imgproc: dispatch smooth

pull/14013/head
Alexander Alekhin 6 years ago
parent 6ec08f268f
commit b99c9145bf
  1. 1
      modules/imgproc/CMakeLists.txt
  2. 5
      modules/imgproc/src/fixedpoint.inl.hpp
  3. 2130
      modules/imgproc/src/smooth.dispatch.cpp
  4. 539
      modules/imgproc/src/smooth.simd.hpp

@ -5,4 +5,5 @@ ocv_add_dispatched_file(color_hsv SSE2 SSE4_1 AVX2)
ocv_add_dispatched_file(color_rgb SSE2 SSE4_1 AVX2) ocv_add_dispatched_file(color_rgb SSE2 SSE4_1 AVX2)
ocv_add_dispatched_file(color_yuv SSE2 SSE4_1 AVX2) ocv_add_dispatched_file(color_yuv SSE2 SSE4_1 AVX2)
ocv_add_dispatched_file(median_blur SSE2 SSE4_1 AVX2) ocv_add_dispatched_file(median_blur SSE2 SSE4_1 AVX2)
ocv_add_dispatched_file(smooth SSE2 SSE4_1 AVX2)
ocv_define_module(imgproc opencv_core WRAP java python js) ocv_define_module(imgproc opencv_core WRAP java python js)

@ -9,10 +9,7 @@
#ifndef _CV_FIXEDPOINT_HPP_ #ifndef _CV_FIXEDPOINT_HPP_
#define _CV_FIXEDPOINT_HPP_ #define _CV_FIXEDPOINT_HPP_
#include "opencv2/core/softfloat.hpp" namespace {
namespace
{
class fixedpoint64 class fixedpoint64
{ {

File diff suppressed because it is too large Load Diff

@ -46,120 +46,28 @@
#include <vector> #include <vector>
#include "opencv2/core/hal/intrin.hpp" #include "opencv2/core/hal/intrin.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/openvx/ovx_defs.hpp"
#include "filter.hpp" #include "filter.hpp"
#include "fixedpoint.inl.hpp" #include "opencv2/core/softfloat.hpp"
/****************************************************************************************\
Gaussian Blur
\****************************************************************************************/
cv::Mat cv::getGaussianKernel( int n, double sigma, int ktype )
{
CV_Assert(n > 0);
const int SMALL_GAUSSIAN_SIZE = 7;
static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] =
{
{1.f},
{0.25f, 0.5f, 0.25f},
{0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f},
{0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f}
};
const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ?
small_gaussian_tab[n>>1] : 0;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
Mat kernel(n, 1, ktype);
float* cf = kernel.ptr<float>();
double* cd = kernel.ptr<double>();
double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8;
double scale2X = -0.5/(sigmaX*sigmaX);
double sum = 0;
int i;
for( i = 0; i < n; i++ )
{
double x = i - (n-1)*0.5;
double t = fixed_kernel ? (double)fixed_kernel[i] : std::exp(scale2X*x*x);
if( ktype == CV_32F )
{
cf[i] = (float)t;
sum += cf[i];
}
else
{
cd[i] = t;
sum += cd[i];
}
}
CV_DbgAssert(fabs(sum) > 0);
sum = 1./sum;
for( i = 0; i < n; i++ )
{
if( ktype == CV_32F )
cf[i] = (float)(cf[i]*sum);
else
cd[i] *= sum;
}
return kernel;
}
namespace cv { namespace cv {
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
// forward declarations
void GaussianBlurFixedPoint(const Mat& src, /*const*/ Mat& dst,
const uint16_t/*ufixedpoint16*/* fkx, int fkx_size,
const uint16_t/*ufixedpoint16*/* fky, int fky_size,
int borderType);
template <typename T> #ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
static std::vector<T> getFixedpointGaussianKernel( int n, double sigma )
{
if (sigma <= 0)
{
if(n == 1)
return std::vector<T>(1, softdouble(1.0));
else if(n == 3)
{
T v3[] = { softdouble(0.25), softdouble(0.5), softdouble(0.25) };
return std::vector<T>(v3, v3 + 3);
}
else if(n == 5)
{
