Merge remote-tracking branch 'upstream/3.4' into merge-3.4

pull/15890/head
Alexander Alekhin 5 years ago
commit b6a58818bb
  1. 5
      cmake/OpenCVCompilerOptimizations.cmake
  2. 114
      cmake/OpenCVFindOpenEXR.cmake
  3. 1
      cmake/OpenCVModule.cmake
  4. 13
      cmake/OpenCVUtils.cmake
  5. 43
      doc/py_tutorials/py_core/py_basic_ops/py_basic_ops.markdown
  6. 34
      doc/py_tutorials/py_core/py_image_arithmetics/py_image_arithmetics.markdown
  7. 70
      doc/py_tutorials/py_core/py_optimization/py_optimization.markdown
  8. 9
      doc/tutorials/introduction/windows_install/windows_install.markdown
  9. 2
      modules/core/CMakeLists.txt
  10. 45
      modules/core/include/opencv2/core/opencl/opencl_info.hpp
  11. 22
      modules/core/src/ocl.cpp
  12. 2
      modules/dnn/include/opencv2/dnn/version.hpp
  13. 9
      modules/dnn/src/dnn.cpp
  14. 26
      modules/dnn/src/layers/eltwise_layer.cpp
  15. 52
      modules/dnn/src/onnx/onnx_importer.cpp
  16. 2
      modules/dnn/test/test_misc.cpp
  17. 32
      modules/dnn/test/test_onnx_importer.cpp
  18. 160
      modules/imgproc/src/moments.cpp
  19. 4
      modules/js/src/helpers.js
  20. 8
      modules/videoio/src/cap_gstreamer.cpp

@ -714,7 +714,10 @@ macro(ocv_compiler_optimization_process_sources SOURCES_VAR_NAME LIBS_VAR_NAME T
foreach(OPT ${CPU_DISPATCH_FINAL})
if(__result_${OPT})
#message("${OPT}: ${__result_${OPT}}")
if(CMAKE_GENERATOR MATCHES "^Visual")
if(CMAKE_GENERATOR MATCHES "^Visual"
OR OPENCV_CMAKE_CPU_OPTIMIZATIONS_FORCE_TARGETS
)
# MSVS generator is not able to properly order compilation flags:
# extra flags are added before common flags, so switching between optimizations doesn't work correctly
# Also CMAKE_CXX_FLAGS doesn't work (it is directory-based, so add_subdirectory is required)
add_library(${TARGET_BASE_NAME}_${OPT} OBJECT ${__result_${OPT}})

