improve MultiBandBlender cuda, add normalizeUsingWeight and addSrcWeight kernels

pull/8187/head
Wenju He 8 years ago
parent 642e4d97a4
commit b76e88354c
  1. 4
      modules/stitching/include/opencv2/stitching/detail/blenders.hpp
  2. 164
      modules/stitching/src/blenders.cpp
  3. 112
      modules/stitching/src/cuda/multiband_blend.cu

@ -142,6 +142,10 @@ private:
Rect dst_roi_final_;
bool can_use_gpu_;
int weight_type_; //CV_32F or CV_16S
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
std::vector<cuda::GpuMat> gpu_dst_pyr_laplace_;
std::vector<cuda::GpuMat> gpu_dst_band_weights_;
#endif
};

@ -43,6 +43,23 @@
#include "precomp.hpp"
#include "opencl_kernels_stitching.hpp"
#ifdef HAVE_CUDA
namespace cv { namespace cuda { namespace device
{
namespace blend
{
void addSrcWeightGpu16S(const PtrStep<short> src, const PtrStep<short> src_weight,
PtrStep<short> dst, PtrStep<short> dst_weight, cv::Rect &rc);
void addSrcWeightGpu32F(const PtrStep<short> src, const PtrStepf src_weight,
PtrStep<short> dst, PtrStepf dst_weight, cv::Rect &rc);
void normalizeUsingWeightMapGpu16S(const PtrStep<short> weight, PtrStep<short> src,
const int width, const int height);
void normalizeUsingWeightMapGpu32F(const PtrStepf weight, PtrStep<short> src,
const int width, const int height);
}
}}}
#endif
namespace cv {
namespace detail {
@ -228,6 +245,30 @@ void MultiBandBlender::prepare(Rect dst_roi)
Blender::prepare(dst_roi);
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
if (can_use_gpu_)
{
gpu_dst_pyr_laplace_.resize(num_bands_ + 1);
gpu_dst_pyr_laplace_[0].create(dst_roi.size(), CV_16SC3);
gpu_dst_pyr_laplace_[0].setTo(Scalar::all(0));
gpu_dst_band_weights_.resize(num_bands_ + 1);
gpu_dst_band_weights_[0].create(dst_roi.size(), weight_type_);
gpu_dst_band_weights_[0].setTo(0);
for (int i = 1; i <= num_bands_; ++i)
{
gpu_dst_pyr_laplace_[i].create((gpu_dst_pyr_laplace_[i - 1].rows + 1) / 2,
(gpu_dst_pyr_laplace_[i - 1].cols + 1) / 2, CV_16SC3);
gpu_dst_band_weights_[i].create((gpu_dst_band_weights_[i - 1].rows + 1) / 2,
(gpu_dst_band_weights_[i - 1].cols + 1) / 2, weight_type_);
gpu_dst_pyr_laplace_[i].setTo(Scalar::all(0));
gpu_dst_band_weights_[i].setTo(0);
}
}
else
#endif
{
dst_pyr_laplace_.resize(num_bands_ + 1);
dst_pyr_laplace_[0] = dst_;
@ -245,6 +286,7 @@ void MultiBandBlender::prepare(Rect dst_roi)
dst_band_weights_[i].setTo(0);
}
}
}
#ifdef HAVE_OPENCL
static bool ocl_MultiBandBlender_feed(InputArray _src, InputArray _weight,
@ -312,6 +354,76 @@ void MultiBandBlender::feed(InputArray _img, InputArray mask, Point tl)
int bottom = br_new.y - tl.y - img.rows;
int right = br_new.x - tl.x - img.cols;
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
if (can_use_gpu_)
{
// Create the source image Laplacian pyramid
cuda::GpuMat gpu_img;
gpu_img.upload(img);
cuda::GpuMat img_with_border;
cuda::copyMakeBorder(gpu_img, img_with_border, top, bottom, left, right, BORDER_REFLECT);
std::vector<cuda::GpuMat> gpu_src_pyr_laplace(num_bands_ + 1);
img_with_border.convertTo(gpu_src_pyr_laplace[0], CV_16S);
for (int i = 0; i < num_bands_; ++i)
cuda::pyrDown(gpu_src_pyr_laplace[i], gpu_src_pyr_laplace[i + 1]);
for (int i = 0; i < num_bands_; ++i)
{
cuda::GpuMat up;
cuda::pyrUp(gpu_src_pyr_laplace[i + 1], up);
cuda::subtract(gpu_src_pyr_laplace[i], up, gpu_src_pyr_laplace[i]);
}
// Create the weight map Gaussian pyramid
cuda::GpuMat gpu_mask;
gpu_mask.upload(mask);
cuda::GpuMat weight_map;
std::vector<cuda::GpuMat> gpu_weight_pyr_gauss(num_bands_ + 1);
if (weight_type_ == CV_32F)
{
gpu_mask.convertTo(weight_map, CV_32F, 1. / 255.);