T v5[] = { softdouble(0.0625), softdouble(0.25), softdouble(0.375), softdouble(0.25), softdouble(0.0625) };
return std::vector<T>(v5, v5 + 5);
}
else if(n == 7)
{
T v7[] = { softdouble(0.03125), softdouble(0.109375), softdouble(0.21875), softdouble(0.28125), softdouble(0.21875), softdouble(0.109375), softdouble(0.03125) };
return std::vector<T>(v7, v7 + 7);
}
}
softdouble sigmaX = sigma > 0 ? softdouble(sigma) : mulAdd(softdouble(n),softdouble(0.15),softdouble(0.35));// softdouble(((n-1)*0.5 - 1)*0.3 + 0.8) #if defined(CV_CPU_BASELINE_MODE)
softdouble scale2X = softdouble(-0.5*0.25)/(sigmaX*sigmaX); // included in dispatch.cpp
std::vector<softdouble> values(n); #else
softdouble sum(0.); #include "fixedpoint.inl.hpp"
for(int i = 0, x = 1 - n; i < n; i++, x+=2 ) #endif
{
// x = i - (n - 1)*0.5
// t = std::exp(scale2X*x*x)
values[i] = exp(softdouble(x*x)*scale2X);
sum += values[i];
}
sum = softdouble::one()/sum;
std::vector<T> kernel(n); namespace {
for(int i = 0; i < n; i++ )
{
kernel[i] = values[i] * sum;
}
return kernel;
};
template <typename ET, typename FT> template <typename ET, typename FT>
void hlineSmooth1N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int) void hlineSmooth1N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int)
@ -2119,418 +2027,27 @@ private:
fixedSmoothInvoker& operator=(const fixedSmoothInvoker&); fixedSmoothInvoker& operator=(const fixedSmoothInvoker&);
}; };
static void getGaussianKernel(int n, double sigma, int ktype, Mat& res) { res = getGaussianKernel(n, sigma, ktype); } } // namespace anon
template <typename T> static void getGaussianKernel(int n, double sigma, int, std::vector<T>& res) { res = getFixedpointGaussianKernel<T>(n, sigma); }
template <typename T>
static void createGaussianKernels( T & kx, T & ky, int type, Size &ksize,
double sigma1, double sigma2 )
{
int depth = CV_MAT_DEPTH(type);
if( sigma2 <= 0 )
sigma2 = sigma1;
// automatic detection of kernel size from sigma
if( ksize.width <= 0 && sigma1 > 0 )
ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
if( ksize.height <= 0 && sigma2 > 0 )
ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
CV_Assert( ksize.width > 0 && ksize.width % 2 == 1 &&
ksize.height > 0 && ksize.height % 2 == 1 );
sigma1 = std::max( sigma1, 0. ); void GaussianBlurFixedPoint(const Mat& src, /*const*/ Mat& dst,
sigma2 = std::max( sigma2, 0. ); const uint16_t/*ufixedpoint16*/* fkx, int fkx_size,
const uint16_t/*ufixedpoint16*/* fky, int fky_size,
getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F), kx );
if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON )
ky = kx;
else
getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F), ky );
}
}
cv::Ptr<cv::FilterEngine> cv::createGaussianFilter( int type, Size ksize,
double sigma1, double sigma2,
int borderType )
{
Mat kx, ky;
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2);
return createSeparableLinearFilter( type, type, kx, ky, Point(-1,-1), 0, borderType );
}
namespace cv
{
#ifdef HAVE_OPENCL
static bool ocl_GaussianBlur_8UC1(InputArray _src, OutputArray _dst, Size ksize, int ddepth,
InputArray _kernelX, InputArray _kernelY, int borderType)
{
const ocl::Device & dev = ocl::Device::getDefault();
int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
if ( !(dev.isIntel() && (type == CV_8UC1) &&
(_src.offset() == 0) && (_src.step() % 4 == 0) &&
((ksize.width == 5 && (_src.cols() % 4 == 0)) ||
(ksize.width == 3 && (_src.cols() % 16 == 0) && (_src.rows() % 2 == 0)))) )