@ -20,55 +20,89 @@ if(WIN32)
elseif(MSVC)
SET(OPENEXR_LIBSEARCH_SUFFIXES Win32/Release Win32 Win32/Debug)
endif()
else()
set(OPENEXR_ROOT "")
endif()
SET(LIBRARY_PATHS
/usr/lib
/usr/local/lib
/sw/lib
/opt/local/lib
"${ProgramFiles_ENV_PATH}/OpenEXR/lib/static"
"${OPENEXR_ROOT}/lib")
SET(SEARCH_PATHS
"${OPENEXR_ROOT}"
/usr
/usr/local
/sw
/opt
"${ProgramFiles_ENV_PATH}/OpenEXR")
FIND_PATH(OPENEXR_INCLUDE_PATH ImfRgbaFile.h
PATH_SUFFIXES OpenEXR
PATHS
/usr/include
/usr/local/include
/sw/include
/opt/local/include
"${ProgramFiles_ENV_PATH}/OpenEXR/include"
"${OPENEXR_ROOT}/include")
MACRO(FIND_OPENEXR_LIBRARY LIBRARY_NAME LIBRARY_SUFFIX)
string(TOUPPER "${LIBRARY_NAME}" LIBRARY_NAME_UPPER)
FIND_LIBRARY(OPENEXR_${LIBRARY_NAME_UPPER}_LIBRARY
NAMES ${LIBRARY_NAME}${LIBRARY_SUFFIX}
PATH_SUFFIXES ${OPENEXR_LIBSEARCH_SUFFIXES}
NO_DEFAULT_PATH
PATHS "${SEARCH_PATH}/lib" "${SEARCH_PATH}/lib/static")
ENDMACRO()
FIND_LIBRARY(OPENEXR_HALF_LIBRARY
NAMES Half
PATH_SUFFIXES ${OPENEXR_LIBSEARCH_SUFFIXES}
PATHS ${LIBRARY_PATHS})
FOREACH(SEARCH_PATH ${SEARCH_PATHS})
FIND_PATH(OPENEXR_INCLUDE_PATH ImfRgbaFile.h
PATH_SUFFIXES OpenEXR
NO_DEFAULT_PATH
PATHS
"${SEARCH_PATH}/include")
FIND_LIBRARY(OPENEXR_IEX_LIBRARY
NAMES Iex
PATH_SUFFIXES ${OPENEXR_LIBSEARCH_SUFFIXES}
PATHS ${LIBRARY_PATHS})
IF (OPENEXR_INCLUDE_PATH)
SET(OPENEXR_VERSION_FILE "${OPENEXR_INCLUDE_PATH}/OpenEXRConfig.h")
IF (EXISTS ${OPENEXR_VERSION_FILE})
FILE (STRINGS ${OPENEXR_VERSION_FILE} contents REGEX "#define OPENEXR_VERSION_MAJOR ")
IF (${contents} MATCHES "#define OPENEXR_VERSION_MAJOR ([0-9]+)")
SET(OPENEXR_VERSION_MAJOR "${CMAKE_MATCH_1}")
ENDIF ()
FILE (STRINGS ${OPENEXR_VERSION_FILE} contents REGEX "#define OPENEXR_VERSION_MINOR ")
IF (${contents} MATCHES "#define OPENEXR_VERSION_MINOR ([0-9]+)")
SET(OPENEXR_VERSION_MINOR "${CMAKE_MATCH_1}")
ENDIF ()
ENDIF ()
ENDIF ()
FIND_LIBRARY(OPENEXR_IMATH_LIBRARY
NAMES Imath
PATH_SUFFIXES ${OPENEXR_LIBSEARCH_SUFFIXES}
PATHS ${LIBRARY_PATHS})
IF (OPENEXR_VERSION_MAJOR AND OPENEXR_VERSION_MINOR)
set(OPENEXR_VERSION "${OPENEXR_VERSION_MAJOR}_${OPENEXR_VERSION_MINOR}")
ENDIF ()
FIND_LIBRARY(OPENEXR_ILMIMF_LIBRARY
NAMES IlmImf
PATH_SUFFIXES ${OPENEXR_LIBSEARCH_SUFFIXES}
PATHS ${LIBRARY_PATHS})
SET(LIBRARY_SUFFIXES
"-${OPENEXR_VERSION}"
"-${OPENEXR_VERSION}_s"
"-${OPENEXR_VERSION}_d"
"-${OPEXEXR_VERSION}_s_d"
""
"_s"
"_d"
"_s_d")
FIND_LIBRARY(OPENEXR_ILMTHREAD_LIBRARY
NAMES IlmThread
PATH_SUFFIXES ${OPENEXR_LIBSEARCH_SUFFIXES}
PATHS ${LIBRARY_PATHS})
FOREACH(LIBRARY_SUFFIX ${LIBRARY_SUFFIXES})
FIND_OPENEXR_LIBRARY("Half" ${LIBRARY_SUFFIX})
FIND_OPENEXR_LIBRARY("Iex" ${LIBRARY_SUFFIX})
FIND_OPENEXR_LIBRARY("Imath" ${LIBRARY_SUFFIX})
FIND_OPENEXR_LIBRARY("IlmImf" ${LIBRARY_SUFFIX})
FIND_OPENEXR_LIBRARY("IlmThread" ${LIBRARY_SUFFIX})
IF (OPENEXR_INCLUDE_PATH AND OPENEXR_IMATH_LIBRARY AND OPENEXR_ILMIMF_LIBRARY AND OPENEXR_IEX_LIBRARY AND OPENEXR_HALF_LIBRARY)
SET(OPENEXR_FOUND TRUE)
BREAK()
ENDIF()
UNSET(OPENEXR_IMATH_LIBRARY)
UNSET(OPENEXR_ILMIMF_LIBRARY)
UNSET(OPENEXR_IEX_LIBRARY)
UNSET(OPENEXR_ILMTHREAD_LIBRARY)
UNSET(OPENEXR_HALF_LIBRARY)
ENDFOREACH()
IF (OPENEXR_INCLUDE_PATH AND OPENEXR_IMATH_LIBRARY AND OPENEXR_ILMIMF_LIBRARY AND OPENEXR_IEX_LIBRARY AND OPENEXR_HALF_LIBRARY)
SET(OPENEXR_FOUND TRUE)
IF (OPENEXR_FOUND)
BREAK()
ENDIF()
UNSET(OPENEXR_INCLUDE_PATH)
UNSET(OPENEXR_VERSION_FILE)
UNSET(OPENEXR_VERSION_MAJOR)
UNSET(OPENEXR_VERSION_MINOR)
UNSET(OPENEXR_VERSION)
ENDFOREACH()
IF (OPENEXR_FOUND)
SET(OPENEXR_INCLUDE_PATHS ${OPENEXR_INCLUDE_PATH} CACHE PATH "The include paths needed to use OpenEXR")
SET(OPENEXR_LIBRARIES ${OPENEXR_IMATH_LIBRARY} ${OPENEXR_ILMIMF_LIBRARY} ${OPENEXR_IEX_LIBRARY} ${OPENEXR_HALF_LIBRARY} ${OPENEXR_ILMTHREAD_LIBRARY} CACHE STRING "The libraries needed to use OpenEXR" FORCE)
ENDIF ()

@ -63,7 +63,6 @@ foreach(mod ${OPENCV_MODULES_BUILD} ${OPENCV_MODULES_DISABLED_USER} ${OPENCV_MOD
unset(OPENCV_MODULE_${mod}_PRIVATE_OPT_DEPS CACHE)
unset(OPENCV_MODULE_${mod}_LINK_DEPS CACHE)
unset(OPENCV_MODULE_${mod}_WRAPPERS CACHE)
unset(OPENCV_DEPENDANT_TARGETS_${mod} CACHE)
endforeach()
# clean modules info which needs to be recalculated

