Test accuracy for PR#3829

pull/3829/head
ippei ito 10 years ago
parent 7d665a4754
commit b7276359e9
  1. 534
      modules/features2d/test/test_lshindex_flannbased_matcher.cpp
  2. 1
      modules/features2d/test/test_precomp.hpp
  3. 2
      modules/ts/CMakeLists.txt

@ -0,0 +1,534 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2015 Ippei Ito. All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
/*
For OpenCV2.4/OpenCV3.0
Test for Pull Request # 3829
https://github.com/Itseez/opencv/pull/3829
This test code creates brute force matcher for accuracy of reference, and the test target matcher.
Then, add() and train() transformed query image descriptors, and some outlier images descriptors to both matchers.
Then, compared with the query image by match() and findHomography() to detect outlier and calculate accuracy.
And each drawMatches() images are saved, if SAVE_DRAW_MATCHES_IMAGES is true.
Finally, compare accuracies between the brute force matcher and the test target matcher.
The lsh algorithm uses std::random_shuffle in lsh_index.h to make the random indexes table.
So, in relation to default random seed value of the execution environment or by using "srand(time(0)) function",
the match time and accuracy of the match results are different, each time the code ran.
And the match time becomes late in relation to the number of the hash collision times.
*/
#include "test_precomp.hpp"
#include "opencv2/ts.hpp" // for FilePath::CreateFolder()
#include <time.h> // for time()
// If defined, the match time and accuracy of the match results are a little different, each time the code ran.
//#define INIT_RANDOM_SEED
// If defined, some outlier images descriptors add() the matcher.
#define TRAIN_WITH_OUTLIER_IMAGES
// If true, save drawMatches() images.
#define SAVE_DRAW_MATCHES_IMAGES false
// if true, verbose output
#define SHOW_DEBUG_LOG true
#if CV_MAJOR_VERSION==2
#define OrbCreate new ORB(4000)
#elif CV_MAJOR_VERSION==3
#define OrbCreate ORB::create(4000)
#define AKazeCreate AKAZE::create()
#endif
using namespace cv;
using namespace std;
int testno_for_make_filename = 0;
// --------------------------------------------------------------------------------------
// Parameter class to transform query image
// --------------------------------------------------------------------------------------
class testparam
{
public:
string transname;
void(*transfunc)(float, const Mat&, Mat&);
float from, to, step;
testparam(string _transname, void(*_transfunc)(float, const Mat&, Mat&), float _from, float _to, float _step) :
transname(_transname),
transfunc(_transfunc),
from(_from),
to(_to),
step(_step)
{}
};
// --------------------------------------------------------------------------------------
// from matching_to_many_images.cpp
// --------------------------------------------------------------------------------------
int maskMatchesByTrainImgIdx(const vector<DMatch>& matches, int trainImgIdx, vector<char>& mask)
{
int matchcnt = 0;
mask.resize(matches.size());
fill(mask.begin(), mask.end(), 0);
for (size_t i = 0; i < matches.size(); i++)
{
if (matches[i].imgIdx == trainImgIdx)
{
mask[i] = 1;
matchcnt++;
}
}
return matchcnt;
}
int calcHomographyAndInlierCount(const vector<KeyPoint>& query_kp, const vector<KeyPoint>& train_kp, const vector<DMatch>& match, vector<char> &mask, Mat &homography)
{
// make query and current train image keypoint pairs
std::vector<cv::Point2f> srcPoints, dstPoints;
for (unsigned int i = 0; i < match.size(); ++i)
{
if (mask[i] != 0) // is current train image ?
{
srcPoints.push_back(query_kp[match[i].queryIdx].pt);
dstPoints.push_back(train_kp[match[i].trainIdx].pt);
}
}
// calc homography
vector<uchar> inlierMask;
homography = findHomography(srcPoints, dstPoints, RANSAC, 3.0, inlierMask);
// update outlier mask
int j = 0;
for (unsigned int i = 0; i < match.size(); ++i)
{
if (mask[i] != 0) // is current train image ?
{
if (inlierMask.size() == 0 || inlierMask[j] == 0) // is outlier ?
