|
|
|
@ -46,120 +46,28 @@ |
|
|
|
|
#include <vector> |
|
|
|
|
|
|
|
|
|
#include "opencv2/core/hal/intrin.hpp" |
|
|
|
|
#include "opencl_kernels_imgproc.hpp" |
|
|
|
|
|
|
|
|
|
#include "opencv2/core/openvx/ovx_defs.hpp" |
|
|
|
|
|
|
|
|
|
#include "filter.hpp" |
|
|
|
|
|
|
|
|
|
#include "fixedpoint.inl.hpp" |
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
|
Gaussian Blur |
|
|
|
|
\****************************************************************************************/ |
|
|
|
|
|
|
|
|
|
cv::Mat cv::getGaussianKernel( int n, double sigma, int ktype ) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(n > 0); |
|
|
|
|
const int SMALL_GAUSSIAN_SIZE = 7; |
|
|
|
|
static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] = |
|
|
|
|
{ |
|
|
|
|
{1.f}, |
|
|
|
|
{0.25f, 0.5f, 0.25f}, |
|
|
|
|
{0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f}, |
|
|
|
|
{0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ? |
|
|
|
|
small_gaussian_tab[n>>1] : 0; |
|
|
|
|
|
|
|
|
|
CV_Assert( ktype == CV_32F || ktype == CV_64F ); |
|
|
|
|
Mat kernel(n, 1, ktype); |
|
|
|
|
float* cf = kernel.ptr<float>(); |
|
|
|
|
double* cd = kernel.ptr<double>(); |
|
|
|
|
|
|
|
|
|
double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8; |
|
|
|
|
double scale2X = -0.5/(sigmaX*sigmaX); |
|
|
|
|
double sum = 0; |
|
|
|
|
|
|
|
|
|
int i; |
|
|
|
|
for( i = 0; i < n; i++ ) |
|
|
|
|
{ |
|
|
|
|
double x = i - (n-1)*0.5; |
|
|
|
|
double t = fixed_kernel ? (double)fixed_kernel[i] : std::exp(scale2X*x*x); |
|
|
|
|
if( ktype == CV_32F ) |
|
|
|
|
{ |
|
|
|
|
cf[i] = (float)t; |
|
|
|
|
sum += cf[i]; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
cd[i] = t; |
|
|
|
|
sum += cd[i]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CV_DbgAssert(fabs(sum) > 0); |
|
|
|
|
sum = 1./sum; |
|
|
|
|
for( i = 0; i < n; i++ ) |
|
|
|
|
{ |
|
|
|
|
if( ktype == CV_32F ) |
|
|
|
|
cf[i] = (float)(cf[i]*sum); |
|
|
|
|
else |
|
|
|
|
cd[i] *= sum; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return kernel; |
|
|
|
|
} |
|
|
|
|
#include "opencv2/core/softfloat.hpp" |
|
|
|
|
|
|
|
|
|
namespace cv { |
|
|
|
|
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN |
|
|
|
|
// forward declarations
|
|
|
|
|
void GaussianBlurFixedPoint(const Mat& src, /*const*/ Mat& dst, |
|
|
|
|
const uint16_t/*ufixedpoint16*/* fkx, int fkx_size, |
|
|
|
|
const uint16_t/*ufixedpoint16*/* fky, int fky_size, |
|
|
|
|
int borderType); |
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
static std::vector<T> getFixedpointGaussianKernel( int n, double sigma ) |
|
|
|
|
{ |
|
|
|
|
if (sigma <= 0) |
|
|
|
|
{ |
|
|
|
|
if(n == 1) |
|
|
|
|
return std::vector<T>(1, softdouble(1.0)); |
|
|
|
|
else if(n == 3) |
|
|
|
|
{ |
|
|
|
|
T v3[] = { softdouble(0.25), softdouble(0.5), softdouble(0.25) }; |
|
|
|
|
return std::vector<T>(v3, v3 + 3); |
|
|
|
|
} |
|
|
|
|
else if(n == 5) |
|
|
|
|
{ |
|
|
|
|
T v5[] = { softdouble(0.0625), softdouble(0.25), softdouble(0.375), softdouble(0.25), softdouble(0.0625) }; |