@ -288,9 +288,22 @@ function(ocv_append_target_property target prop)
endif()
endfunction()
if(DEFINED OPENCV_DEPENDANT_TARGETS_LIST)
foreach(v ${OPENCV_DEPENDANT_TARGETS_LIST})
unset(${v} CACHE)
endforeach()
unset(OPENCV_DEPENDANT_TARGETS_LIST CACHE)
endif()
function(ocv_append_dependant_targets target)
#ocv_debug_message("ocv_append_dependant_targets(${target} ${ARGN})")
_ocv_fix_target(target)
list(FIND OPENCV_DEPENDANT_TARGETS_LIST "OPENCV_DEPENDANT_TARGETS_${target}" __id)
if(__id EQUAL -1)
list(APPEND OPENCV_DEPENDANT_TARGETS_LIST "OPENCV_DEPENDANT_TARGETS_${target}")
list(SORT OPENCV_DEPENDANT_TARGETS_LIST)
set(OPENCV_DEPENDANT_TARGETS_LIST "${OPENCV_DEPENDANT_TARGETS_LIST}" CACHE INTERNAL "")
endif()
set(OPENCV_DEPENDANT_TARGETS_${target} "${OPENCV_DEPENDANT_TARGETS_${target}};${ARGN}" CACHE INTERNAL "" FORCE)
endfunction()

@ -8,13 +8,13 @@ Learn to:
- Access pixel values and modify them
- Access image properties
- Setting Region of Interest (ROI)
- Splitting and Merging images
- Set a Region of Interest (ROI)
- Split and merge images
Almost all the operations in this section is mainly related to Numpy rather than OpenCV. A good
Almost all the operations in this section are mainly related to Numpy rather than OpenCV. A good
knowledge of Numpy is required to write better optimized code with OpenCV.
*( Examples will be shown in Python terminal since most of them are just single line codes )*
*( Examples will be shown in a Python terminal, since most of them are just single lines of code )*
Accessing and Modifying pixel values
------------------------------------
@ -45,15 +45,15 @@ You can modify the pixel values the same way.
[255 255 255]
@endcode
**warning**
**Warning**
Numpy is a optimized library for fast array calculations. So simply accessing each and every pixel
values and modifying it will be very slow and it is discouraged.
Numpy is an optimized library for fast array calculations. So simply accessing each and every pixel
value and modifying it will be very slow and it is discouraged.
@note The above method is normally used for selecting a region of an array, say the first 5 rows
and last 3 columns. For individual pixel access, the Numpy array methods, array.item() and
array.itemset() are considered better, however they always return a scalar. If you want to access
all B,G,R values, you need to call array.item() separately for all.
array.itemset() are considered better. They always return a scalar, however, so if you want to access
all the B,G,R values, you will need to call array.item() separately for each value.
Better pixel accessing and editing method :
@code{.py}
@ -70,11 +70,10 @@ Better pixel accessing and editing method :
Accessing Image Properties
--------------------------
Image properties include number of rows, columns and channels, type of image data, number of pixels
etc.
Image properties include number of rows, columns, and channels; type of image data; number of pixels; etc.
The shape of an image is accessed by img.shape. It returns a tuple of number of rows, columns, and channels
(if image is color):
The shape of an image is accessed by img.shape. It returns a tuple of the number of rows, columns, and channels
(if the image is color):
@code{.py}
>>> print( img.shape )
(342, 548, 3)
@ -95,13 +94,13 @@ uint8
@endcode
@note img.dtype is very important while debugging because a large number of errors in OpenCV-Python
code is caused by invalid datatype.
code are caused by invalid datatype.
Image ROI
---------
Sometimes, you will have to play with certain region of images. For eye detection in images, first
face detection is done all over the image. When a face is obtained, we select the face region alone
Sometimes, you will have to play with certain regions of images. For eye detection in images, first
face detection is done over the entire image. When a face is obtained, we select the face region alone
and search for eyes inside it instead of searching the whole image. It improves accuracy (because eyes
are always on faces :D ) and performance (because we search in a small area).
@ -118,9 +117,9 @@ Check the results below:
Splitting and Merging Image Channels
------------------------------------
Sometimes you will need to work separately on B,G,R channels of image. In this case, you need
to split the BGR images to single channels. In other cases, you may need to join these individual
channels to a BGR image. You can do it simply by:
Sometimes you will need to work separately on the B,G,R channels of an image. In this case, you need
to split the BGR image into single channels. In other cases, you may need to join these individual
channels to create a BGR image. You can do this simply by:
@code{.py}
>>> b,g,r = cv.split(img)
>>> img = cv.merge((b,g,r))
@ -129,7 +128,7 @@ Or
@code
>>> b = img[:,:,0]
@endcode
Suppose you want to set all the red pixels to zero, you do not need to split the channels first.
Suppose you want to set all the red pixels to zero - you do not need to split the channels first.
Numpy indexing is faster:
@code{.py}
>>> img[:,:,2] = 0
@ -137,13 +136,13 @@ Numpy indexing is faster:
**Warning**
cv.split() is a costly operation (in terms of time). So do it only if you need it. Otherwise go
cv.split() is a costly operation (in terms of time). So use it only if necessary. Otherwise go
for Numpy indexing.
Making Borders for Images (Padding)
-----------------------------------
If you want to create a border around the image, something like a photo frame, you can use
If you want to create a border around an image, something like a photo frame, you can use
**cv.copyMakeBorder()**. But it has more applications for convolution operation, zero
padding etc. This function takes following arguments:

