mirror of https://github.com/opencv/opencv.git
parent
48cd2d190f
commit
b6b5c27cec
8 changed files with 777 additions and 178 deletions
@ -0,0 +1,213 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../precomp.hpp" |
||||
#include "layers_common.hpp" |
||||
|
||||
#include <algorithm> |
||||
#include <stdlib.h> |
||||
#include <numeric> |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace dnn |
||||
{ |
||||
|
||||
class ReduceLayerInt8Impl CV_FINAL : public ReduceLayerInt8 |
||||
{ |
||||
public: |
||||
ReduceLayerInt8Impl(const LayerParams& params) |
||||
{ |
||||
// Set reduce type
|
||||
CV_Assert(params.has("reduce")); |
||||
String typeString = toLowerCase(params.get<String>("reduce")); |
||||
if (typeString == "max") |
||||
reduceType = MAX; |
||||
else if (typeString == "min") |
||||
reduceType = MIN; |
||||
else |
||||
CV_Error(Error::StsBadArg, "Unknown reduce type \"" + typeString + "\""); |
||||
|
||||
// Set deleted dims
|
||||
CV_Assert(params.has("deleted_dims")); |
||||
DictValue tempDims = params.get("deleted_dims"); |
||||
int i, n = tempDims.size(); |
||||
reduceDims.resize(n); |
||||
for (i = 0; i < n; i++) |
||||
{ |
||||
reduceDims[i] = tempDims.get<int>(i); |
||||
} |
||||
} |
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE |
||||
{ |
||||
if (backendId == DNN_BACKEND_OPENCV) |
||||
{ |
||||
return true; |
||||
} |
||||
return false; |
||||
} |
||||
|
||||
// reduceType == MIN
|
||||
struct ReduceOpMIN |
||||
{ |
||||
int8_t apply(const int8_t* first, const int8_t* last) |
||||
{ |
||||
return std::accumulate(first, last, *first, |
||||
[](int8_t a, int8_t b) |
||||
{ |
||||
return std::min(a, b); |
||||
}); |
||||
} |
||||
}; |
||||
|
||||
// reduceType == MAX
|
||||
struct ReduceOpMAX |
||||
{ |
||||
int8_t apply(const int8_t* first, const int8_t* last) |
||||
{ |
||||
return std::accumulate(first, last, *first, |
||||
[](int8_t a, int8_t b) |
||||
{ |
||||
return std::max(a, b); |
||||
}); |
||||
} |
||||
}; |
||||
|
||||
template<typename Func> |
||||
class ReduceInvoker : public ParallelLoopBody |
||||
{ |
||||
public: |
||||
const Mat* src; |
||||
Mat *dst; |
||||
std::vector<size_t> reduceDims; |
||||
int nstripes; |
||||
int reduceType; |
||||
Ptr<Func> func; |
||||
|
||||
ReduceInvoker() : src(0), dst(0), nstripes(0), reduceType(MAX), func(makePtr<Func>()) {} |
||||
|
||||
static void run(const Mat& src, Mat& dst, std::vector<size_t> reduceDims, int reduceType, int nstripes) |
||||
{ |
||||
CV_Assert_N(src.isContinuous(), dst.isContinuous(), src.type() == CV_8S, src.type() == dst.type()); |
||||
|
||||
ReduceInvoker<Func> p; |
||||
|
||||
p.src = &src; |
||||
p.dst = &dst; |
||||
|
||||
p.reduceDims = reduceDims; |
||||
p.nstripes = nstripes; |
||||
p.reduceType = reduceType; |
||||
|
||||
parallel_for_(Range(0, nstripes), p, nstripes); |
||||
} |
||||
|
||||
void operator()(const Range& r) const CV_OVERRIDE |
||||
{ |
||||
size_t total = dst->total(); |
||||
size_t stripeSize = (total + nstripes - 1)/nstripes; |
||||
size_t stripeStart = r.start*stripeSize; |
||||
size_t stripeEnd = std::min(r.end*stripeSize, total); |
||||
size_t totalDeleted = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies<size_t>()); |