{
mask[i] = 0;
}
j++;
}
}
// count inlier
int inlierCnt = 0;
for (unsigned int i = 0; i < mask.size(); ++i)
{
if (mask[i] != 0)
{
inlierCnt++;
}
}
return inlierCnt;
}
void drawDetectedRectangle(Mat& imgResult, const Mat& homography, const Mat& imgQuery)
{
std::vector<Point2f> query_corners(4);
query_corners[0] = Point(0, 0);
query_corners[1] = Point(imgQuery.cols, 0);
query_corners[2] = Point(imgQuery.cols, imgQuery.rows);
query_corners[3] = Point(0, imgQuery.rows);
std::vector<Point2f> train_corners(4);
perspectiveTransform(query_corners, train_corners, homography);
line(imgResult, train_corners[0] + query_corners[1], train_corners[1] + query_corners[1], Scalar(0, 255, 0), 4);
line(imgResult, train_corners[1] + query_corners[1], train_corners[2] + query_corners[1], Scalar(0, 255, 0), 4);
line(imgResult, train_corners[2] + query_corners[1], train_corners[3] + query_corners[1], Scalar(0, 255, 0), 4);
line(imgResult, train_corners[3] + query_corners[1], train_corners[0] + query_corners[1], Scalar(0, 255, 0), 4);
}
// --------------------------------------------------------------------------------------
// transform query image, extract&compute, train, matching and save result image function
// --------------------------------------------------------------------------------------
typedef struct tagTrainInfo
{
int traindesccnt;
double traintime;
double matchtime;
double accuracy;
}TrainInfo;
TrainInfo transImgAndTrain(
Feature2D *fe,
DescriptorMatcher *matcher,
const string &matchername,
const Mat& imgQuery, const vector<KeyPoint>& query_kp, const Mat& query_desc,
const vector<Mat>& imgOutliers, const vector<vector<KeyPoint> >& outliers_kp, const vector<Mat>& outliers_desc, const int totalOutlierDescCnt,
const float t, const testparam *tp,
const int testno, const bool bVerboseOutput, const bool bSaveDrawMatches)
{
TrainInfo ti;
// transform query image
Mat imgTransform;
(tp->transfunc)(t, imgQuery, imgTransform);
// extract kp and compute desc from transformed query image
vector<KeyPoint> trans_query_kp;
Mat trans_query_desc;
#if CV_MAJOR_VERSION==2
(*fe)(imgTransform, Mat(), trans_query_kp, trans_query_desc);
#elif CV_MAJOR_VERSION==3
fe->detectAndCompute(imgTransform, Mat(), trans_query_kp, trans_query_desc);
#endif
// add&train transformed query desc and outlier desc
matcher->clear();
matcher->add(vector<Mat>(1, trans_query_desc));
double s = (double)getTickCount();
matcher->train();
ti.traintime = 1000.0*((double)getTickCount() - s) / getTickFrequency();
ti.traindesccnt = trans_query_desc.rows;
#if defined(TRAIN_WITH_OUTLIER_IMAGES)
// same as matcher->add(outliers_desc); matcher->train();
for (unsigned int i = 0; i < outliers_desc.size(); ++i)
{
matcher->add(vector<Mat>(1, outliers_desc[i]));
s = (double)getTickCount();
matcher->train();
ti.traintime += 1000.0*((double)getTickCount() - s) / getTickFrequency();
}
ti.traindesccnt += totalOutlierDescCnt;
#endif
// matching
vector<DMatch> match;
s = (double)getTickCount();
matcher->match(query_desc, match);
ti.matchtime = 1000.0*((double)getTickCount() - s) / getTickFrequency();
// prepare a directory and variables for save matching images
vector<char> mask;
Mat imgResult;
const char resultDir[] = "result";
if (bSaveDrawMatches)
{
testing::internal::FilePath fp = testing::internal::FilePath(resultDir);
fp.CreateFolder();
}
char buff[2048];