@ -4,21 +4,20 @@ Arithmetic Operations on Images {#tutorial_py_image_arithmetics}
Goal
----
- Learn several arithmetic operations on images like addition, subtraction, bitwise operations
etc.
- You will learn these functions : **cv.add()**, **cv.addWeighted()** etc.
- Learn several arithmetic operations on images, like addition, subtraction, bitwise operations, and etc.
- Learn these functions: **cv.add()**, **cv.addWeighted()**, etc.
Image Addition
--------------
You can add two images by OpenCV function, cv.add() or simply by numpy operation,
res = img1 + img2. Both images should be of same depth and type, or second image can just be a
You can add two images with the OpenCV function, cv.add(), or simply by the numpy operation
res = img1 + img2. Both images should be of same depth and type, or the second image can just be a
scalar value.
@note There is a difference between OpenCV addition and Numpy addition. OpenCV addition is a
saturated operation while Numpy addition is a modulo operation.
For example, consider below sample:
For example, consider the below sample:
@code{.py}
>>> x = np.uint8([250])
>>> y = np.uint8([10])
@ -29,13 +28,12 @@ For example, consider below sample:
>>> print( x+y ) # 250+10 = 260 % 256 = 4
[4]
@endcode
It will be more visible when you add two images. OpenCV function will provide a better result. So
always better stick to OpenCV functions.
This will be more visible when you add two images. Stick with OpenCV functions, because they will provide a better result.
Image Blending
--------------
This is also image addition, but different weights are given to images so that it gives a feeling of
This is also image addition, but different weights are given to images in order to give a feeling of
blending or transparency. Images are added as per the equation below:
\f[g(x) = (1 - \alpha)f_{0}(x) + \alpha f_{1}(x)\f]
@ -43,8 +41,8 @@ blending or transparency. Images are added as per the equation below:
By varying \f$\alpha\f$ from \f$0 \rightarrow 1\f$, you can perform a cool transition between one image to
another.
Here I took two images to blend them together. First image is given a weight of 0.7 and second image
is given 0.3. cv.addWeighted() applies following equation on the image.
Here I took two images to blend together. The first image is given a weight of 0.7 and the second image
is given 0.3. cv.addWeighted() applies the following equation to the image:
\f[dst = \alpha \cdot img1 + \beta \cdot img2 + \gamma\f]
@ -66,14 +64,14 @@ Check the result below:
Bitwise Operations
------------------
This includes bitwise AND, OR, NOT and XOR operations. They will be highly useful while extracting
This includes the bitwise AND, OR, NOT, and XOR operations. They will be highly useful while extracting
any part of the image (as we will see in coming chapters), defining and working with non-rectangular
ROI etc. Below we will see an example on how to change a particular region of an image.
ROI's, and etc. Below we will see an example of how to change a particular region of an image.
I want to put OpenCV logo above an image. If I add two images, it will change color. If I blend it,
I get an transparent effect. But I want it to be opaque. If it was a rectangular region, I could use
ROI as we did in last chapter. But OpenCV logo is a not a rectangular shape. So you can do it with
bitwise operations as below:
I want to put the OpenCV logo above an image. If I add two images, it will change the color. If I blend them,
I get a transparent effect. But I want it to be opaque. If it was a rectangular region, I could use
ROI as we did in the last chapter. But the OpenCV logo is a not a rectangular shape. So you can do it with
bitwise operations as shown below:
@code{.py}
# Load two images
img1 = cv.imread('messi5.jpg')
@ -81,7 +79,7 @@ img2 = cv.imread('opencv-logo-white.png')
# I want to put logo on top-left corner, So I create a ROI
rows,cols,channels = img2.shape
roi = img1[0:rows, 0:cols ]
roi = img1[0:rows, 0:cols]
# Now create a mask of logo and create its inverse mask also
img2gray = cv.cvtColor(img2,cv.COLOR_BGR2GRAY)