return false;
Mat kernelX = _kernelX.getMat().reshape(1, 1);
if (kernelX.cols % 2 != 1)
return false;
Mat kernelY = _kernelY.getMat().reshape(1, 1);
if (kernelY.cols % 2 != 1)
return false;
if (ddepth < 0)
ddepth = sdepth;
Size size = _src.size();
size_t globalsize[2] = { 0, 0 };
size_t localsize[2] = { 0, 0 };
if (ksize.width == 3)
{
globalsize[0] = size.width / 16;
globalsize[1] = size.height / 2;
}
else if (ksize.width == 5)
{
globalsize[0] = size.width / 4;
globalsize[1] = size.height / 1;
}
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" };
char build_opts[1024];
sprintf(build_opts, "-D %s %s%s", borderMap[borderType & ~BORDER_ISOLATED],
ocl::kernelToStr(kernelX, CV_32F, "KERNEL_MATRIX_X").c_str(),
ocl::kernelToStr(kernelY, CV_32F, "KERNEL_MATRIX_Y").c_str());
ocl::Kernel kernel;
if (ksize.width == 3)
kernel.create("gaussianBlur3x3_8UC1_cols16_rows2", cv::ocl::imgproc::gaussianBlur3x3_oclsrc, build_opts);
else if (ksize.width == 5)
kernel.create("gaussianBlur5x5_8UC1_cols4", cv::ocl::imgproc::gaussianBlur5x5_oclsrc, build_opts);
if (kernel.empty())
return false;
UMat src = _src.getUMat();
_dst.create(size, CV_MAKETYPE(ddepth, cn));
if (!(_dst.offset() == 0 && _dst.step() % 4 == 0))
return false;
UMat dst = _dst.getUMat();
int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src));
idxArg = kernel.set(idxArg, (int)src.step);
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst));
idxArg = kernel.set(idxArg, (int)dst.step);
idxArg = kernel.set(idxArg, (int)dst.rows);
idxArg = kernel.set(idxArg, (int)dst.cols);
return kernel.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false);
}
#endif
#ifdef HAVE_OPENVX
namespace ovx {
template <> inline bool skipSmallImages<VX_KERNEL_GAUSSIAN_3x3>(int w, int h) { return w*h < 320 * 240; }
}
static bool openvx_gaussianBlur(InputArray _src, OutputArray _dst, Size ksize,
double sigma1, double sigma2, int borderType)
{
if (sigma2 <= 0)
sigma2 = sigma1;
// automatic detection of kernel size from sigma
if (ksize.width <= 0 && sigma1 > 0)
ksize.width = cvRound(sigma1*6 + 1) | 1;
if (ksize.height <= 0 && sigma2 > 0)
ksize.height = cvRound(sigma2*6 + 1) | 1;
if (_src.type() != CV_8UC1 ||
_src.cols() < 3 || _src.rows() < 3 ||
ksize.width != 3 || ksize.height != 3)
return false;
sigma1 = std::max(sigma1, 0.);
sigma2 = std::max(sigma2, 0.);
if (!(sigma1 == 0.0 || (sigma1 - 0.8) < DBL_EPSILON) || !(sigma2 == 0.0 || (sigma2 - 0.8) < DBL_EPSILON) ||
ovx::skipSmallImages<VX_KERNEL_GAUSSIAN_3x3>(_src.cols(), _src.rows()))
return false;
Mat src = _src.getMat();
Mat dst = _dst.getMat();
if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix())
return false; //Process isolated borders only
vx_enum border;
switch (borderType & ~BORDER_ISOLATED)
{
case BORDER_CONSTANT:
border = VX_BORDER_CONSTANT;
break;
case BORDER_REPLICATE:
border = VX_BORDER_REPLICATE;
break;
default:
return false;
}
try
{
ivx::Context ctx = ovx::getOpenVXContext();
Mat a;
if (dst.data != src.data)
a = src;
else
src.copyTo(a);
ivx::Image
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(a.cols, a.rows, 1, (vx_int32)(a.step)), a.data),
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standard says nothing about thread-safety for now
ivx::border_t prevBorder = ctx.immediateBorder();
ctx.setImmediateBorder(border, (vx_uint8)(0));
ivx::IVX_CHECK_STATUS(vxuGaussian3x3(ctx, ia, ib));
ctx.setImmediateBorder(prevBorder);
}
catch (const ivx::RuntimeError & e)