|
|
|
|
return std::vector<T>(v5, v5 + 5); |
|
|
|
|
} |
|
|
|
|
else if(n == 7) |
|
|
|
|
{ |
|
|
|
|
T v7[] = { softdouble(0.03125), softdouble(0.109375), softdouble(0.21875), softdouble(0.28125), softdouble(0.21875), softdouble(0.109375), softdouble(0.03125) }; |
|
|
|
|
return std::vector<T>(v7, v7 + 7); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY |
|
|
|
|
|
|
|
|
|
softdouble sigmaX = sigma > 0 ? softdouble(sigma) : mulAdd(softdouble(n),softdouble(0.15),softdouble(0.35));// softdouble(((n-1)*0.5 - 1)*0.3 + 0.8)
|
|
|
|
|
softdouble scale2X = softdouble(-0.5*0.25)/(sigmaX*sigmaX); |
|
|
|
|
std::vector<softdouble> values(n); |
|
|
|
|
softdouble sum(0.); |
|
|
|
|
for(int i = 0, x = 1 - n; i < n; i++, x+=2 ) |
|
|
|
|
{ |
|
|
|
|
// x = i - (n - 1)*0.5
|
|
|
|
|
// t = std::exp(scale2X*x*x)
|
|
|
|
|
values[i] = exp(softdouble(x*x)*scale2X); |
|
|
|
|
sum += values[i]; |
|
|
|
|
} |
|
|
|
|
sum = softdouble::one()/sum; |
|
|
|
|
|
|
|
|
|
std::vector<T> kernel(n); |
|
|
|
|
for(int i = 0; i < n; i++ ) |
|
|
|
|
{ |
|
|
|
|
kernel[i] = values[i] * sum; |
|
|
|
|
} |
|
|
|
|
#if defined(CV_CPU_BASELINE_MODE) |
|
|
|
|
// included in dispatch.cpp
|
|
|
|
|
#else |
|
|
|
|
#include "fixedpoint.inl.hpp" |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
return kernel; |
|
|
|
|
}; |
|
|
|
|
namespace { |
|
|
|
|
|
|
|
|
|
template <typename ET, typename FT> |
|
|
|
|
void hlineSmooth1N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int) |
|
|
|
@ -2119,418 +2027,27 @@ private: |
|
|
|
|
fixedSmoothInvoker& operator=(const fixedSmoothInvoker&); |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
static void getGaussianKernel(int n, double sigma, int ktype, Mat& res) { res = getGaussianKernel(n, sigma, ktype); } |
|
|
|
|
template <typename T> static void getGaussianKernel(int n, double sigma, int, std::vector<T>& res) { res = getFixedpointGaussianKernel<T>(n, sigma); } |
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
static void createGaussianKernels( T & kx, T & ky, int type, Size &ksize, |
|
|
|
|
double sigma1, double sigma2 ) |
|
|
|
|
{ |
|
|
|
|
int depth = CV_MAT_DEPTH(type); |
|
|
|
|
if( sigma2 <= 0 ) |
|
|
|
|
sigma2 = sigma1; |
|
|
|
|
|
|
|
|
|
// automatic detection of kernel size from sigma
|
|
|
|
|
if( ksize.width <= 0 && sigma1 > 0 ) |
|
|
|
|
ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1; |
|
|
|
|
if( ksize.height <= 0 && sigma2 > 0 ) |
|
|
|
|
ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1; |
|
|
|
|
|
|
|
|
|
CV_Assert( ksize.width > 0 && ksize.width % 2 == 1 && |
|
|
|
|
ksize.height > 0 && ksize.height % 2 == 1 ); |
|
|
|
|
|
|
|
|
|
sigma1 = std::max( sigma1, 0. ); |
|
|
|
|
sigma2 = std::max( sigma2, 0. ); |
|
|
|
|
|
|
|
|
|
getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F), kx ); |
|
|
|
|
if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON ) |
|
|
|
|
ky = kx; |
|
|
|
|
else |
|
|
|
|
getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F), ky ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Ptr<cv::FilterEngine> cv::createGaussianFilter( int type, Size ksize, |
|
|
|
|
double sigma1, double sigma2, |
|
|
|
|
int borderType ) |
|
|
|
|
{ |
|
|
|
|
Mat kx, ky; |
|
|
|
|
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); |
|
|
|
|
|
|
|
|
|
return createSeparableLinearFilter( type, type, kx, ky, Point(-1,-1), 0, borderType ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace cv |
|
|
|
|
{ |
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
|
|
|
|
|
static bool ocl_GaussianBlur_8UC1(InputArray _src, OutputArray _dst, Size ksize, int ddepth, |
|
|
|
|
InputArray _kernelX, InputArray _kernelY, int borderType) |
|
|
|
|
{ |
|
|
|
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
|
|
|
int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
|
|
|
|
|
|
|
|
if ( !(dev.isIntel() && (type == CV_8UC1) && |
|
|
|
|
(_src.offset() == 0) && (_src.step() % 4 == 0) && |
|
|
|
|
((ksize.width == 5 && (_src.cols() % 4 == 0)) || |
|
|
|
|
(ksize.width == 3 && (_src.cols() % 16 == 0) && (_src.rows() % 2 == 0)))) ) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
Mat kernelX = _kernelX.getMat().reshape(1, 1); |
|
|
|
|
if (kernelX.cols % 2 != 1) |
|
|
|
|
return false; |
|
|
|
|
Mat kernelY = _kernelY.getMat().reshape(1, 1); |
|
|
|
|
if (kernelY.cols % 2 != 1) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
if (ddepth < 0) |
|
|
|
|
ddepth = sdepth; |
|
|
|
|
|
|
|
|
|
Size size = _src.size(); |
|
|
|
|
size_t globalsize[2] = { 0, 0 }; |
|
|
|
|
size_t localsize[2] = { 0, 0 }; |
|
|
|
|
|
|
|
|
|
if (ksize.width == 3) |
|
|
|
|
{ |
|
|
|
|
globalsize[0] = size.width / 16; |
|
|
|
|
globalsize[1] = size.height / 2; |
|
|
|
|
} |
|
|
|
|
else if (ksize.width == 5) |
|
|
|
|
{ |
|
|
|
|
globalsize[0] = size.width / 4; |
|
|
|
|
globalsize[1] = size.height / 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" }; |
|
|
|
|
char build_opts[1024]; |
|
|
|
|
sprintf(build_opts, "-D %s %s%s", borderMap[borderType & ~BORDER_ISOLATED], |
|
|
|
|
ocl::kernelToStr(kernelX, CV_32F, "KERNEL_MATRIX_X").c_str(), |
|
|
|
|
ocl::kernelToStr(kernelY, CV_32F, "KERNEL_MATRIX_Y").c_str()); |
|
|
|
|
|
|
|
|
|
ocl::Kernel kernel; |
|
|
|
|
|
|
|
|
|
if (ksize.width == 3) |
|
|
|
|
kernel.create("gaussianBlur3x3_8UC1_cols16_rows2", cv::ocl::imgproc::gaussianBlur3x3_oclsrc, build_opts); |
|
|
|
|
else if (ksize.width == 5) |
|
|
|
|
kernel.create("gaussianBlur5x5_8UC1_cols4", cv::ocl::imgproc::gaussianBlur5x5_oclsrc, build_opts); |
|
|
|
|
|
|
|
|
|
if (kernel.empty()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
UMat src = _src.getUMat(); |
|
|
|
|
_dst.create(size, CV_MAKETYPE(ddepth, cn)); |
|
|
|
|
if (!(_dst.offset() == 0 && _dst.step() % 4 == 0)) |
|
|
|
|
return false; |
|
|
|
|
UMat dst = _dst.getUMat(); |
|
|
|
|
|
|
|
|
|
int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src)); |
|
|
|
|
idxArg = kernel.set(idxArg, (int)src.step); |
|
|
|
|
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst)); |
|
|
|
|