@ -4,28 +4,27 @@ Performance Measurement and Improvement Techniques {#tutorial_py_optimization}
Goal
----
In image processing, since you are dealing with large number of operations per second, it is
mandatory that your code is not only providing the correct solution, but also in the fastest manner.
So in this chapter, you will learn
In image processing, since you are dealing with a large number of operations per second, it is mandatory that your code is not only providing the correct solution, but that it is also providing it in the fastest manner.
So in this chapter, you will learn:
- To measure the performance of your code.
- Some tips to improve the performance of your code.
- You will see these functions : **cv.getTickCount**, **cv.getTickFrequency** etc.
- You will see these functions: **cv.getTickCount**, **cv.getTickFrequency**, etc.
Apart from OpenCV, Python also provides a module **time** which is helpful in measuring the time of
execution. Another module **profile** helps to get detailed report on the code, like how much time
each function in the code took, how many times the function was called etc. But, if you are using
execution. Another module **profile** helps to get a detailed report on the code, like how much time
each function in the code took, how many times the function was called, etc. But, if you are using
IPython, all these features are integrated in an user-friendly manner. We will see some important
ones, and for more details, check links in **Additional Resources** section.
ones, and for more details, check links in the **Additional Resources** section.
Measuring Performance with OpenCV
---------------------------------
**cv.getTickCount** function returns the number of clock-cycles after a reference event (like the
moment machine was switched ON) to the moment this function is called. So if you call it before and
after the function execution, you get number of clock-cycles used to execute a function.
The **cv.getTickCount** function returns the number of clock-cycles after a reference event (like the
moment the machine was switched ON) to the moment this function is called. So if you call it before and
after the function execution, you get the number of clock-cycles used to execute a function.
**cv.getTickFrequency** function returns the frequency of clock-cycles, or the number of
The **cv.getTickFrequency** function returns the frequency of clock-cycles, or the number of
clock-cycles per second. So to find the time of execution in seconds, you can do following:
@code{.py}
e1 = cv.getTickCount()
@ -33,8 +32,8 @@ e1 = cv.getTickCount()
e2 = cv.getTickCount()
time = (e2 - e1)/ cv.getTickFrequency()
@endcode
We will demonstrate with following example. Following example apply median filtering with a kernel
of odd size ranging from 5 to 49. (Don't worry about what will the result look like, that is not our
We will demonstrate with following example. The following example applies median filtering with kernels
of odd sizes ranging from 5 to 49. (Don't worry about what the result will look like - that is not our
goal):
@code{.py}
img1 = cv.imread('messi5.jpg')
@ -48,16 +47,16 @@ print( t )
# Result I got is 0.521107655 seconds
@endcode
@note You can do the same with time module. Instead of cv.getTickCount, use time.time() function.
Then take the difference of two times.
@note You can do the same thing with the time module. Instead of cv.getTickCount, use the time.time() function.
Then take the difference of the two times.
Default Optimization in OpenCV
------------------------------
Many of the OpenCV functions are optimized using SSE2, AVX etc. It contains unoptimized code also.
Many of the OpenCV functions are optimized using SSE2, AVX, etc. It contains the unoptimized code also.
So if our system support these features, we should exploit them (almost all modern day processors
support them). It is enabled by default while compiling. So OpenCV runs the optimized code if it is
enabled, else it runs the unoptimized code. You can use **cv.useOptimized()** to check if it is
enabled, otherwise it runs the unoptimized code. You can use **cv.useOptimized()** to check if it is
enabled/disabled and **cv.setUseOptimized()** to enable/disable it. Let's see a simple example.
@code{.py}
# check if optimization is enabled
@ -76,8 +75,8 @@ Out[8]: False
In [9]: %timeit res = cv.medianBlur(img,49)
10 loops, best of 3: 64.1 ms per loop
@endcode
See, optimized median filtering is \~2x faster than unoptimized version. If you check its source,
you can see median filtering is SIMD optimized. So you can use this to enable optimization at the
As you can see, optimized median filtering is \~2x faster than the unoptimized version. If you check its source,