||||
|
||||
int8_t *dstData = (int8_t *)dst->data; |
||||
int8_t *srcData = (int8_t *)src->data; |
||||
|
||||
for (size_t ofs = stripeStart; ofs < stripeEnd;) |
||||
{ |
||||
const int8_t* first = srcData + ofs * totalDeleted; |
||||
const int8_t* last = srcData + (ofs + 1) * totalDeleted; |
||||
|
||||
dstData[ofs] = func->apply(first, last); |
||||
ofs += 1; |
||||
} |
||||
} |
||||
}; |
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
std::vector<Mat> inputs, outputs; |
||||
inputs_arr.getMatVector(inputs); |
||||
outputs_arr.getMatVector(outputs); |
||||
CV_Assert(inputs.size() == 1); |
||||
const int nstripes = getNumThreads(); |
||||
|
||||
switch (reduceType) |
||||
{ |
||||
case MIN: |
||||
{ |
||||
ReduceInvoker<ReduceOpMIN>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
case MAX: |
||||
{ |
||||
ReduceInvoker<ReduceOpMAX>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
default: |
||||
CV_Error(Error::StsNotImplemented, "Not implemented"); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
||||
const int requiredOutputs, |
||||
std::vector<MatShape> &outputs, |
||||
std::vector<MatShape> &internals) const CV_OVERRIDE |
||||
{ |
||||
CV_Assert(inputs.size() > 0); |
||||
CV_Assert(reduceDims.size() != 0 && inputs[0].size() >= reduceDims.size()); |
||||
|
||||
std::vector<int> outShape; |
||||
if (inputs[0].size() == reduceDims.size()) |
||||
outShape.push_back(1); |
||||
else |
||||
{ |
||||
for (int i = 0; i < inputs[0].size() - reduceDims.size(); i++) |
||||
{ |
||||
outShape.push_back(inputs[0][i]); |
||||
} |
||||
} |
||||
outputs.assign(1, outShape); |
||||
|
||||
return false; |
||||
} |
||||
|
||||
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales, |
||||
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE |
||||
{ |
||||
return false; |
||||
} |
||||
|
||||
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
||||
const std::vector<MatShape> &outputs) const CV_OVERRIDE |
||||
{ |
||||
CV_UNUSED(inputs); // suppress unused variable warning
|
||||
long flops = 0; |
||||
size_t totalDeleted = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies<size_t>()); |
||||
for (int i = 0; i < outputs.size(); i++) |
||||
{ |
||||
flops += total(outputs[i])*(totalDeleted); |
||||
} |
||||
return flops; |
||||
} |
||||
private: |
||||
enum Type |
||||
{ |
||||
MAX, |
||||
MIN |
||||
}; |
||||
}; |
||||
|
||||
Ptr<ReduceLayerInt8> ReduceLayerInt8::create(const LayerParams& params) |
||||
{ |
||||
return Ptr<ReduceLayerInt8>(new ReduceLayerInt8Impl(params)); |
||||
} |
||||
|
||||
} |
||||
} |
@ -0,0 +1,388 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../precomp.hpp" |
||||
#include "opencv2/core/hal/intrin.hpp" |
||||
#include "../op_cuda.hpp" |
||||
#include "../op_webnn.hpp" |
||||
|
||||
#include <float.h> |
||||
#include <algorithm> |
||||
#include <numeric> |
||||
using std::max; |
||||
using std::min; |
||||
|
||||
#include <opencv2/core/utils/logger.hpp> |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace dnn |
||||
{ |
||||
|
||||
class ReduceLayerImpl CV_FINAL : public ReduceLayer |
||||
{ |
||||
public: |
||||
ReduceLayerImpl(const LayerParams& params) |