idxArg = kernel.set(idxArg, (int)dst.step); |
|
|
|
|
idxArg = kernel.set(idxArg, (int)dst.rows); |
|
|
|
|
idxArg = kernel.set(idxArg, (int)dst.cols); |
|
|
|
|
|
|
|
|
|
return kernel.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENVX |
|
|
|
|
|
|
|
|
|
namespace ovx { |
|
|
|
|
template <> inline bool skipSmallImages<VX_KERNEL_GAUSSIAN_3x3>(int w, int h) { return w*h < 320 * 240; } |
|
|
|
|
} |
|
|
|
|
static bool openvx_gaussianBlur(InputArray _src, OutputArray _dst, Size ksize, |
|
|
|
|
double sigma1, double sigma2, int borderType) |
|
|
|
|
{ |
|
|
|
|
if (sigma2 <= 0) |
|
|
|
|
sigma2 = sigma1; |
|
|
|
|
// automatic detection of kernel size from sigma
|
|
|
|
|
if (ksize.width <= 0 && sigma1 > 0) |
|
|
|
|
ksize.width = cvRound(sigma1*6 + 1) | 1; |
|
|
|
|
if (ksize.height <= 0 && sigma2 > 0) |
|
|
|
|
ksize.height = cvRound(sigma2*6 + 1) | 1; |
|
|
|
|
|
|
|
|
|
if (_src.type() != CV_8UC1 || |
|
|
|
|
_src.cols() < 3 || _src.rows() < 3 || |
|
|
|
|
ksize.width != 3 || ksize.height != 3) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
sigma1 = std::max(sigma1, 0.); |
|
|
|
|
sigma2 = std::max(sigma2, 0.); |
|
|
|
|
|
|
|
|
|
if (!(sigma1 == 0.0 || (sigma1 - 0.8) < DBL_EPSILON) || !(sigma2 == 0.0 || (sigma2 - 0.8) < DBL_EPSILON) || |
|
|
|
|
ovx::skipSmallImages<VX_KERNEL_GAUSSIAN_3x3>(_src.cols(), _src.rows())) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
Mat src = _src.getMat(); |
|
|
|
|
Mat dst = _dst.getMat(); |
|
|
|
|
|
|
|
|
|
if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix()) |
|
|
|
|
return false; //Process isolated borders only
|
|
|
|
|
vx_enum border; |
|
|
|
|
switch (borderType & ~BORDER_ISOLATED) |
|
|
|
|
{ |
|
|
|
|
case BORDER_CONSTANT: |
|
|
|
|
border = VX_BORDER_CONSTANT; |
|
|
|
|
break; |
|
|
|
|
case BORDER_REPLICATE: |
|
|
|
|
border = VX_BORDER_REPLICATE; |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
try |
|
|
|
|
{ |
|
|
|
|
ivx::Context ctx = ovx::getOpenVXContext(); |
|
|
|
|
|
|
|
|
|
Mat a; |
|
|
|
|
if (dst.data != src.data) |
|
|
|
|
a = src; |
|
|
|
|
else |
|
|
|
|
src.copyTo(a); |
|
|
|
|
|
|
|
|
|
ivx::Image |
|
|
|
|
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, |
|
|
|
|
ivx::Image::createAddressing(a.cols, a.rows, 1, (vx_int32)(a.step)), a.data), |
|
|
|
|
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, |
|
|
|
|
ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data); |
|
|
|
|
|
|
|
|
|
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
|
|
|
|
|
//since OpenVX standard says nothing about thread-safety for now
|
|
|
|
|
ivx::border_t prevBorder = ctx.immediateBorder(); |
|
|
|
|
ctx.setImmediateBorder(border, (vx_uint8)(0)); |
|
|
|
|
ivx::IVX_CHECK_STATUS(vxuGaussian3x3(ctx, ia, ib)); |
|
|
|
|
ctx.setImmediateBorder(prevBorder); |
|
|
|
|
} |
|
|
|
|
catch (const ivx::RuntimeError & e) |
|
|
|
|
{ |
|
|
|
|
VX_DbgThrow(e.what()); |
|
|
|
|
} |
|
|
|
|
catch (const ivx::WrapperError & e) |
|
|
|
|
{ |
|
|
|
|
VX_DbgThrow(e.what()); |
|
|
|
|