you can see that median filtering is SIMD optimized. So you can use this to enable optimization at the
top of your code (remember it is enabled by default).
Measuring Performance in IPython
@ -85,10 +84,10 @@ Measuring Performance in IPython
Sometimes you may need to compare the performance of two similar operations. IPython gives you a
magic command %timeit to perform this. It runs the code several times to get more accurate results.
Once again, they are suitable to measure single line codes.
Once again, it is suitable to measuring single lines of code.
For example, do you know which of the following addition operation is better, x = 5; y = x\*\*2,
x = 5; y = x\*x, x = np.uint8([5]); y = x\*x or y = np.square(x) ? We will find it with %timeit in
For example, do you know which of the following addition operations is better, x = 5; y = x\*\*2,
x = 5; y = x\*x, x = np.uint8([5]); y = x\*x, or y = np.square(x)? We will find out with %timeit in the
IPython shell.
@code{.py}
In [10]: x = 5
@ -108,15 +107,15 @@ In [19]: %timeit y=np.square(z)
1000000 loops, best of 3: 1.16 us per loop
@endcode
You can see that, x = 5 ; y = x\*x is fastest and it is around 20x faster compared to Numpy. If you
consider the array creation also, it may reach upto 100x faster. Cool, right? *(Numpy devs are
consider the array creation also, it may reach up to 100x faster. Cool, right? *(Numpy devs are
working on this issue)*
@note Python scalar operations are faster than Numpy scalar operations. So for operations including
one or two elements, Python scalar is better than Numpy arrays. Numpy takes advantage when size of
array is a little bit bigger.
one or two elements, Python scalar is better than Numpy arrays. Numpy has the advantage when the size of
the array is a little bit bigger.
We will try one more example. This time, we will compare the performance of **cv.countNonZero()**
and **np.count_nonzero()** for same image.
and **np.count_nonzero()** for the same image.
@code{.py}
In [35]: %timeit z = cv.countNonZero(img)
@ -125,7 +124,7 @@ In [35]: %timeit z = cv.countNonZero(img)
In [36]: %timeit z = np.count_nonzero(img)
1000 loops, best of 3: 370 us per loop
@endcode
See, OpenCV function is nearly 25x faster than Numpy function.
See, the OpenCV function is nearly 25x faster than the Numpy function.
@note Normally, OpenCV functions are faster than Numpy functions. So for same operation, OpenCV
functions are preferred. But, there can be exceptions, especially when Numpy works with views
@ -134,8 +133,8 @@ instead of copies.
More IPython magic commands
---------------------------
There are several other magic commands to measure the performance, profiling, line profiling, memory
measurement etc. They all are well documented. So only links to those docs are provided here.
There are several other magic commands to measure performance, profiling, line profiling, memory
measurement, and etc. They all are well documented. So only links to those docs are provided here.
Interested readers are recommended to try them out.
Performance Optimization Techniques
@ -143,19 +142,18 @@ Performance Optimization Techniques
There are several techniques and coding methods to exploit maximum performance of Python and Numpy.
Only relevant ones are noted here and links are given to important sources. The main thing to be
noted here is that, first try to implement the algorithm in a simple manner. Once it is working,
profile it, find the bottlenecks and optimize them.
noted here is, first try to implement the algorithm in a simple manner. Once it is working,
profile it, find the bottlenecks, and optimize them.
-# Avoid using loops in Python as far as possible, especially double/triple loops etc. They are
-# Avoid using loops in Python as much as possible, especially double/triple loops etc. They are
inherently slow.
2. Vectorize the algorithm/code to the maximum possible extent because Numpy and OpenCV are
2. Vectorize the algorithm/code to the maximum extent possible, because Numpy and OpenCV are
optimized for vector operations.
3. Exploit the cache coherence.
4. Never make copies of array unless it is needed. Try to use views instead. Array copying is a
4. Never make copies of an array unless it is necessary. Try to use views instead. Array copying is a
costly operation.
Even after doing all these operations, if your code is still slow, or use of large loops are
inevitable, use additional libraries like Cython to make it faster.
If your code is still slow after doing all of these operations, or if the use of large loops is inevitable, use additional libraries like Cython to make it faster.
Additional Resources
--------------------