{
VX_DbgThrow(e.what());
}
catch (const ivx::WrapperError & e)
{
VX_DbgThrow(e.what());
}
return true;
}
#endif
#ifdef HAVE_IPP
// IW 2017u2 has bug which doesn't allow use of partial inMem with tiling
#if IPP_DISABLE_GAUSSIANBLUR_PARALLEL
#define IPP_GAUSSIANBLUR_PARALLEL 0
#else
#define IPP_GAUSSIANBLUR_PARALLEL 1
#endif
#ifdef HAVE_IPP_IW
class ipp_gaussianBlurParallel: public ParallelLoopBody
{
public:
ipp_gaussianBlurParallel(::ipp::IwiImage &src, ::ipp::IwiImage &dst, int kernelSize, float sigma, ::ipp::IwiBorderType &border, bool *pOk):
m_src(src), m_dst(dst), m_kernelSize(kernelSize), m_sigma(sigma), m_border(border), m_pOk(pOk) {
*m_pOk = true;
}
~ipp_gaussianBlurParallel()
{
}
virtual void operator() (const Range& range) const CV_OVERRIDE
{
CV_INSTRUMENT_REGION_IPP();
if(!*m_pOk)
return;
try
{
::ipp::IwiTile tile = ::ipp::IwiRoi(0, range.start, m_dst.m_size.width, range.end - range.start);
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, m_src, m_dst, m_kernelSize, m_sigma, ::ipp::IwDefault(), m_border, tile);
}
catch(const ::ipp::IwException &)
{
*m_pOk = false;
return;
}
}
private:
::ipp::IwiImage &m_src;
::ipp::IwiImage &m_dst;
int m_kernelSize;
float m_sigma;
::ipp::IwiBorderType &m_border;
volatile bool *m_pOk;
const ipp_gaussianBlurParallel& operator= (const ipp_gaussianBlurParallel&);
};
#endif
static bool ipp_GaussianBlur(InputArray _src, OutputArray _dst, Size ksize,
double sigma1, double sigma2, int borderType )
{
#ifdef HAVE_IPP_IW
CV_INSTRUMENT_REGION_IPP();
#if IPP_VERSION_X100 < 201800 && ((defined _MSC_VER && defined _M_IX86) || (defined __GNUC__ && defined __i386__))
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType);
return false; // bug on ia32
#else
if(sigma1 != sigma2)
return false;
if(sigma1 < FLT_EPSILON)
return false;
if(ksize.width != ksize.height)
return false;
// Acquire data and begin processing
try
{
Mat src = _src.getMat();
Mat dst = _dst.getMat();
::ipp::IwiImage iwSrc = ippiGetImage(src);
::ipp::IwiImage iwDst = ippiGetImage(dst);
::ipp::IwiBorderSize borderSize = ::ipp::iwiSizeToBorderSize(ippiGetSize(ksize));
::ipp::IwiBorderType ippBorder(ippiGetBorder(iwSrc, borderType, borderSize));
if(!ippBorder)
return false;
const int threads = ippiSuggestThreadsNum(iwDst, 2);
if(IPP_GAUSSIANBLUR_PARALLEL && threads > 1) {
bool ok;
ipp_gaussianBlurParallel invoker(iwSrc, iwDst, ksize.width, (float) sigma1, ippBorder, &ok);
if(!ok)
return false;
const Range range(0, (int) iwDst.m_size.height);
parallel_for_(range, invoker, threads*4);
if(!ok)
return false;
} else {
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, iwSrc, iwDst, ksize.width, sigma1, ::ipp::IwDefault(), ippBorder);
}
}
catch (const ::ipp::IwException &)
{
return false;
}
return true;
#endif
#else
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType);
return false;
#endif
}
#endif
}
void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
double sigma1, double sigma2,
int borderType) int borderType)
{ {
CV_INSTRUMENT_REGION(); CV_INSTRUMENT_REGION();
int type = _src.type(); CV_Assert(src.depth() == CV_8U && ((borderType & BORDER_ISOLATED) || !src.isSubmatrix()));
Size size = _src.size(); fixedSmoothInvoker<uint8_t, ufixedpoint16> invoker(
_dst.create( size, type ); src.ptr<uint8_t>(), src.step1(),
dst.ptr<uint8_t>(), dst.step1(), dst.cols, dst.rows, dst.channels(),
if( (borderType & ~BORDER_ISOLATED) != BORDER_CONSTANT && (const ufixedpoint16*)fkx, fkx_size, (const ufixedpoint16*)fky, fky_size,
