|
|
|
@ -1,5 +1,21 @@ |
|
|
|
|
#!/usr/bin/env python |
|
|
|
|
|
|
|
|
|
''' |
|
|
|
|
camera calibration for distorted images with chess board samples |
|
|
|
|
reads distorted images, calculates the calibration and write undistorted images |
|
|
|
|
|
|
|
|
|
usage: |
|
|
|
|
calibrate.py [--debug <output path>] [--square_size] [<image mask>] |
|
|
|
|
|
|
|
|
|
default values: |
|
|
|
|
--debug: ./output/ |
|
|
|
|
--square_size: 1.0 |
|
|
|
|
<image mask> defaults to ../data/left*.jpg |
|
|
|
|
|
|
|
|
|
read more: |
|
|
|
|
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html |
|
|
|
|
''' |
|
|
|
|
|
|
|
|
|
# Python 2/3 compatibility |
|
|
|
|
from __future__ import print_function |
|
|
|
|
|
|
|
|
@ -12,64 +28,88 @@ from common import splitfn |
|
|
|
|
# built-in modules |
|
|
|
|
import os |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
USAGE = ''' |
|
|
|
|
USAGE: calib.py [--save <filename>] [--debug <output path>] [--square_size] [<image mask>] |
|
|
|
|
''' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
import sys |
|
|
|
|
import getopt |
|
|
|
|
from glob import glob |
|
|
|
|
|
|
|
|
|
args, img_mask = getopt.getopt(sys.argv[1:], '', ['save=', 'debug=', 'square_size=']) |
|
|
|
|
args, img_mask = getopt.getopt(sys.argv[1:], '', ['debug=', 'square_size=']) |
|
|
|
|
args = dict(args) |
|
|
|
|
try: |
|
|
|
|
args.setdefault('--debug', './output/') |
|
|
|
|
args.setdefault('--square_size', 1.0) |
|
|
|
|
if not img_mask: |
|
|
|
|
img_mask = '../data/left*.jpg' # default |
|
|
|
|
else: |
|
|
|
|
img_mask = img_mask[0] |
|
|
|
|
except: |
|
|
|
|
img_mask = '../data/left*.jpg' |
|
|
|
|
|
|
|
|
|
img_names = glob(img_mask) |
|
|
|
|
debug_dir = args.get('--debug') |
|
|
|
|
square_size = float(args.get('--square_size', 1.0)) |
|
|
|
|
if not os.path.isdir(debug_dir): |
|
|
|
|
os.mkdir(debug_dir) |
|
|
|
|
square_size = float(args.get('--square_size')) |
|
|
|
|
|
|
|
|
|
pattern_size = (9, 6) |
|
|
|
|
pattern_points = np.zeros( (np.prod(pattern_size), 3), np.float32 ) |
|
|
|
|
pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2) |
|
|
|
|
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32) |
|
|
|
|
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2) |
|
|
|
|
pattern_points *= square_size |
|
|
|
|
|
|
|
|
|
obj_points = [] |
|
|
|
|
img_points = [] |
|
|
|
|
h, w = 0, 0 |
|
|
|
|
img_names_undistort = [] |
|
|
|
|
for fn in img_names: |
|
|
|
|
print('processing %s...' % fn,) |
|
|
|
|
print('processing %s... ' % fn, end='') |
|
|
|
|
img = cv2.imread(fn, 0) |
|
|
|
|
if img is None: |
|
|
|
|
print("Failed to load", fn) |
|
|
|
|
continue |
|
|
|
|
print("Failed to load", fn) |
|
|
|
|
continue |
|
|
|
|
|
|
|
|
|
h, w = img.shape[:2] |
|
|
|
|
found, corners = cv2.findChessboardCorners(img, pattern_size) |
|
|
|
|
if found: |
|
|
|
|
term = ( cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1 ) |
|
|
|
|
term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1) |
|
|
|
|
cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term) |
|
|
|
|
|
|
|
|
|
if debug_dir: |
|
|
|
|
vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
|
|
|
cv2.drawChessboardCorners(vis, pattern_size, corners, found) |
|
|
|
|
path, name, ext = splitfn(fn) |
|
|
|
|
cv2.imwrite('%s/%s_chess.bmp' % (debug_dir, name), vis) |
|
|
|
|
outfile = debug_dir + name + '_chess.png' |
|
|
|
|
cv2.imwrite(outfile, vis) |
|
|
|
|
if found: |
|
|
|
|
img_names_undistort.append(outfile) |
|
|
|
|
|
|
|
|
|
if not found: |
|
|
|
|
print('chessboard not found') |
|
|
|
|
continue |
|
|
|
|
|
|
|
|
|
img_points.append(corners.reshape(-1, 2)) |
|
|
|
|
obj_points.append(pattern_points) |
|
|
|
|
|
|
|
|
|
print('ok') |
|
|
|
|
|
|
|
|
|
# calculate camera distortion |
|
|
|
|
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None) |
|
|
|
|
print("RMS:", rms) |
|
|
|
|
print("camera matrix:\n", camera_matrix) |
|
|
|
|
print("distortion coefficients: ", dist_coefs.ravel()) |
|
|
|
|
|
|
|
|
|
# print("RMS:", rms) |
|
|
|
|
# print("camera matrix:\n", camera_matrix) |
|
|
|
|
# print("distortion coefficients: ", dist_coefs.ravel()) |
|
|
|
|
|
|
|
|
|
# undistort the image with the calibration |
|
|
|
|
print('') |
|
|
|
|
for img_found in img_names_undistort: |
|
|
|
|
img = cv2.imread(img_found) |
|
|
|
|
|
|
|
|
|
h, w = img.shape[:2] |
|
|
|
|
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(camera_matrix, dist_coefs, (w, h), 1, (w, h)) |
|
|
|
|
|
|
|
|
|
dst = cv2.undistort(img, camera_matrix, dist_coefs, None, newcameramtx) |
|
|
|
|
|
|
|
|
|
# crop and save the image |
|
|
|
|
x, y, w, h = roi |
|
|
|
|
dst = dst[y:y+h, x:x+w] |
|
|
|
|
outfile = img_found + '_undistorted.png' |
|
|
|
|
print('Undistorted image written to: %s' % outfile) |
|
|
|
|
cv2.imwrite(outfile, dst) |
|
|
|
|
|
|
|
|
|
cv2.destroyAllWindows() |
|
|
|
|