|
|
@ -591,16 +591,13 @@ int main(int argc, char* argv[]) { |
|
|
|
cv::GMat in_originalRGB = cv::gapi::BGR2RGB(in_original); |
|
|
|
cv::GMat in_originalRGB = cv::gapi::BGR2RGB(in_original); |
|
|
|
cv::GMat in_transposedRGB = cv::gapi::transpose(in_originalRGB); |
|
|
|
cv::GMat in_transposedRGB = cv::gapi::transpose(in_originalRGB); |
|
|
|
cv::GOpaque<cv::Size> in_sz = cv::gapi::streaming::size(in_original); |
|
|
|
cv::GOpaque<cv::Size> in_sz = cv::gapi::streaming::size(in_original); |
|
|
|
cv::GMat in_resized[MAX_PYRAMID_LEVELS]; |
|
|
|
|
|
|
|
cv::GMat regressions[MAX_PYRAMID_LEVELS]; |
|
|
|
cv::GMat regressions[MAX_PYRAMID_LEVELS]; |
|
|
|
cv::GMat scores[MAX_PYRAMID_LEVELS]; |
|
|
|
cv::GMat scores[MAX_PYRAMID_LEVELS]; |
|
|
|
cv::GArray<custom::Face> nms_p_faces[MAX_PYRAMID_LEVELS]; |
|
|
|
cv::GArray<custom::Face> nms_p_faces[MAX_PYRAMID_LEVELS]; |
|
|
|
cv::GArray<custom::Face> total_faces[MAX_PYRAMID_LEVELS]; |
|
|
|
cv::GArray<custom::Face> total_faces[MAX_PYRAMID_LEVELS]; |
|
|
|
|
|
|
|
|
|
|
|
//The very first PNet pyramid layer to init total_faces[0]
|
|
|
|
//The very first PNet pyramid layer to init total_faces[0]
|
|
|
|
cv::Size currentSize = cv::Size(level_size[0].height, level_size[0].width); |
|
|
|
std::tie(regressions[0], scores[0]) = run_mtcnn_p(in_transposedRGB, get_pnet_level_name(level_size[0])); |
|
|
|
in_resized[0] = cv::gapi::resize(in_transposedRGB, currentSize); |
|
|
|
|
|
|
|
std::tie(regressions[0], scores[0]) = run_mtcnn_p(in_resized[0], get_pnet_level_name(level_size[0])); |
|
|
|
|
|
|
|
cv::GArray<custom::Face> faces0 = custom::BuildFaces::on(scores[0], regressions[0], static_cast<float>(scales[0]), conf_thresh_p); |
|
|
|
cv::GArray<custom::Face> faces0 = custom::BuildFaces::on(scores[0], regressions[0], static_cast<float>(scales[0]), conf_thresh_p); |
|
|
|
cv::GArray<custom::Face> final_p_faces_for_bb2squares = custom::ApplyRegression::on(faces0, true); |
|
|
|
cv::GArray<custom::Face> final_p_faces_for_bb2squares = custom::ApplyRegression::on(faces0, true); |
|
|
|
cv::GArray<custom::Face> final_faces_pnet0 = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares); |
|
|
|
cv::GArray<custom::Face> final_faces_pnet0 = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares); |
|
|
@ -608,9 +605,7 @@ int main(int argc, char* argv[]) { |
|
|
|
//The rest PNet pyramid layers to accumlate all layers result in total_faces[PYRAMID_LEVELS - 1]]
|
|
|
|
//The rest PNet pyramid layers to accumlate all layers result in total_faces[PYRAMID_LEVELS - 1]]
|
|
|
|
for (int i = 1; i < pyramid_levels; ++i) |
|
|
|
for (int i = 1; i < pyramid_levels; ++i) |
|
|
|
{ |
|
|
|
{ |
|
|
|
currentSize = cv::Size(level_size[i].height, level_size[i].width); |
|
|
|
std::tie(regressions[i], scores[i]) = run_mtcnn_p(in_transposedRGB, get_pnet_level_name(level_size[i])); |
|
|
|
in_resized[i] = cv::gapi::resize(in_transposedRGB, currentSize); |
|
|
|
|
|
|
|
std::tie(regressions[i], scores[i]) = run_mtcnn_p(in_resized[i], get_pnet_level_name(level_size[i])); |
|
|
|
|
|
|
|
cv::GArray<custom::Face> faces = custom::BuildFaces::on(scores[i], regressions[i], static_cast<float>(scales[i]), conf_thresh_p); |
|
|
|
cv::GArray<custom::Face> faces = custom::BuildFaces::on(scores[i], regressions[i], static_cast<float>(scales[i]), conf_thresh_p); |
|
|
|
cv::GArray<custom::Face> final_p_faces_for_bb2squares_i = custom::ApplyRegression::on(faces, true); |
|
|
|
cv::GArray<custom::Face> final_p_faces_for_bb2squares_i = custom::ApplyRegression::on(faces, true); |
|
|
|
cv::GArray<custom::Face> final_faces_pnet_i = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares_i); |
|
|
|
cv::GArray<custom::Face> final_faces_pnet_i = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares_i); |
|
|
|