Updated stitcher a little bit

pull/13383/head
Alexey Spizhevoy 13 years ago
parent 4685f0e9d6
commit b8304ce764
  1. 12
      modules/stitching/include/opencv2/stitching/stitcher.hpp
  2. 3
      modules/stitching/src/motion_estimators.cpp
  3. 328
      modules/stitching/src/stitcher.cpp

@ -64,9 +64,14 @@ public:
// Creates stitcher with default parameters
static Stitcher createDefault(bool try_use_gpu = false);
// Stitches the biggest found pano. Returns status code.
Status stitch(InputArray imgs, OutputArray pano);
Status stitch(InputArray imgs, const std::vector<std::vector<cv::Rect> > &rois, OutputArray pano);
Status estimateTransform(InputArray images);
Status estimateTransform(InputArray images, const std::vector<std::vector<Rect> > &rois);
Status composePanorama(OutputArray pano);
Status composePanorama(InputArray images, OutputArray pano);
Status stitch(InputArray images, OutputArray pano);
Status stitch(InputArray images, const std::vector<std::vector<Rect> > &rois, OutputArray pano);
double registrationResol() const { return registr_resol_; }
void setRegistrationResol(double resol_mpx) { registr_resol_ = resol_mpx; }
@ -130,7 +135,6 @@ private:
Status matchImages();
void estimateCameraParams();
Status composePanorama(cv::Mat &pano);
double registr_resol_;
double seam_est_resol_;

@ -132,7 +132,7 @@ void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, c
// Estimate focal length and set it for all cameras
vector<double> focals;
estimateFocal(features, pairwise_matches, focals);
cameras.resize(num_images);
cameras.assign(num_images, CameraParams());
for (int i = 0; i < num_images; ++i)
cameras[i].focal = focals[i];
@ -612,7 +612,6 @@ void waveCorrect(vector<Mat> &rmats, WaveCorrectKind kind)
{
for (size_t i = 0; i < rmats.size(); ++i)
conf -= rg1.dot(rmats[i].col(0));
cout << conf << endl;
if (conf < 0)
{
rg0 *= -1;