||||
{ |
||||
// set reduce type
|
||||
CV_Assert(params.has("reduce")); |
||||
String typeString = toLowerCase(params.get<String>("reduce")); |
||||
if (typeString == "max") |
||||
reduceType= MAX; |
||||
else if (typeString == "min") |
||||
reduceType= MIN; |
||||
else if (typeString == "ave") |
||||
reduceType= AVE; |
||||
else if (typeString == "sum") |
||||
reduceType= SUM; |
||||
else if (typeString == "sum_square") |
||||
reduceType= SUM_SQUARE; |
||||
else if (typeString == "l1") |
||||
reduceType= L1; |
||||
else if (typeString == "l2") |
||||
reduceType= L2; |
||||
else if (typeString == "log_sum") |
||||
reduceType= LOG_SUM; |
||||
else if (typeString == "log_sum_exp") |
||||
reduceType= LOG_SUM_EXP; |
||||
else if (typeString == "prod") |
||||
reduceType= PROD; |
||||
else |
||||
CV_Error(Error::StsBadArg, "Unknown reduce type\"" + typeString + "\""); |
||||
|
||||
// set deleted dims
|
||||
CV_Assert(params.has("deleted_dims")); |
||||
DictValue tempDims = params.get("deleted_dims"); |
||||
int i, n = tempDims.size(); |
||||
reduceDims.resize(n); |
||||
for (i = 0; i < n; i++) |
||||
{ |
||||
reduceDims[i] = tempDims.get<int>(i); |
||||
} |
||||
} |
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE |
||||
{ |
||||
if (backendId == DNN_BACKEND_OPENCV) |
||||
{ |
||||
return true; |
||||
} |
||||
return false; |
||||
} |
||||
|
||||
// reduceType == MIN
|
||||
struct ReduceOpMIN |
||||
{ |
||||
float apply(const float* first, const float* last, const float ikarea = 1.0f) |
||||
{ |
||||
return std::accumulate(first, last, FLT_MAX, |
||||
[](float a, float b) |
||||
{ |
||||
return std::min(a, b); |
||||
}); |
||||
} |
||||
}; |
||||
|
||||
// reduceType == MAX
|
||||
struct ReduceOpMAX |
||||
{ |
||||
float apply(const float* first, const float* last, const float ikarea = 1.0f) |
||||
{ |
||||
return std::accumulate(first, last, -FLT_MAX, |
||||
[](float a, float b) |
||||
{ |
||||
return std::max(a, b); |
||||
}); |
||||
} |
||||
}; |
||||
|
||||
// reduceType == SUM
|
||||
struct ReduceOpSUM |
||||
{ |
||||
float apply(const float* first, const float* last, const float ikarea = 1.0f) |
||||
{ |
||||
return std::accumulate(first, last, 0.f); |
||||
} |
||||
}; |
||||
|
||||
// reduceType == AVE
|
||||
struct ReduceOpAVE |
||||
{ |
||||
float apply(const float* first, const float* last, const float ikarea = 1.0f) |
||||
{ |
||||
float output = std::accumulate(first, last, 0.f); |
||||
return output * ikarea; |
||||
} |
||||
}; |
||||
|
||||
// reduceType == SUM_SQUARE
|
||||
struct ReduceOpSUM_SQUARE |
||||
{ |
||||
float apply(const float* first, const float* last, const float ikarea = 1.0f) |
||||
{ |
||||
return std::accumulate(first, last, 0.f, |
||||
[](float a, float b) |
||||
{ |
||||
return a + b * b; |
||||
}); |
||||
} |
||||
}; |
||||
|
||||
// reduceType == L1
|
||||
struct ReduceOpL1 |
||||
{ |
||||
float apply(const float* first, const float* last, const float ikarea = 1.0f) |
||||
{ |
||||
return std::accumulate(first, last, 0.f, |
||||
[](float a, float b) |
||||
{ |
||||
return a + std::abs(b); |
||||
}); |
||||
} |
||||
}; |
||||
|
||||
// reduceType == L2
|
||||
