pull/2/head
parent
3804ca3e20
commit
b987154ebc
1 changed files with 69 additions and 58 deletions
@ -1,63 +1,74 @@ |
||||
import numpy as np |
||||
import cv2 |
||||
#import video |
||||
import digits |
||||
import os |
||||
import video |
||||
from common import mosaic |
||||
|
||||
#cap = video.create_capture() |
||||
cap = cv2.VideoCapture(0) |
||||
|
||||
model = digits.SVM() |
||||
model.load('digits_svm.dat') |
||||
|
||||
SZ = 20 |
||||
|
||||
while True: |
||||
ret, frame = cap.read() |
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
||||
|
||||
bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10) |
||||
bin = cv2.medianBlur(bin, 3) |
||||
contours, _ = cv2.findContours( bin.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
||||
|
||||
boxes = [] |
||||
for cnt in contours: |
||||
x, y, w, h = cv2.boundingRect(cnt) |
||||
if h < 20 or h > 60 or 1.2*h < w: |
||||
continue |
||||
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0)) |
||||
sub = bin[y:,x:][:h,:w] |
||||
#sub = ~cv2.equalizeHist(sub) |
||||
#_, sub_bin = cv2.threshold(sub, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) |
||||
|
||||
s = 1.1*h/SZ |
||||
m = cv2.moments(sub) |
||||
m00 = m['m00'] |
||||
if m00/255 < 0.1*w*h or m00/255 > 0.9*w*h: |
||||
continue |
||||
|
||||
#frame[y:,x:][:h,:w] = sub[...,np.newaxis] |
||||
c1 = np.float32([m['m10'], m['m01']]) / m00 |
||||
c0 = np.float32([SZ/2, SZ/2]) |
||||
t = c1 - s*c0 |
||||
A = np.zeros((2, 3), np.float32) |
||||
A[:,:2] = np.eye(2)*2 |
||||
A[:,2] = t |
||||
sub1 = cv2.warpAffine(sub, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) |
||||
sub1 = digits.deskew(sub1) |
||||
sample = np.float32(sub1).reshape(1,SZ*SZ) / 255.0 |
||||
digit = model.predict(sample)[0] |
||||
|
||||
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1) |
||||
|
||||
boxes.append(sub1) |
||||
|
||||
|
||||
if len(boxes) > 0: |
||||
cv2.imshow('box', mosaic(10, boxes)) |
||||
|
||||
|
||||
cv2.imshow('frame', frame) |
||||
cv2.imshow('bin', bin) |
||||
if cv2.waitKey(1) == 27: |
||||
break |
||||
|
||||
|
||||
def main(): |
||||
cap = video.create_capture() |
||||
|
||||
classifier_fn = 'digits_svm.dat' |
||||
if not os.path.exists(classifier_fn): |
||||
print '"%s" not found, run digits.py first' % classifier_fn |
||||
return |
||||
|
||||
model = digits.SVM() |
||||
model.load('digits_svm.dat') |
||||
|
||||
SZ = 20 |
||||
|
||||
while True: |
||||
ret, frame = cap.read() |
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
||||
|
||||
bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10) |
||||
bin = cv2.medianBlur(bin, 3) |
||||
contours, _ = cv2.findContours( bin.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
||||
|
||||
boxes = [] |
||||
for cnt in contours: |
||||
x, y, w, h = cv2.boundingRect(cnt) |
||||
if h < 20 or h > 60 or 1.2*h < w: |
||||
continue |
||||
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0)) |
||||
sub = bin[y:,x:][:h,:w] |
||||
#sub = ~cv2.equalizeHist(sub) |
||||
#_, sub_bin = cv2.threshold(sub, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) |
||||
|
||||
s = 1.1*h/SZ |
||||
m = cv2.moments(sub) |
||||
m00 = m['m00'] |
||||
if m00/255 < 0.1*w*h or m00/255 > 0.9*w*h: |
||||
continue |
||||
|
||||
#frame[y:,x:][:h,:w] = sub[...,np.newaxis] |
||||
c1 = np.float32([m['m10'], m['m01']]) / m00 |
||||
c0 = np.float32([SZ/2, SZ/2]) |
||||
t = c1 - s*c0 |
||||
A = np.zeros((2, 3), np.float32) |
||||
A[:,:2] = np.eye(2)*2 |
||||
A[:,2] = t |
||||
sub1 = cv2.warpAffine(sub, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) |
||||
sub1 = digits.deskew(sub1) |
||||
sample = np.float32(sub1).reshape(1,SZ*SZ) / 255.0 |
||||
digit = model.predict(sample)[0] |
||||
|
||||
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1) |
||||
|
||||
boxes.append(sub1) |
||||
|
||||
|
||||
if len(boxes) > 0: |
||||
cv2.imshow('box', mosaic(10, boxes)) |
||||
|
||||
|
||||
cv2.imshow('frame', frame) |
||||
cv2.imshow('bin', bin) |
||||
if cv2.waitKey(1) == 27: |
||||
break |
||||
|
||||
if __name__ == '__main__': |
||||
main() |
||||
|
Loading…
Reference in new issue