@ -80,11 +80,17 @@ Stitcher Stitcher::createDefault(bool try_use_gpu)
}
Stitcher::Status Stitcher::stitch(InputArray imgs, OutputArray pano)
Stitcher::Status Stitcher::estimateTransform(InputArray images)
{
int64 app_start_time = getTickCount();
return estimateTransform(images, vector<vector<Rect> >());
}
Stitcher::Status Stitcher::estimateTransform(InputArray images, const vector<vector<Rect> > &rois)
{
images.getMatVector(imgs_);
rois_ = rois;
imgs.getMatVector(imgs_);
Status status;
if ((status = matchImages()) != OK)
@ -92,159 +98,52 @@ Stitcher::Status Stitcher::stitch(InputArray imgs, OutputArray pano)
estimateCameraParams();
if ((status = composePanorama(pano.getMatRef())) != OK)
return status;
LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
return OK;
}
Stitcher::Status Stitcher::stitch(InputArray imgs, const vector<vector<Rect> > &rois, OutputArray pano)
{
rois_ = rois;
return stitch(imgs, pano);
}
Stitcher::Status Stitcher::matchImages()
Stitcher::Status Stitcher::composePanorama(OutputArray pano)
{
if ((int)imgs_.size() < 2)
{
LOGLN("Need more images");
return ERR_NEED_MORE_IMGS;
}
return composePanorama(vector<Mat>(), pano);
}
work_scale_ = 1;
seam_work_aspect_ = 1;
seam_scale_ = 1;
bool is_work_scale_set = false;
bool is_seam_scale_set = false;
Mat full_img, img;
features_.resize(imgs_.size());
seam_est_imgs_.resize(imgs_.size());
full_img_sizes_.resize(imgs_.size());
LOGLN("Finding features...");
int64 t = getTickCount();
Stitcher::Status Stitcher::composePanorama(InputArray images, OutputArray pano)
{
LOGLN("Warping images (auxiliary)... ");
for (size_t i = 0; i < imgs_.size(); ++i)
vector<Mat> imgs;
images.getMatVector(imgs);
if (!imgs.empty())
{
full_img = imgs_[i];
full_img_sizes_[i] = full_img.size();
CV_Assert(imgs.size() == imgs_.size());
if (registr_resol_ < 0)
{
img = full_img;
work_scale_ = 1;
is_work_scale_set = true;
}
else
{
if (!is_work_scale_set)
{
work_scale_ = min(1.0, sqrt(registr_resol_ * 1e6 / full_img.size().area()));
is_work_scale_set = true;
}
resize(full_img, img, Size(), work_scale_, work_scale_);
}
if (!is_seam_scale_set)
Mat img;
seam_est_imgs_.resize(imgs.size());
for (size_t i = 0; i < imgs.size(); ++i)
{
seam_scale_ = min(1.0, sqrt(seam_est_resol_ * 1e6 / full_img.size().area()));
seam_work_aspect_ = seam_scale_ / work_scale_;
is_seam_scale_set = true;
imgs_[i] = imgs[i];
resize(imgs[i], img, Size(), seam_scale_, seam_scale_);
seam_est_imgs_[i] = img.clone();
}
if (rois_.empty())
(*features_finder_)(img, features_[i]);
else
(*features_finder_)(img, features_[i], rois_[i]);
features_[i].img_idx = i;
LOGLN("Features in image #" << i+1 << ": " << features_[i].keypoints.size());
resize(full_img, img, Size(), seam_scale_, seam_scale_);
seam_est_imgs_[i] = img.clone();
}
// Do it to save memory
features_finder_->collectGarbage();
full_img.release();
img.release();
LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
LOG("Pairwise matching");
t = getTickCount();
(*features_matcher_)(features_, pairwise_matches_, matching_mask_);
features_matcher_->collectGarbage();
LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
// Leave only images we are sure are from the same panorama
indices_ = detail::leaveBiggestComponent(features_, pairwise_matches_, (float)conf_thresh_);
vector<Mat> seam_est_imgs_subset;
vector<Mat> imgs_subset;
vector<Size> full_img_sizes_subset;
for (size_t i = 0; i < indices_.size(); ++i)
{
imgs_subset.push_back(imgs_[indices_[i]]);
seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]);
full_img_sizes_subset.push_back(full_img_sizes_[indices_[i]]);
}
seam_est_imgs_ = seam_est_imgs_subset;
imgs_ = imgs_subset;
full_img_sizes_ = full_img_sizes_subset;
if ((int)imgs_.size() < 2)
{
LOGLN("Need more images");
return ERR_NEED_MORE_IMGS;
}
return OK;
}
vector<Mat> seam_est_imgs_subset;
vector<Mat> imgs_subset;
void Stitcher::estimateCameraParams()
{
detail::HomographyBasedEstimator estimator;
estimator(features_, pairwise_matches_, cameras_);
for (size_t i = 0; i < cameras_.size(); ++i)
{
Mat R;
cameras_[i].R.convertTo(R, CV_32F);
cameras_[i].R = R;
LOGLN("Initial intrinsic parameters #" << indices_[i] + 1 << ":\n " << cameras_[i].K());
}
bundle_adjuster_->setConfThresh(conf_thresh_);
(*bundle_adjuster_)(features_, pairwise_matches_, cameras_);
// Find median focal length and use it as final image scale
vector<double> focals;
for (size_t i = 0; i < cameras_.size(); ++i)
{
LOGLN("Camera #" << indices_[i] + 1 << ":\n" << cameras_[i].K());
focals.push_back(cameras_[i].focal);
}
nth_element(focals.begin(), focals.begin() + focals.size()/2, focals.end());
warped_image_scale_ = static_cast<float>(focals[focals.size() / 2]);
for (size_t i = 0; i < indices_.size(); ++i)