struct ReduceOpL2 |
||||
{ |
||||
float apply(const float* first, const float* last, const float ikarea = 1.0f) |
||||
{ |
||||
float output = std::accumulate(first, last, 0.f, |
||||
[](float a, float b) |
||||
{ |
||||
return a + b * b; |
||||
}); |
||||
return std::sqrt(output); |
||||
} |
||||
}; |
||||
|
||||
// reduceType == PROD
|
||||
struct ReduceOpPROD |
||||
{ |
||||
float apply(const float* first, const float* last, const float ikarea = 1.0f) |
||||
{ |
||||
return std::accumulate(first, last, 1.0f, std::multiplies<float>()); |
||||
} |
||||
}; |
||||
|
||||
// reduceType == LOG_SUM
|
||||
struct ReduceOpLOG_SUM |
||||
{ |
||||
float apply(const float* first, const float* last, const float ikarea = 1.0f) |
||||
{ |
||||
float output = std::accumulate(first, last, 0.0f); |
||||
return std::log(output); |
||||
} |
||||
}; |
||||
|
||||
// reduceType == LOG_SUM_EXP
|
||||
struct ReduceOpLOG_SUM_EXP |
||||
{ |
||||
float apply(const float* first, const float* last, const float ikarea = 1.0f) |
||||
{ |
||||
float output = std::accumulate(first, last, 0.0f, |
||||
[](float a, float b) |
||||
{ |
||||
return a + std::exp(b); |
||||
}); |
||||
return std::log(output); |
||||
} |
||||
}; |
||||
|
||||
template<typename Func> |
||||
class ReduceInvoker : public ParallelLoopBody |
||||
{ |
||||
public: |
||||
const Mat* src; |
||||
Mat *dst; |
||||
std::vector<size_t> reduceDims; |
||||
int nstripes; |
||||
int reduceType; |
||||
Ptr<Func> func; |
||||
|
||||
ReduceInvoker() : src(0), dst(0), nstripes(0), reduceType(MAX), func(makePtr<Func>()) {} |
||||
|
||||
static void run(const Mat& src, Mat& dst, std::vector<size_t> reduceDims, int reduceType, int nstripes) |
||||
{ |
||||
CV_Assert_N( src.isContinuous(), dst.isContinuous(), src.type() == CV_32F, src.type() == dst.type()); |
||||
|
||||
ReduceInvoker<Func> p; |
||||
|
||||
p.src = &src; |
||||
p.dst = &dst; |
||||
|
||||
p.reduceDims = reduceDims; |
||||
p.nstripes = nstripes; |
||||
p.reduceType = reduceType; |
||||
|
||||
parallel_for_(Range(0, nstripes), p, nstripes); |
||||
} |
||||
|
||||
void operator()(const Range& r) const CV_OVERRIDE |
||||
{ |
||||
size_t total = dst->total(); |
||||
size_t stripeSize = (total + nstripes - 1)/nstripes; |
||||
size_t stripeStart = r.start*stripeSize; |
||||
size_t stripeEnd = std::min(r.end*stripeSize, total); |
||||
size_t stride_w = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies<size_t>()); |
||||
|
||||
float *dstData = (float *)dst->data; |
||||
float *srcData = (float *)src->data; |
||||
|
||||
for (size_t ofs = stripeStart; ofs < stripeEnd;) |
||||
{ |
||||
const float* first = srcData + ofs * stride_w; |
||||
const float* last = srcData + (ofs + 1) * stride_w; |
||||
|
||||
if (ofs < stripeEnd) |
||||
{ |
||||
dstData[ofs] = func->apply(first, last, 1.0 / stride_w); |
||||
ofs += 1; |
||||
} |
||||
} |
||||
} |
||||
}; |
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
if (inputs_arr.depth() == CV_16S) |
||||
{ |
||||
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
||||
return; |
||||
} |
||||
|
||||
std::vector<Mat> inputs, outputs; |
||||
inputs_arr.getMatVector(inputs); |
||||
outputs_arr.getMatVector(outputs); |