} |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_IPP |
|
|
|
|
// IW 2017u2 has bug which doesn't allow use of partial inMem with tiling
|
|
|
|
|
#if IPP_DISABLE_GAUSSIANBLUR_PARALLEL |
|
|
|
|
#define IPP_GAUSSIANBLUR_PARALLEL 0 |
|
|
|
|
#else |
|
|
|
|
#define IPP_GAUSSIANBLUR_PARALLEL 1 |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_IPP_IW |
|
|
|
|
|
|
|
|
|
class ipp_gaussianBlurParallel: public ParallelLoopBody |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
ipp_gaussianBlurParallel(::ipp::IwiImage &src, ::ipp::IwiImage &dst, int kernelSize, float sigma, ::ipp::IwiBorderType &border, bool *pOk): |
|
|
|
|
m_src(src), m_dst(dst), m_kernelSize(kernelSize), m_sigma(sigma), m_border(border), m_pOk(pOk) { |
|
|
|
|
*m_pOk = true; |
|
|
|
|
} |
|
|
|
|
~ipp_gaussianBlurParallel() |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
virtual void operator() (const Range& range) const CV_OVERRIDE |
|
|
|
|
{ |
|
|
|
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
|
|
|
|
|
|
if(!*m_pOk) |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
try |
|
|
|
|
{ |
|
|
|
|
::ipp::IwiTile tile = ::ipp::IwiRoi(0, range.start, m_dst.m_size.width, range.end - range.start); |
|
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, m_src, m_dst, m_kernelSize, m_sigma, ::ipp::IwDefault(), m_border, tile); |
|
|
|
|
} |
|
|
|
|
catch(const ::ipp::IwException &) |
|
|
|
|
{ |
|
|
|
|
*m_pOk = false; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
private: |
|
|
|
|
::ipp::IwiImage &m_src; |
|
|
|
|
::ipp::IwiImage &m_dst; |
|
|
|
|
|
|
|
|
|
int m_kernelSize; |
|
|
|
|
float m_sigma; |
|
|
|
|
::ipp::IwiBorderType &m_border; |
|
|
|
|
|
|
|
|
|
volatile bool *m_pOk; |
|
|
|
|
const ipp_gaussianBlurParallel& operator= (const ipp_gaussianBlurParallel&); |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
} // namespace anon
|
|
|
|
|
|
|
|
|
|
static bool ipp_GaussianBlur(InputArray _src, OutputArray _dst, Size ksize, |
|
|
|
|
double sigma1, double sigma2, int borderType ) |
|
|
|
|
{ |
|
|
|
|
#ifdef HAVE_IPP_IW |
|
|
|
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
|
|
|
|
|
|
#if IPP_VERSION_X100 < 201800 && ((defined _MSC_VER && defined _M_IX86) || (defined __GNUC__ && defined __i386__)) |
|
|
|
|
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType); |
|
|
|
|
return false; // bug on ia32
|
|
|
|
|
#else |
|
|
|
|
if(sigma1 != sigma2) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
if(sigma1 < FLT_EPSILON) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
if(ksize.width != ksize.height) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
// Acquire data and begin processing
|
|
|
|
|
try |
|
|
|
|
{ |
|
|
|
|
Mat src = _src.getMat(); |
|
|
|
|
Mat dst = _dst.getMat(); |
|
|
|
|
::ipp::IwiImage iwSrc = ippiGetImage(src); |
|
|
|
|
::ipp::IwiImage iwDst = ippiGetImage(dst); |
|
|
|
|
::ipp::IwiBorderSize borderSize = ::ipp::iwiSizeToBorderSize(ippiGetSize(ksize)); |
|
|
|
|
::ipp::IwiBorderType ippBorder(ippiGetBorder(iwSrc, borderType, borderSize)); |