{
imgs_subset.push_back(imgs_[indices_[i]]);
seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]);
}
if (do_wave_correct_)
{
vector<Mat> rmats;
for (size_t i = 0; i < cameras_.size(); ++i)
rmats.push_back(cameras_[i].R);
detail::waveCorrect(rmats, wave_correct_kind_);
for (size_t i = 0; i < cameras_.size(); ++i)
cameras_[i].R = rmats[i];
seam_est_imgs_ = seam_est_imgs_subset;
imgs_ = imgs_subset;
}
}
Mat &pano_ = pano.getMatRef();
Stitcher::Status Stitcher::composePanorama(Mat &pano)
{
LOGLN("Warping images (auxiliary)... ");
int64 t = getTickCount();
vector<Point> corners(imgs_.size());
@ -399,9 +298,162 @@ Stitcher::Status Stitcher::composePanorama(Mat &pano)
// Preliminary result is in CV_16SC3 format, but all values are in [0,255] range,
// so convert it to avoid user confusing
result.convertTo(pano, CV_8U);
result.convertTo(pano_, CV_8U);
return OK;
}
Stitcher::Status Stitcher::stitch(InputArray images, OutputArray pano)
{
Status status = estimateTransform(images);
if (status != OK)
return status;
return composePanorama(pano);
}
Stitcher::Status Stitcher::stitch(InputArray images, const vector<vector<Rect> > &rois, OutputArray pano)
{
Status status = estimateTransform(images, rois);
if (status != OK)
return status;
return composePanorama(pano);
}
Stitcher::Status Stitcher::matchImages()
{
if ((int)imgs_.size() < 2)
{
LOGLN("Need more images");
return ERR_NEED_MORE_IMGS;
}
work_scale_ = 1;
seam_work_aspect_ = 1;
seam_scale_ = 1;
bool is_work_scale_set = false;
bool is_seam_scale_set = false;
Mat full_img, img;
features_.resize(imgs_.size());
seam_est_imgs_.resize(imgs_.size());
full_img_sizes_.resize(imgs_.size());
LOGLN("Finding features...");
int64 t = getTickCount();
for (size_t i = 0; i < imgs_.size(); ++i)
{
full_img = imgs_[i];
full_img_sizes_[i] = full_img.size();
if (registr_resol_ < 0)
{
img = full_img;
work_scale_ = 1;
is_work_scale_set = true;
}
else
{
if (!is_work_scale_set)
{
work_scale_ = min(1.0, sqrt(registr_resol_ * 1e6 / full_img.size().area()));
is_work_scale_set = true;
}
resize(full_img, img, Size(), work_scale_, work_scale_);
}
if (!is_seam_scale_set)
{
seam_scale_ = min(1.0, sqrt(seam_est_resol_ * 1e6 / full_img.size().area()));
seam_work_aspect_ = seam_scale_ / work_scale_;
is_seam_scale_set = true;
}
if (rois_.empty())
(*features_finder_)(img, features_[i]);
else
(*features_finder_)(img, features_[i], rois_[i]);
features_[i].img_idx = i;
LOGLN("Features in image #" << i+1 << ": " << features_[i].keypoints.size());
resize(full_img, img, Size(), seam_scale_, seam_scale_);
seam_est_imgs_[i] = img.clone();
}
// Do it to save memory
features_finder_->collectGarbage();
full_img.release();
img.release();
LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
LOG("Pairwise matching");
t = getTickCount();
(*features_matcher_)(features_, pairwise_matches_, matching_mask_);
features_matcher_->collectGarbage();
LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
// Leave only images we are sure are from the same panorama
indices_ = detail::leaveBiggestComponent(features_, pairwise_matches_, (float)conf_thresh_);
vector<Mat> seam_est_imgs_subset;
vector<Mat> imgs_subset;
vector<Size> full_img_sizes_subset;
for (size_t i = 0; i < indices_.size(); ++i)
{
imgs_subset.push_back(imgs_[indices_[i]]);
seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]);
full_img_sizes_subset.push_back(full_img_sizes_[indices_[i]]);
}
seam_est_imgs_ = seam_est_imgs_subset;
imgs_ = imgs_subset;
full_img_sizes_ = full_img_sizes_subset;
if ((int)imgs_.size() < 2)
{
LOGLN("Need more images");
return ERR_NEED_MORE_IMGS;
}
return OK;
}
void Stitcher::estimateCameraParams()
{
detail::HomographyBasedEstimator estimator;
estimator(features_, pairwise_matches_, cameras_);
for (size_t i = 0; i < cameras_.size(); ++i)
{
Mat R;
cameras_[i].R.convertTo(R, CV_32F);
cameras_[i].R = R;
LOGLN("Initial intrinsic parameters #" << indices_[i] + 1 << ":\n " << cameras_[i].K());
}
bundle_adjuster_->setConfThresh(conf_thresh_);
(*bundle_adjuster_)(features_, pairwise_matches_, cameras_);
// Find median focal length and use it as final image scale
vector<double> focals;
for (size_t i = 0; i < cameras_.size(); ++i)
{
LOGLN("Camera #" << indices_[i] + 1 << ":\n" << cameras_[i].K());
focals.push_back(cameras_[i].focal);
}
nth_element(focals.begin(), focals.begin() + focals.size()/2, focals.end());
warped_image_scale_ = static_cast<float>(focals[focals.size() / 2]);
if (do_wave_correct_)
{
vector<Mat> rmats;
for (size_t i = 0; i < cameras_.size(); ++i)
rmats.push_back(cameras_[i].R);
detail::waveCorrect(rmats, wave_correct_kind_);
for (size_t i = 0; i < cameras_.size(); ++i)
cameras_[i].R = rmats[i];
}
}
} // namespace cv

Loading…
Cancel
Save