int matchcnt;
// save query vs transformed query matching image with detected rectangle
matchcnt = maskMatchesByTrainImgIdx(match, (int)0, mask);
// calc homography and inlier
Mat homography;
int inlierCnt = calcHomographyAndInlierCount(query_kp, trans_query_kp, match, mask, homography);
ti.accuracy = (double)inlierCnt / (double)mask.size()*100.0;
drawMatches(imgQuery, query_kp, imgTransform, trans_query_kp, match, imgResult, Scalar::all(-1), Scalar::all(128), mask, DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
if (inlierCnt)
{
// draw detected rectangle
drawDetectedRectangle(imgResult, homography, imgQuery);
}
// draw status
sprintf(buff, "%s accuracy:%-3.2f%% %d descriptors training time:%-3.2fms matching :%-3.2fms", matchername.c_str(), ti.accuracy, ti.traindesccnt, ti.traintime, ti.matchtime);
putText(imgResult, buff, Point(0, 12), FONT_HERSHEY_PLAIN, 0.8, Scalar(0., 0., 255.));
sprintf(buff, "%s/res%03d_%s_%s%.1f_inlier.png", resultDir, testno, matchername.c_str(), tp->transname.c_str(), t);
if (bSaveDrawMatches && !imwrite(buff, imgResult)) cout << "Image " << buff << " can not be saved (may be because directory " << resultDir << " does not exist)." << endl;
#if defined(TRAIN_WITH_OUTLIER_IMAGES)
// save query vs outlier matching image(s)
for (unsigned int i = 0; i <imgOutliers.size(); ++i)
{
matchcnt = maskMatchesByTrainImgIdx(match, (int)i + 1, mask);
drawMatches(imgQuery, query_kp, imgOutliers[i], outliers_kp[i], match, imgResult, Scalar::all(-1), Scalar::all(128), mask);// , DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
sprintf(buff, "query_num:%d train_num:%d matched:%d %d descriptors training time:%-3.2fms matching :%-3.2fms", (int)query_kp.size(), (int)outliers_kp[i].size(), matchcnt, ti.traindesccnt, ti.traintime, ti.matchtime);
putText(imgResult, buff, Point(0, 12), FONT_HERSHEY_PLAIN, 0.8, Scalar(0., 0., 255.));
sprintf(buff, "%s/res%03d_%s_%s%.1f_outlier%02d.png", resultDir, testno, matchername.c_str(), tp->transname.c_str(), t, i);
if (bSaveDrawMatches && !imwrite(buff, imgResult)) cout << "Image " << buff << " can not be saved (may be because directory " << resultDir << " does not exist)." << endl;
}
#endif
if (bVerboseOutput)
{
cout << tp->transname <<" image matching accuracy:" << ti.accuracy << "% " << ti.traindesccnt << " train:" << ti.traintime << "ms match:" << ti.matchtime << "ms" << endl;
}
return ti;
}
// --------------------------------------------------------------------------------------
// Main Test Class
// --------------------------------------------------------------------------------------
class CV_FeatureDetectorMatcherBaseTest : public cvtest::BaseTest
{
private:
testparam *tp;
double target_accuracy_margin_from_bfmatcher;
Feature2D* fe; // feature detector extractor
DescriptorMatcher* bfmatcher; // brute force matcher for accuracy of reference
DescriptorMatcher* flmatcher; // flann matcher to test
Mat imgQuery; // query image
vector<Mat> imgOutliers; // outlier image
vector<KeyPoint> query_kp; // query key points detect from imgQuery
Mat query_desc; // query descriptors extract from imgQuery
vector<vector<KeyPoint> > outliers_kp;
vector<Mat> outliers_desc;
int totalOutlierDescCnt;
string flmatchername;
public:
//
// constructor
//
CV_FeatureDetectorMatcherBaseTest(testparam* _tp, double _accuracy_margin, Feature2D* _fe, DescriptorMatcher *_flmatcher, string _flmatchername, int norm_type_for_bfmatcher) :