||||
CV_Assert(inputs.size() == 1 || (inputs.size() == 2 && reduceType== SUM)); |
||||
const int nstripes = getNumThreads(); |
||||
|
||||
switch (reduceType) |
||||
{ |
||||
case MIN: |
||||
{ |
||||
ReduceInvoker<ReduceOpMIN>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
case MAX: |
||||
{ |
||||
ReduceInvoker<ReduceOpMAX>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
case AVE: |
||||
{ |
||||
ReduceInvoker<ReduceOpAVE>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
case SUM: |
||||
{ |
||||
ReduceInvoker<ReduceOpSUM>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
case L1: |
||||
{ |
||||
ReduceInvoker<ReduceOpL1>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
case L2: |
||||
{ |
||||
ReduceInvoker<ReduceOpL2>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
case SUM_SQUARE: |
||||
{ |
||||
ReduceInvoker<ReduceOpSUM_SQUARE>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
case PROD: |
||||
{ |
||||
ReduceInvoker<ReduceOpPROD>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
case LOG_SUM: |
||||
{ |
||||
ReduceInvoker<ReduceOpLOG_SUM>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
case LOG_SUM_EXP: |
||||
{ |
||||
ReduceInvoker<ReduceOpLOG_SUM_EXP>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); |
||||
break; |
||||
} |
||||
default: |
||||
CV_Error(Error::StsNotImplemented, "Not implemented"); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
||||
const int requiredOutputs, |
||||
std::vector<MatShape> &outputs, |
||||
std::vector<MatShape> &internals) const CV_OVERRIDE |
||||
{ |
||||
CV_Assert(inputs.size() > 0); |
||||
CV_Assert(reduceDims.size() != 0 && inputs[0].size() >= reduceDims.size()); |
||||
|
||||
std::vector<int> outShape; |
||||
if (inputs[0].size() == reduceDims.size()) |
||||
outShape.push_back(1); |
||||
else |
||||
{ |
||||
for (int i = 0; i < inputs[0].size() - reduceDims.size(); i++) |
||||
{ |
||||
outShape.push_back(inputs[0][i]); |
||||
} |
||||
} |
||||
outputs.assign(1, outShape); |
||||
|
||||
return false; |
||||
} |
||||
|
||||
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales, |
||||
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE |
||||
{ |
||||
if (reduceType== MAX || reduceType== MIN) |
||||
{ |
||||
return true; |
||||
} |
||||
return false; |
||||
} |
||||
|
||||
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
||||
const std::vector<MatShape> &outputs) const CV_OVERRIDE |
||||
{ |
||||
CV_UNUSED(inputs); // suppress unused variable warning
|
||||
long flops = 0; |
||||
size_t stride_w = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies<size_t>()); |
||||
for (int i = 0; i < outputs.size(); i++) |
||||
{ |
||||
flops += total(outputs[i])*(stride_w); |
||||
} |
||||
return flops; |
||||
} |
||||
private: |
||||
enum ReduceType |
||||
{ |
||||
MAX, |
||||
MIN, |
||||
AVE, |
||||
SUM, |
||||
L1, |
||||
L2, |
||||
PROD, |
||||
SUM_SQUARE, |
||||
LOG_SUM, |
||||
LOG_SUM_EXP |
||||
}; |
||||
}; |
||||
|
||||
Ptr<ReduceLayer> ReduceLayer::create(const LayerParams& params) |
||||
{ |
||||
return Ptr<ReduceLayer>(new ReduceLayerImpl(params)); |
||||
} |
||||
|
||||
} |
||||
} |
Loading…
Reference in new issue