((borderType & BORDER_ISOLATED) != 0 || !_src.getMat().isSubmatrix()) ) borderType & ~BORDER_ISOLATED);
{
if( size.height == 1 )
ksize.height = 1;
if( size.width == 1 )
ksize.width = 1;
}
if( ksize.width == 1 && ksize.height == 1 )
{
_src.copyTo(_dst);
return;
}
bool useOpenCL = (ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 &&
((ksize.width == 3 && ksize.height == 3) ||
(ksize.width == 5 && ksize.height == 5)) &&
_src.rows() > ksize.height && _src.cols() > ksize.width);
CV_UNUSED(useOpenCL);
int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
Mat kx, ky;
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2);
CV_OCL_RUN(useOpenCL, ocl_GaussianBlur_8UC1(_src, _dst, ksize, CV_MAT_DEPTH(type), kx, ky, borderType));
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2 && (size_t)_src.rows() > kx.total() && (size_t)_src.cols() > kx.total(),
ocl_sepFilter2D(_src, _dst, sdepth, kx, ky, Point(-1, -1), 0, borderType))
Mat src = _src.getMat();
Mat dst = _dst.getMat();
Point ofs;
Size wsz(src.cols, src.rows);
if(!(borderType & BORDER_ISOLATED))
src.locateROI( wsz, ofs );
CALL_HAL(gaussianBlur, cv_hal_gaussianBlur, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, sdepth, cn,
ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, ksize.width, ksize.height,
sigma1, sigma2, borderType&~BORDER_ISOLATED);
CV_OVX_RUN(true,
openvx_gaussianBlur(src, dst, ksize, sigma1, sigma2, borderType))
CV_IPP_RUN_FAST(ipp_GaussianBlur(src, dst, ksize, sigma1, sigma2, borderType));
if(sdepth == CV_8U && ((borderType & BORDER_ISOLATED) || !_src.getMat().isSubmatrix()))
{ {
std::vector<ufixedpoint16> fkx, fky; // TODO AVX guard (external call)
createGaussianKernels(fkx, fky, type, ksize, sigma1, sigma2);
if (src.data == dst.data)
src = src.clone();
fixedSmoothInvoker<uint8_t, ufixedpoint16> invoker(src.ptr<uint8_t>(), src.step1(), dst.ptr<uint8_t>(), dst.step1(), dst.cols, dst.rows, dst.channels(), &fkx[0], (int)fkx.size(), &fky[0], (int)fky.size(), borderType & ~BORDER_ISOLATED);
parallel_for_(Range(0, dst.rows), invoker, std::max(1, std::min(getNumThreads(), getNumberOfCPUs()))); parallel_for_(Range(0, dst.rows), invoker, std::max(1, std::min(getNumThreads(), getNumberOfCPUs())));
return;
} }
sepFilter2D(src, dst, sdepth, kx, ky, Point(-1, -1), 0, borderType);
} }
////////////////////////////////////////////////////////////////////////////////////////// #endif
CV_CPU_OPTIMIZATION_NAMESPACE_END
CV_IMPL void } // namespace
cvSmooth( const void* srcarr, void* dstarr, int smooth_type,
int param1, int param2, double param3, double param4 )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0;
CV_Assert( dst.size() == src.size() &&
(smooth_type == CV_BLUR_NO_SCALE || dst.type() == src.type()) );
if( param2 <= 0 )
param2 = param1;
if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE )
cv::boxFilter( src, dst, dst.depth(), cv::Size(param1, param2), cv::Point(-1,-1),
smooth_type == CV_BLUR, cv::BORDER_REPLICATE );
else if( smooth_type == CV_GAUSSIAN )
cv::GaussianBlur( src, dst, cv::Size(param1, param2), param3, param4, cv::BORDER_REPLICATE );
else if( smooth_type == CV_MEDIAN )
cv::medianBlur( src, dst, param1 );
else
cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE );
if( dst.data != dst0.data )
CV_Error( CV_StsUnmatchedFormats, "The destination image does not have the proper type" );
}
/* End of file. */

Loading…
Cancel
Save