tp(_tp),
target_accuracy_margin_from_bfmatcher(_accuracy_margin),
fe(_fe),
flmatcher(_flmatcher),
flmatchername(_flmatchername)
{
#if defined(INIT_RANDOM_SEED)
// from test/test_eigen.cpp
srand((unsigned int)time(0));
#endif
// create brute force matcher for accuracy of reference
bfmatcher = new BFMatcher(norm_type_for_bfmatcher);
}
//
// Main Test method
//
virtual void run(int)
{
// load query image
string strQueryFile = string(cvtest::TS::ptr()->get_data_path()) + "shared/lena.png";
imgQuery = imread(strQueryFile, 0);
if (imgQuery.empty())
{
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", strQueryFile.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
// load outlier images
char* outliers[] = { (char*)"baboon.png", (char*)"fruits.png", (char*)"airplane.png" };
for (unsigned int i = 0; i < sizeof(outliers) / sizeof(char*); i++)
{
string strOutlierFile = string(cvtest::TS::ptr()->get_data_path()) + "shared/" + outliers[i];
Mat imgOutlier = imread(strOutlierFile, 0);
if (imgQuery.empty())
{
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", strOutlierFile.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
imgOutliers.push_back(imgOutlier);
}
// extract and compute keypoints and descriptors from query image
#if CV_MAJOR_VERSION==2
(*fe)(imgQuery, Mat(), query_kp, query_desc);
#elif CV_MAJOR_VERSION==3
fe->detectAndCompute(imgQuery, Mat(), query_kp, query_desc);
#endif
// extract and compute keypoints and descriptors from outlier images
fe->detect(imgOutliers, outliers_kp);
((DescriptorExtractor*)fe)->compute(imgOutliers, outliers_kp, outliers_desc);
totalOutlierDescCnt = 0;
for (unsigned int i = 0; i < outliers_desc.size(); ++i) totalOutlierDescCnt += outliers_desc[i].rows;
if (SHOW_DEBUG_LOG)
{
cout << query_kp.size() << " keypoints extracted from query image." << endl;
#if defined(TRAIN_WITH_OUTLIER_IMAGES)
cout << totalOutlierDescCnt << " keypoints extracted from outlier image(s)." << endl;
#endif
}
// compute brute force matcher accuracy for reference
double totalTrainTime = 0.;
double totalMatchTime = 0.;
double totalAccuracy = 0.;
int cnt = 0;
for (float t = tp->from; t <= tp->to; t += tp->step, ++testno_for_make_filename, ++cnt)
{
if (SHOW_DEBUG_LOG) cout << "Test No." << testno_for_make_filename << " BFMatcher " << t;
TrainInfo ti = transImgAndTrain(fe, bfmatcher, "BFMatcher",
imgQuery, query_kp, query_desc,
imgOutliers, outliers_kp, outliers_desc,
totalOutlierDescCnt,
t, tp, testno_for_make_filename, SHOW_DEBUG_LOG, SAVE_DRAW_MATCHES_IMAGES);
totalTrainTime += ti.traintime;
totalMatchTime += ti.matchtime;
totalAccuracy += ti.accuracy;
}
double bf_average_accuracy = totalAccuracy / cnt;
if (SHOW_DEBUG_LOG)
{
cout << "total training time: " << totalTrainTime << "ms" << endl;
cout << "total matching time: " << totalMatchTime << "ms" << endl;
cout << "average accuracy:" << bf_average_accuracy << "%" << endl;
}
// test the target matcher
totalTrainTime = 0.;
totalMatchTime = 0.;
totalAccuracy = 0.;
cnt = 0;
for (float t = tp->from; t <= tp->to; t += tp->step, ++testno_for_make_filename, ++cnt)
{
if (SHOW_DEBUG_LOG) cout << "Test No." << testno_for_make_filename << " " << flmatchername << " " << t;
TrainInfo ti = transImgAndTrain(fe, flmatcher, flmatchername,
imgQuery, query_kp, query_desc,