@ -48,10 +48,8 @@ CMAKE_CONFIG_GENERATOR="Visual Studio 14 2015 Win64"
if [ ! -d "$myRepo/opencv" ]; then
echo "cloning opencv"
git clone https://github.com/opencv/opencv.git
mkdir Build
mkdir Build/opencv
mkdir Install
mkdir Install/opencv
mkdir -p Build/opencv
mkdir -p Install/opencv
else
cd opencv
git pull --rebase
@ -60,8 +58,7 @@ fi
if [ ! -d "$myRepo/opencv_contrib" ]; then
echo "cloning opencv_contrib"
git clone https://github.com/opencv/opencv_contrib.git
mkdir Build
mkdir Build/opencv_contrib
mkdir -p Build/opencv_contrib
else
cd opencv_contrib
git pull --rebase

@ -42,7 +42,7 @@ if(HAVE_CUDA)
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef -Wenum-compare -Wunused-function -Wshadow)
endif()
if(CV_TRACE AND HAVE_ITT AND BUILD_ITT)
if(CV_TRACE AND HAVE_ITT)
add_definitions(-DOPENCV_WITH_ITT=1)
endif()

@ -64,33 +64,30 @@ static void dumpOpenCLInformation()
std::vector<PlatformInfo> platforms;
cv::ocl::getPlatfomsInfo(platforms);
if (platforms.size() > 0)
{
DUMP_MESSAGE_STDOUT("OpenCL Platforms: ");
for (size_t i = 0; i < platforms.size(); i++)
{
const PlatformInfo* platform = &platforms[i];
DUMP_MESSAGE_STDOUT(" " << platform->name().c_str());
Device current_device;
for (int j = 0; j < platform->deviceNumber(); j++)
{
platform->getDevice(current_device, j);
const char* deviceTypeStr = current_device.type() == Device::TYPE_CPU
? ("CPU") : (current_device.type() == Device::TYPE_GPU ? current_device.hostUnifiedMemory() ? "iGPU" : "dGPU" : "unknown");
DUMP_MESSAGE_STDOUT( " " << deviceTypeStr << ": " << current_device.name().c_str() << " (" << current_device.version().c_str() << ")");
DUMP_CONFIG_PROPERTY( cv::format("cv_ocl_platform_%d_device_%d", (int)i, (int)j ),
cv::format("(Platform=%s)(Type=%s)(Name=%s)(Version=%s)",
platform->name().c_str(), deviceTypeStr, current_device.name().c_str(), current_device.version().c_str()) );
}
}
}
else
if (platforms.empty())
{
DUMP_MESSAGE_STDOUT("OpenCL is not available");
DUMP_CONFIG_PROPERTY("cv_ocl", "not available");
return;
}
DUMP_MESSAGE_STDOUT("OpenCL Platforms: ");
for (size_t i = 0; i < platforms.size(); i++)
{
const PlatformInfo* platform = &platforms[i];
DUMP_MESSAGE_STDOUT(" " << platform->name());
Device current_device;
for (int j = 0; j < platform->deviceNumber(); j++)
{
platform->getDevice(current_device, j);
const char* deviceTypeStr = (current_device.type() == Device::TYPE_CPU) ? "CPU" :
(current_device.type() == Device::TYPE_GPU ? current_device.hostUnifiedMemory() ? "iGPU" : "dGPU" : "unknown");
DUMP_MESSAGE_STDOUT( " " << deviceTypeStr << ": " << current_device.name() << " (" << current_device.version() << ")");
DUMP_CONFIG_PROPERTY( cv::format("cv_ocl_platform_%d_device_%d", (int)i, j ),
cv::format("(Platform=%s)(Type=%s)(Name=%s)(Version=%s)",
platform->name().c_str(), deviceTypeStr, current_device.name().c_str(), current_device.version().c_str()) );
}
}
const Device& device = Device::getDefault();
if (!device.available())
CV_Error(Error::OpenCLInitError, "OpenCL device is not available");
@ -102,8 +99,8 @@ static void dumpOpenCLInformation()
DUMP_CONFIG_PROPERTY("cv_ocl_current_platformName", device.getPlatform().name());
#endif
const char* deviceTypeStr = device.type() == Device::TYPE_CPU
? ("CPU") : (device.type() == Device::TYPE_GPU ? device.hostUnifiedMemory() ? "iGPU" : "dGPU" : "unknown");
const char* deviceTypeStr = (device.type() == Device::TYPE_CPU) ? "CPU" :
(device.type() == Device::TYPE_GPU ? device.hostUnifiedMemory() ? "iGPU" : "dGPU" : "unknown");
DUMP_MESSAGE_STDOUT(" Type = " << deviceTypeStr);
DUMP_CONFIG_PROPERTY("cv_ocl_current_deviceType", deviceTypeStr);
@ -156,7 +153,7 @@ static void dumpOpenCLInformation()
}
pos = pos2 + 1;
}
DUMP_CONFIG_PROPERTY("cv_ocl_current_extensions", extensionsStr.c_str());
DUMP_CONFIG_PROPERTY("cv_ocl_current_extensions", extensionsStr);
const char* haveAmdBlasStr = haveAmdBlas() ? "Yes" : "No";
DUMP_MESSAGE_STDOUT(" Has AMD Blas = " << haveAmdBlasStr);

@ -2032,16 +2032,25 @@ struct Context::Impl
0
};
cl_uint i, nd0 = 0, nd = 0;
cl_uint nd0 = 0;
int dtype = dtype0 & 15;
CV_OCL_DBG_CHECK(clGetDeviceIDs(pl, dtype, 0, 0, &nd0));
cl_int status = clGetDeviceIDs(pl, dtype, 0, NULL, &nd0);
if (status != CL_DEVICE_NOT_FOUND) // Not an error if platform has no devices
{
CV_OCL_DBG_CHECK_RESULT(status,
cv::format("clGetDeviceIDs(platform=%p, device_type=%d, num_entries=0, devices=NULL, numDevices=%p)", pl, dtype, &nd0).c_str());
}
if (nd0 == 0)
return;
AutoBuffer<void*> dlistbuf(nd0*2+1);
cl_device_id* dlist = (cl_device_id*)dlistbuf.data();
cl_device_id* dlist_new = dlist + nd0;
CV_OCL_DBG_CHECK(clGetDeviceIDs(pl, dtype, nd0, dlist, &nd0));
String name0;
cl_uint i, nd = 0;
String name0;
for(i = 0; i < nd0; i++)
{
Device d(dlist[i]);
@ -5941,7 +5950,12 @@ void convertFromImage(void* cl_mem_image, UMat& dst)
static void getDevices(std::vector<cl_device_id>& devices, cl_platform_id platform)
{
cl_uint numDevices = 0;
CV_OCL_DBG_CHECK(clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL, 0, NULL, &numDevices));
cl_int status = clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL, 0, NULL, &numDevices);
if (status != CL_DEVICE_NOT_FOUND) // Not an error if platform has no devices
{
CV_OCL_DBG_CHECK_RESULT(status,
cv::format("clGetDeviceIDs(platform, Device::TYPE_ALL, num_entries=0, devices=NULL, numDevices=%p)", &numDevices).c_str());
}
if (numDevices == 0)
{

@ -6,7 +6,7 @@
#define OPENCV_DNN_VERSION_HPP
/// Use with major OpenCV version only.
#define OPENCV_DNN_API_VERSION 20191024
#define OPENCV_DNN_API_VERSION 20191111
#if !defined CV_DOXYGEN && !defined CV_STATIC_ANALYSIS && !defined CV_DNN_DONT_ADD_INLINE_NS
#define CV__DNN_INLINE_NS __CV_CAT(dnn4_v, OPENCV_DNN_API_VERSION)