|
|
|
|
if(!ippBorder) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
const int threads = ippiSuggestThreadsNum(iwDst, 2); |
|
|
|
|
if(IPP_GAUSSIANBLUR_PARALLEL && threads > 1) { |
|
|
|
|
bool ok; |
|
|
|
|
ipp_gaussianBlurParallel invoker(iwSrc, iwDst, ksize.width, (float) sigma1, ippBorder, &ok); |
|
|
|
|
|
|
|
|
|
if(!ok) |
|
|
|
|
return false; |
|
|
|
|
const Range range(0, (int) iwDst.m_size.height); |
|
|
|
|
parallel_for_(range, invoker, threads*4); |
|
|
|
|
|
|
|
|
|
if(!ok) |
|
|
|
|
return false; |
|
|
|
|
} else { |
|
|
|
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, iwSrc, iwDst, ksize.width, sigma1, ::ipp::IwDefault(), ippBorder); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
catch (const ::ipp::IwException &) |
|
|
|
|
{ |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
#endif |
|
|
|
|
#else |
|
|
|
|
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType); |
|
|
|
|
return false; |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize, |
|
|
|
|
double sigma1, double sigma2, |
|
|
|
|
int borderType ) |
|
|
|
|
void GaussianBlurFixedPoint(const Mat& src, /*const*/ Mat& dst, |
|
|
|
|
const uint16_t/*ufixedpoint16*/* fkx, int fkx_size, |
|
|
|
|
const uint16_t/*ufixedpoint16*/* fky, int fky_size, |
|
|
|
|
int borderType) |
|
|
|
|
{ |
|
|
|
|
CV_INSTRUMENT_REGION(); |
|
|
|
|
|
|
|
|
|
int type = _src.type(); |
|
|
|
|
Size size = _src.size(); |
|
|
|
|
_dst.create( size, type ); |
|
|
|
|
|
|
|
|
|
if( (borderType & ~BORDER_ISOLATED) != BORDER_CONSTANT && |
|
|
|
|
((borderType & BORDER_ISOLATED) != 0 || !_src.getMat().isSubmatrix()) ) |
|
|
|
|
{ |
|
|
|
|
if( size.height == 1 ) |
|
|
|
|
ksize.height = 1; |
|
|
|
|
if( size.width == 1 ) |
|
|
|
|
ksize.width = 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( ksize.width == 1 && ksize.height == 1 ) |
|
|
|
|
{ |
|
|
|
|
_src.copyTo(_dst); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool useOpenCL = (ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 && |
|
|
|
|
((ksize.width == 3 && ksize.height == 3) || |
|
|
|
|
(ksize.width == 5 && ksize.height == 5)) && |
|
|
|
|
_src.rows() > ksize.height && _src.cols() > ksize.width); |
|
|
|
|
CV_UNUSED(useOpenCL); |
|
|
|
|
|
|
|
|
|
int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
|
|
|
|
|
|
|
|
Mat kx, ky; |
|
|
|
|
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); |
|
|
|
|
|
|
|
|
|
CV_OCL_RUN(useOpenCL, ocl_GaussianBlur_8UC1(_src, _dst, ksize, CV_MAT_DEPTH(type), kx, ky, borderType)); |
|
|
|
|
|
|
|
|
|
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2 && (size_t)_src.rows() > kx.total() && (size_t)_src.cols() > kx.total(), |
|
|
|
|
ocl_sepFilter2D(_src, _dst, sdepth, kx, ky, Point(-1, -1), 0, borderType)) |
|
|
|
|
|
|
|
|
|
Mat src = _src.getMat(); |
|
|
|
|
Mat dst = _dst.getMat(); |
|
|
|
|
|
|
|
|
|
Point ofs; |
|
|
|
|
Size wsz(src.cols, src.rows); |
|
|
|
|
if(!(borderType & BORDER_ISOLATED)) |
|
|
|
|
src.locateROI( wsz, ofs ); |
|
|
|
|
|
|
|
|
|