imgOutliers, outliers_kp, outliers_desc,
totalOutlierDescCnt,
t, tp, testno_for_make_filename, SHOW_DEBUG_LOG, SAVE_DRAW_MATCHES_IMAGES);
totalTrainTime += ti.traintime;
totalMatchTime += ti.matchtime;
totalAccuracy += ti.accuracy;
}
double average_accuracy = totalAccuracy / cnt;
double target_average_accuracy = bf_average_accuracy * target_accuracy_margin_from_bfmatcher;
if (SHOW_DEBUG_LOG)
{
cout << "total training time: " << totalTrainTime << "ms" << endl;
cout << "total matching time: " << totalMatchTime << "ms" << endl;
cout << "average accuracy:" << average_accuracy << "%" << endl;
cout << "threshold of the target matcher average accuracy as error :" << target_average_accuracy << "%" << endl;
cout << "accuracy degraded " << (100.0 - (average_accuracy / bf_average_accuracy *100.0)) << "% from BFMatcher.(lower percentage is better)" << endl;
}
// compare accuracies between the brute force matcher and the test target matcher
if (average_accuracy < target_average_accuracy)
{
ts->printf(cvtest::TS::LOG, "Bad average accuracy %f < %f while test %s %s query\n", average_accuracy, target_average_accuracy, flmatchername.c_str(), tp->transname.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
return;
}
};
// --------------------------------------------------------------------------------------
// Transform Functions
// --------------------------------------------------------------------------------------
static void rotate(float deg, const Mat& src, Mat& dst)
{
warpAffine(src, dst, getRotationMatrix2D(Point2f(src.cols / 2.0f, src.rows / 2.0f), deg, 1), src.size(), INTER_CUBIC);
}
static void scale(float scale, const Mat& src, Mat& dst)
{
resize(src, dst, Size((int)(src.cols*scale), (int)(src.rows*scale)), INTER_AREA);
}
static void blur(float k, const Mat& src, Mat& dst)
{
GaussianBlur(src, dst, Size((int)k, (int)k), 0);
}
// --------------------------------------------------------------------------------------
// Tests Registrations
// --------------------------------------------------------------------------------------
#define SHORT_LSH_KEY_ACCURACY_MARGIN 0.72 // The margin for FlannBasedMatcher. 28% degraded from BFMatcher(Actually, about 10..24% measured.lower percentage is better.) for lsh key size=16.
#define MIDDLE_LSH_KEY_ACCURACY_MARGIN 0.72 // The margin for FlannBasedMatcher. 28% degraded from BFMatcher(Actually, about 7..24% measured.lower percentage is better.) for lsh key size=24.
#define LONG_LSH_KEY_ACCURACY_MARGIN 0.90 // The margin for FlannBasedMatcher. 10% degraded from BFMatcher(Actually, about -29...7% measured.lower percentage is better.) for lsh key size=31.
TEST(BlurredQueryFlannBasedLshShortKeyMatcherAdditionalTrainTest, accuracy)
{
Ptr<Feature2D> fe = OrbCreate;
Ptr<FlannBasedMatcher> fl = makePtr<FlannBasedMatcher>(makePtr<flann::LshIndexParams>(1, 16, 2));
testparam tp("blurred", blur, 1.0f, 11.0f, 2.0f);
CV_FeatureDetectorMatcherBaseTest test(&tp, SHORT_LSH_KEY_ACCURACY_MARGIN, fe, fl, "FlannLsh(1, 16, 2)", NORM_HAMMING);
test.safe_run();
}
TEST(BlurredQueryFlannBasedLshMiddleKeyMatcherAdditionalTrainTest, accuracy)
{
Ptr<Feature2D> fe = OrbCreate;
Ptr<FlannBasedMatcher> fl = makePtr<FlannBasedMatcher>(makePtr<flann::LshIndexParams>(1, 24, 2));
testparam tp("blurred", blur, 1.0f, 11.0f, 2.0f);
CV_FeatureDetectorMatcherBaseTest test(&tp, MIDDLE_LSH_KEY_ACCURACY_MARGIN, fe, fl, "FlannLsh(1, 24, 2)", NORM_HAMMING);