}
else // weight_type_ == CV_16S
{
gpu_mask.convertTo(weight_map, CV_16S);
cuda::GpuMat add_mask;
cuda::compare(gpu_mask, 0, add_mask, CMP_NE);
cuda::add(weight_map, Scalar::all(1), weight_map, add_mask);
}
cuda::copyMakeBorder(weight_map, gpu_weight_pyr_gauss[0], top, bottom, left, right, BORDER_CONSTANT);
for (int i = 0; i < num_bands_; ++i)
cuda::pyrDown(gpu_weight_pyr_gauss[i], gpu_weight_pyr_gauss[i + 1]);
int y_tl = tl_new.y - dst_roi_.y;
int y_br = br_new.y - dst_roi_.y;
int x_tl = tl_new.x - dst_roi_.x;
int x_br = br_new.x - dst_roi_.x;
// Add weighted layer of the source image to the final Laplacian pyramid layer
for (int i = 0; i <= num_bands_; ++i)
{
Rect rc(x_tl, y_tl, x_br - x_tl, y_br - y_tl);
cuda::GpuMat &_src_pyr_laplace = gpu_src_pyr_laplace[i];
cuda::GpuMat _dst_pyr_laplace = gpu_dst_pyr_laplace_[i](rc);
cuda::GpuMat &_weight_pyr_gauss = gpu_weight_pyr_gauss[i];
cuda::GpuMat _dst_band_weights = gpu_dst_band_weights_[i](rc);
using namespace cv::cuda::device::blend;
if (weight_type_ == CV_32F)
{
addSrcWeightGpu32F(_src_pyr_laplace, _weight_pyr_gauss, _dst_pyr_laplace, _dst_band_weights, rc);
}
else
{
addSrcWeightGpu16S(_src_pyr_laplace, _weight_pyr_gauss, _dst_pyr_laplace, _dst_band_weights, rc);
}
x_tl /= 2; y_tl /= 2;
x_br /= 2; y_br /= 2;
}
return;
}
#endif
// Create the source image Laplacian pyramid
UMat img_with_border;
copyMakeBorder(_img, img_with_border, top, bottom, left, right,
@ -322,9 +434,6 @@ void MultiBandBlender::feed(InputArray _img, InputArray mask, Point tl)
#endif
std::vector<UMat> src_pyr_laplace;
if (can_use_gpu_ && img_with_border.depth() == CV_16S)
createLaplacePyrGpu(img_with_border, num_bands_, src_pyr_laplace);
else
createLaplacePyr(img_with_border, num_bands_, src_pyr_laplace);
LOGLN(" Create the source image Laplacian pyramid, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
@ -430,21 +539,58 @@ void MultiBandBlender::feed(InputArray _img, InputArray mask, Point tl)
void MultiBandBlender::blend(InputOutputArray dst, InputOutputArray dst_mask)
{
cv::UMat dst_band_weights_0;
Rect dst_rc(0, 0, dst_roi_final_.width, dst_roi_final_.height);
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
if (can_use_gpu_)
{
for (int i = 0; i <= num_bands_; ++i)
normalizeUsingWeightMap(dst_band_weights_[i], dst_pyr_laplace_[i]);
{
cuda::GpuMat dst_i = gpu_dst_pyr_laplace_[i];
cuda::GpuMat weight_i = gpu_dst_band_weights_[i];
if (can_use_gpu_)
restoreImageFromLaplacePyrGpu(dst_pyr_laplace_);
using namespace ::cv::cuda::device::blend;
if (weight_type_ == CV_32F)
{
normalizeUsingWeightMapGpu32F(weight_i, dst_i, weight_i.cols, weight_i.rows);
}
else
{
normalizeUsingWeightMapGpu16S(weight_i, dst_i, weight_i.cols, weight_i.rows);
}
}
// Restore image from Laplacian pyramid
for (size_t i = num_bands_; i > 0; --i)
{
cuda::GpuMat up;
cuda::pyrUp(gpu_dst_pyr_laplace_[i], up);
cuda::add(up, gpu_dst_pyr_laplace_[i - 1], gpu_dst_pyr_laplace_[i - 1]);
}
gpu_dst_pyr_laplace_[0](dst_rc).download(dst_);
gpu_dst_band_weights_[0].download(dst_band_weights_0);
gpu_dst_pyr_laplace_.clear();
gpu_dst_band_weights_.clear();
}
else
#endif
{
for (int i = 0; i <= num_bands_; ++i)
normalizeUsingWeightMap(dst_band_weights_[i], dst_pyr_laplace_[i]);
restoreImageFromLaplacePyr(dst_pyr_laplace_);
Rect dst_rc(0, 0, dst_roi_final_.width, dst_roi_final_.height);
dst_ = dst_pyr_laplace_[0](dst_rc);
UMat _dst_mask;
compare(dst_band_weights_[0](dst_rc), WEIGHT_EPS, dst_mask_, CMP_GT);
dst_band_weights_0 = dst_band_weights_[0];
dst_pyr_laplace_.clear();
dst_band_weights_.clear();
}
compare(dst_band_weights_0(dst_rc), WEIGHT_EPS, dst_mask_, CMP_GT);
