x + area.x]; |
|
|
|
|
|
|
|
|
|
return (a - b + c - d); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
} |
|
|
|
@ -291,33 +309,87 @@ struct cv::SoftCascade::Filds |
|
|
|
|
typedef std::vector<Octave>::iterator octIt_t; |
|
|
|
|
|
|
|
|
|
void detectAt(const Level& level, const int dx, const int dy, const ChannelStorage& storage, |
|
|
|
|
const std::vector<cv::Rect>& detections) const |
|
|
|
|
std::vector<cv::Rect>& detections) const |
|
|
|
|
{ |
|
|
|
|
float detectionScore = 0.f; |
|
|
|
|
|
|
|
|
|
const Octave& octave = *(level.octave); |
|
|
|
|
int stBegin = octave.index() * octave.stages, stEnd = stBegin + octave.stages; |
|
|
|
|
for(int st = stBegin; st < stEnd; ++st) |
|
|
|
|
int st = stBegin; |
|
|
|
|
for(; st < stEnd; ++st) |
|
|
|
|
{ |
|
|
|
|
const Stage& stage = stages[st]; |
|
|
|
|
if (detectionScore > stage.threshold) |
|
|
|
|
{ |
|
|
|
|
int nId = st * 3; |
|
|
|
|
|
|
|
|
|
// work with root node
|
|
|
|
|
const Node& node = nodes[nId]; |
|
|
|
|
const Feature& feature = features[node.feature]; |
|
|
|
|
|
|
|
|
|
float sum = storage.get(feature.channel, feature.rect); |
|
|
|
|
int next = (sum >= node.threshold)? 2 : 1; |
|
|
|
|
// rescaling
|
|
|
|
|
float scaling = CascadeIntrinsics::getFor(feature.channel, level.relScale); |
|
|
|
|
cv::Rect scaledRect = feature.rect; |
|
|
|
|
float farea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y); |
|
|
|
|
// rescale
|
|
|
|
|
scaledRect.x = cvRound(scaling * scaledRect.x); |
|
|
|
|
scaledRect.y = cvRound(scaling * scaledRect.y); |
|
|
|
|
scaledRect.width = cvRound(scaling * scaledRect.width); |
|
|
|
|
scaledRect.height = cvRound(scaling * scaledRect.height); |
|
|
|
|
|
|
|
|
|
float sarea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y); |
|
|
|
|
|
|
|
|
|
float approx = 1.f; |
|
|
|
|
if ((farea - 0.f) > FLT_EPSILON && (farea - 0.f) > FLT_EPSILON) |
|
|
|
|
{ |
|
|
|
|
const float expected_new_area = farea*level.relScale*level.relScale; |
|
|
|
|
approx = expected_new_area / sarea; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float rootThreshold = node.threshold / approx; // ToDo check
|
|
|
|
|
rootThreshold *= scaling; |
|
|
|
|
|
|
|
|
|
// use rescaled
|
|
|
|
|
float sum = storage.get(dx, dy, feature.channel, scaledRect); |
|
|
|
|
int next = (sum >= rootThreshold)? 2 : 1; |
|
|
|
|
|
|
|
|
|
// leaces
|
|
|
|
|
const Node& leaf = nodes[nId + next]; |
|
|
|
|
const Feature& fLeaf = features[node.feature]; |
|
|
|
|
sum = storage.get(feature.channel, feature.rect); |
|
|
|
|
|
|
|
|
|
int lShift = (next - 1) * 2 + (sum >= leaf.threshold) ? 1 : 0; |
|
|
|
|
// rescaling
|
|
|
|
|
scaling = CascadeIntrinsics::getFor(fLeaf.channel, level.relScale); |
|
|
|
|
scaledRect = fLeaf.rect; |
|
|
|
|
farea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y); |
|
|
|
|
// rescale
|
|
|
|
|
scaledRect.x = cvRound(scaling * scaledRect.x); |
|
|
|
|
scaledRect.y = cvRound(scaling * scaledRect.y); |
|
|
|
|
scaledRect.width = cvRound(scaling * scaledRect.width); |
|
|
|
|
scaledRect.height = cvRound(scaling * scaledRect.height); |
|
|
|
|
|
|
|
|
|
sarea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y); |
|
|
|
|
|
|
|
|
|
approx = 1.f; |
|
|
|
|
if ((farea - 0.f) > FLT_EPSILON && (farea - 0.f) > FLT_EPSILON) |
|
|
|
|
{ |
|
|
|
|
const float expected_new_area = farea*level.relScale*level.relScale; |
|
|
|
|
approx = expected_new_area / sarea; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
rootThreshold = leaf.threshold / approx; // ToDo check
|
|
|
|
|
rootThreshold *= scaling; |
|
|
|
|
|
|
|
|
|
sum = storage.get(dx, dy, feature.channel, scaledRect); |
|
|
|
|
|
|
|
|
|
int lShift = (next - 1) * 2 + (sum >= rootThreshold) ? 1 : 0; |
|
|
|
|
float impact = leaves[nId + lShift]; |
|
|
|
|
detectionScore += impact; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (detectionScore <= stage.threshold) break; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (st == octave.stages - 1) |
|
|
|
|
level.markDetection(dx, dy, detections); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
octIt_t fitOctave(const float& logFactor) |
|
|
|
|