test.safe_run();
}
TEST(BlurredQueryFlannBasedLshLongKeyMatcherAdditionalTrainTest, accuracy)
{
Ptr<Feature2D> fe = OrbCreate;
Ptr<FlannBasedMatcher> fl = makePtr<FlannBasedMatcher>(makePtr<flann::LshIndexParams>(1, 31, 2));
testparam tp("blurred", blur, 1.0f, 11.0f, 2.0f);
CV_FeatureDetectorMatcherBaseTest test(&tp, LONG_LSH_KEY_ACCURACY_MARGIN, fe, fl, "FlannLsh(1, 31, 2)", NORM_HAMMING);
test.safe_run();
}
TEST(ScaledQueryFlannBasedLshShortKeyMatcherAdditionalTrainTest, accuracy)
{
Ptr<Feature2D> fe = OrbCreate;
Ptr<FlannBasedMatcher> fl = makePtr<FlannBasedMatcher>(makePtr<flann::LshIndexParams>(1, 16, 2));
testparam tp("scaled", scale, 0.5f, 1.5f, 0.1f);
CV_FeatureDetectorMatcherBaseTest test(&tp, SHORT_LSH_KEY_ACCURACY_MARGIN, fe, fl, "FlannLsh(1, 16, 2)", NORM_HAMMING);
test.safe_run();
}
TEST(ScaledQueryFlannBasedLshMiddleKeyMatcherAdditionalTrainTest, accuracy)
{
Ptr<Feature2D> fe = OrbCreate;
Ptr<FlannBasedMatcher> fl = makePtr<FlannBasedMatcher>(makePtr<flann::LshIndexParams>(1, 24, 2));
testparam tp("scaled", scale, 0.5f, 1.5f, 0.1f);
CV_FeatureDetectorMatcherBaseTest test(&tp, MIDDLE_LSH_KEY_ACCURACY_MARGIN, fe, fl, "FlannLsh(1, 24, 2)", NORM_HAMMING);
test.safe_run();
}
TEST(ScaledQueryFlannBasedLshLongKeyMatcherAdditionalTrainTest, accuracy)
{
Ptr<Feature2D> fe = OrbCreate;
Ptr<FlannBasedMatcher> fl = makePtr<FlannBasedMatcher>(makePtr<flann::LshIndexParams>(1, 31, 2));
testparam tp("scaled", scale, 0.5f, 1.5f, 0.1f);
CV_FeatureDetectorMatcherBaseTest test(&tp, LONG_LSH_KEY_ACCURACY_MARGIN, fe, fl, "FlannLsh(1, 31, 2)", NORM_HAMMING);
test.safe_run();
}
TEST(RotatedQueryFlannBasedLshShortKeyMatcherAdditionalTrainTest, accuracy)
{
Ptr<Feature2D> fe = OrbCreate;
Ptr<FlannBasedMatcher> fl = makePtr<FlannBasedMatcher>(makePtr<flann::LshIndexParams>(1, 16, 2));
testparam tp("rotated", rotate, 0.0f, 359.0f, 30.0f);
CV_FeatureDetectorMatcherBaseTest test(&tp, SHORT_LSH_KEY_ACCURACY_MARGIN, fe, fl, "FlannLsh(1, 16, 2)", NORM_HAMMING);
test.safe_run();
}
TEST(RotatedQueryFlannBasedLshMiddleKeyMatcherAdditionalTrainTest, accuracy)
{
Ptr<Feature2D> fe = OrbCreate;
Ptr<FlannBasedMatcher> fl = makePtr<FlannBasedMatcher>(makePtr<flann::LshIndexParams>(1, 24, 2));
testparam tp("rotated", rotate, 0.0f, 359.0f, 30.0f);
CV_FeatureDetectorMatcherBaseTest test(&tp, MIDDLE_LSH_KEY_ACCURACY_MARGIN, fe, fl, "FlannLsh(1, 24, 2)", NORM_HAMMING);
test.safe_run();
}
TEST(RotatedQueryFlannBasedLshLongKeyMatcherAdditionalTrainTest, accuracy)
{
Ptr<Feature2D> fe = OrbCreate;
Ptr<FlannBasedMatcher> fl = makePtr<FlannBasedMatcher>(makePtr<flann::LshIndexParams>(1, 31, 2));
testparam tp("rotated", rotate, 0.0f, 359.0f, 30.0f);
CV_FeatureDetectorMatcherBaseTest test(&tp, LONG_LSH_KEY_ACCURACY_MARGIN, fe, fl, "FlannLsh(1, 31, 2)", NORM_HAMMING);
test.safe_run();
}

@ -14,6 +14,7 @@
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include <iostream>
#endif

@ -9,7 +9,7 @@ set(OPENCV_MODULE_IS_PART_OF_WORLD FALSE)
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef)
ocv_add_module(ts opencv_core opencv_features2d opencv_highgui opencv_imgproc opencv_video)
ocv_add_module(ts opencv_core opencv_features2d opencv_highgui opencv_imgproc opencv_video opencv_calib3d)
ocv_glob_module_sources()
ocv_module_include_directories()

Loading…
Cancel
Save