Blender::blend(dst, dst_mask);
}

@ -0,0 +1,112 @@
#if !defined CUDA_DISABLER
#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/types.hpp"
namespace cv { namespace cuda { namespace device
{
namespace blend
{
__global__ void addSrcWeightKernel16S(const PtrStep<short> src, const PtrStep<short> src_weight,
PtrStep<short> dst, PtrStep<short> dst_weight, int rows, int cols)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < rows && x < cols)
{
const short3 v = ((const short3*)src.ptr(y))[x];
short w = src_weight.ptr(y)[x];
((short3*)dst.ptr(y))[x].x += short((v.x * w) >> 8);
((short3*)dst.ptr(y))[x].y += short((v.y * w) >> 8);
((short3*)dst.ptr(y))[x].z += short((v.z * w) >> 8);
dst_weight.ptr(y)[x] += w;
}
}
void addSrcWeightGpu16S(const PtrStep<short> src, const PtrStep<short> src_weight,
PtrStep<short> dst, PtrStep<short> dst_weight, cv::Rect &rc)
{
dim3 threads(16, 16);
dim3 grid(divUp(rc.width, threads.x), divUp(rc.height, threads.y));
addSrcWeightKernel16S<<<grid, threads>>>(src, src_weight, dst, dst_weight, rc.height, rc.width);
cudaSafeCall(cudaGetLastError());
}
__global__ void addSrcWeightKernel32F(const PtrStep<short> src, const PtrStepf src_weight,
PtrStep<short> dst, PtrStepf dst_weight, int rows, int cols)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < rows && x < cols)
{
const short3 v = ((const short3*)src.ptr(y))[x];
float w = src_weight.ptr(y)[x];
((short3*)dst.ptr(y))[x].x += static_cast<short>(v.x * w);
((short3*)dst.ptr(y))[x].y += static_cast<short>(v.y * w);
((short3*)dst.ptr(y))[x].z += static_cast<short>(v.z * w);
dst_weight.ptr(y)[x] += w;
}
}
void addSrcWeightGpu32F(const PtrStep<short> src, const PtrStepf src_weight,
PtrStep<short> dst, PtrStepf dst_weight, cv::Rect &rc)
{
dim3 threads(16, 16);
dim3 grid(divUp(rc.width, threads.x), divUp(rc.height, threads.y));
addSrcWeightKernel32F<<<grid, threads>>>(src, src_weight, dst, dst_weight, rc.height, rc.width);
cudaSafeCall(cudaGetLastError());
}
__global__ void normalizeUsingWeightKernel16S(const PtrStep<short> weight, PtrStep<short> src,
const int width, const int height)
{
int x = (blockIdx.x * blockDim.x) + threadIdx.x;
int y = (blockIdx.y * blockDim.y) + threadIdx.y;
if (x < width && y < height)
{
const short3 v = ((short3*)src.ptr(y))[x];
short w = weight.ptr(y)[x];
((short3*)src.ptr(y))[x] = make_short3(short((v.x << 8) / w),
short((v.y << 8) / w), short((v.z << 8) / w));
}
}
void normalizeUsingWeightMapGpu16S(const PtrStep<short> weight, PtrStep<short> src,
const int width, const int height)
{
dim3 threads(16, 16);
dim3 grid(divUp(width, threads.x), divUp(height, threads.y));
normalizeUsingWeightKernel16S<<<grid, threads>>> (weight, src, width, height);
}
__global__ void normalizeUsingWeightKernel32F(const PtrStepf weight, PtrStep<short> src,
const int width, const int height)
{
int x = (blockIdx.x * blockDim.x) + threadIdx.x;
int y = (blockIdx.y * blockDim.y) + threadIdx.y;
if (x < width && y < height)
{
static const float WEIGHT_EPS = 1e-5f;
const short3 v = ((short3*)src.ptr(y))[x];
float w = weight.ptr(y)[x];
((short3*)src.ptr(y))[x] = make_short3(static_cast<short>(v.x / (w + WEIGHT_EPS)),
static_cast<short>(v.y / (w + WEIGHT_EPS)),
static_cast<short>(v.z / (w + WEIGHT_EPS)));
}
}
void normalizeUsingWeightMapGpu32F(const PtrStepf weight, PtrStep<short> src,
const int width, const int height)
{
dim3 threads(16, 16);
dim3 grid(divUp(width, threads.x), divUp(height, threads.y));
normalizeUsingWeightKernel32F<<<grid, threads>>> (weight, src, width, height);
}
}
}}}
#endif
Loading…
Cancel
Save