CALL_HAL(gaussianBlur, cv_hal_gaussianBlur, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, sdepth, cn, |
|
|
|
|
ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, ksize.width, ksize.height, |
|
|
|
|
sigma1, sigma2, borderType&~BORDER_ISOLATED); |
|
|
|
|
|
|
|
|
|
CV_OVX_RUN(true, |
|
|
|
|
openvx_gaussianBlur(src, dst, ksize, sigma1, sigma2, borderType)) |
|
|
|
|
|
|
|
|
|
CV_IPP_RUN_FAST(ipp_GaussianBlur(src, dst, ksize, sigma1, sigma2, borderType)); |
|
|
|
|
|
|
|
|
|
if(sdepth == CV_8U && ((borderType & BORDER_ISOLATED) || !_src.getMat().isSubmatrix())) |
|
|
|
|
CV_Assert(src.depth() == CV_8U && ((borderType & BORDER_ISOLATED) || !src.isSubmatrix())); |
|
|
|
|
fixedSmoothInvoker<uint8_t, ufixedpoint16> invoker( |
|
|
|
|
src.ptr<uint8_t>(), src.step1(), |
|
|
|
|
dst.ptr<uint8_t>(), dst.step1(), dst.cols, dst.rows, dst.channels(), |
|
|
|
|
(const ufixedpoint16*)fkx, fkx_size, (const ufixedpoint16*)fky, fky_size, |
|
|
|
|
borderType & ~BORDER_ISOLATED); |
|
|
|
|
{ |
|
|
|
|
std::vector<ufixedpoint16> fkx, fky; |
|
|
|
|
createGaussianKernels(fkx, fky, type, ksize, sigma1, sigma2); |
|
|
|
|
if (src.data == dst.data) |
|
|
|
|
src = src.clone(); |
|
|
|
|
fixedSmoothInvoker<uint8_t, ufixedpoint16> invoker(src.ptr<uint8_t>(), src.step1(), dst.ptr<uint8_t>(), dst.step1(), dst.cols, dst.rows, dst.channels(), &fkx[0], (int)fkx.size(), &fky[0], (int)fky.size(), borderType & ~BORDER_ISOLATED); |
|
|
|
|
// TODO AVX guard (external call)
|
|
|
|
|
parallel_for_(Range(0, dst.rows), invoker, std::max(1, std::min(getNumThreads(), getNumberOfCPUs()))); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
sepFilter2D(src, dst, sdepth, kx, ky, Point(-1, -1), 0, borderType); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
CV_IMPL void |
|
|
|
|
cvSmooth( const void* srcarr, void* dstarr, int smooth_type, |
|
|
|
|
int param1, int param2, double param3, double param4 ) |
|
|
|
|
{ |
|
|
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0; |
|
|
|
|
|
|
|
|
|
CV_Assert( dst.size() == src.size() && |
|
|
|
|
(smooth_type == CV_BLUR_NO_SCALE || dst.type() == src.type()) ); |
|
|
|
|
|
|
|
|
|
if( param2 <= 0 ) |
|
|
|
|
param2 = param1; |
|
|
|
|
|
|
|
|
|
if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE ) |
|
|
|
|
cv::boxFilter( src, dst, dst.depth(), cv::Size(param1, param2), cv::Point(-1,-1), |
|
|
|
|
smooth_type == CV_BLUR, cv::BORDER_REPLICATE ); |
|
|
|
|
else if( smooth_type == CV_GAUSSIAN ) |
|
|
|
|
cv::GaussianBlur( src, dst, cv::Size(param1, param2), param3, param4, cv::BORDER_REPLICATE ); |
|
|
|
|
else if( smooth_type == CV_MEDIAN ) |
|
|
|
|
cv::medianBlur( src, dst, param1 ); |
|
|
|
|
else |
|
|
|
|
cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE ); |
|
|
|
|
|
|
|
|
|
if( dst.data != dst0.data ) |
|
|
|
|
CV_Error( CV_StsUnmatchedFormats, "The destination image does not have the proper type" ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* End of file. */ |
|
|
|
|
#endif |
|
|
|
|
CV_CPU_OPTIMIZATION_NAMESPACE_END |
|
|
|
|
} // namespace
|
|
|
|
|