@ -3450,14 +3450,11 @@ Ptr<Layer> Net::getLayer(LayerId layerId)
std::vector<Ptr<Layer> > Net::getLayerInputs(LayerId layerId)
{
LayerData &ld = impl->getLayerData(layerId);
if (!ld.layerInstance)
CV_Error(Error::StsNullPtr, format("Requested layer \"%s\" was not initialized", ld.name.c_str()));
std::vector<Ptr<Layer> > inputLayers;
inputLayers.reserve(ld.inputLayersId.size());
std::set<int>::iterator it;
for (it = ld.inputLayersId.begin(); it != ld.inputLayersId.end(); ++it) {
inputLayers.push_back(getLayer(*it));
inputLayers.reserve(ld.inputBlobsId.size());
for (int i = 0; i < ld.inputBlobsId.size(); ++i) {
inputLayers.push_back(getLayer(ld.inputBlobsId[i].lid));
}
return inputLayers;
}

@ -68,6 +68,7 @@ public:
PROD = 0,
SUM = 1,
MAX = 2,
DIV = 3
} op;
std::vector<float> coeffs;
bool variableChannels;
@ -85,6 +86,8 @@ public:
op = SUM;
else if (operation == "max")
op = MAX;
else if (operation == "div")
op = DIV;
else
CV_Error(cv::Error::StsBadArg, "Unknown operation type \"" + operation + "\"");
}
@ -104,8 +107,8 @@ public:
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
(backendId == DNN_BACKEND_CUDA && op != DIV) || // TODO: not implemented, see PR #15811
(backendId == DNN_BACKEND_HALIDE && op != DIV) || // TODO: not implemented, see PR #15811
(backendId == DNN_BACKEND_INFERENCE_ENGINE && !variableChannels &&
(preferableTarget != DNN_TARGET_OPENCL || coeffs.empty()));
}
@ -278,6 +281,18 @@ public:
srcptr0 = (const float*)dstptr;
}
}
else if( op == DIV )
{
for( k = 1; k < n; k++ )
{
const float* srcptr1 = srcs[k]->ptr<float>() + globalDelta;
for( j = 0; j < blockSize; j++ )
{
dstptr[j] = srcptr0[j]/srcptr1[j];
}
srcptr0 = (const float*)dstptr;
}
}
else if( op == MAX )
{
for( k = 1; k < n; k++ )
@ -400,6 +415,11 @@ public:
for (int i = 2; i < inputs.size(); ++i)
multiply(inputs[i], outputs[0], outputs[0]);
break;
case DIV:
divide(inputs[0], inputs[1], outputs[0]);
for (int i = 2; i < inputs.size(); ++i)
divide(outputs[0], inputs[i], outputs[0]);
break;
case MAX:
max(inputs[0], inputs[1], outputs[0]);
for (int i = 2; i < inputs.size(); ++i)
@ -515,6 +535,8 @@ public:
ieLayer.setEltwiseType(InferenceEngine::Builder::EltwiseLayer::EltwiseType::SUM);
else if (op == PROD)
ieLayer.setEltwiseType(InferenceEngine::Builder::EltwiseLayer::EltwiseType::MUL);
else if (op == DIV)
ieLayer.setEltwiseType(InferenceEngine::Builder::EltwiseLayer::EltwiseType::DIV);
else if (op == MAX)
ieLayer.setEltwiseType(InferenceEngine::Builder::EltwiseLayer::EltwiseType::MAX);
else

@ -520,19 +520,27 @@ void ONNXImporter::populateNet(Net dstNet)
}
else if (layer_type == "Div")
{
Mat blob = getBlob(node_proto, constBlobs, 1);
CV_Assert_N(blob.type() == CV_32F, blob.total());
if (blob.total() == 1)
if (constBlobs.find(node_proto.input(1)) == constBlobs.end())
{
layerParams.set("scale", 1.0f / blob.at<float>(0));
layerParams.type = "Power";
layerParams.type = "Eltwise";
layerParams.set("operation", "div");
}
else
{
layerParams.type = "Scale";
divide(1.0, blob, blob);
layerParams.blobs.push_back(blob);
layerParams.set("bias_term", false);
Mat blob = getBlob(node_proto, constBlobs, 1);
CV_Assert_N(blob.type() == CV_32F, blob.total());
if (blob.total() == 1)
{
layerParams.set("scale", 1.0f / blob.at<float>(0));
layerParams.type = "Power";
}
else
{
layerParams.type = "Scale";
divide(1.0, blob, blob);
layerParams.blobs.push_back(blob);
layerParams.set("bias_term", false);
}
}
}
else if (layer_type == "Neg")
@ -771,6 +779,32 @@ void ONNXImporter::populateNet(Net dstNet)
continue;
}
}
else if (layer_type == "ReduceL2")
{
CV_Assert_N(node_proto.input_size() == 1, layerParams.has("axes"));
CV_Assert(graph_proto.node_size() > li + 1 && graph_proto.node(li + 1).op_type() == "Div");
++li;
layerParams.type = "Normalize";
DictValue axes_dict = layerParams.get("axes");
if (axes_dict.size() != 1)
CV_Error(Error::StsNotImplemented, "Multidimensional reduceL2");
int axis = axes_dict.getIntValue(0);
layerParams.set("axis",axis);
layerParams.set("end_axis", axis);
}
else if (layer_type == "Squeeze")
{
CV_Assert_N(node_proto.input_size() == 1, layerParams.has("axes"));
DictValue axes_dict = layerParams.get("axes");
if (axes_dict.size() != 1)
CV_Error(Error::StsNotImplemented, "Multidimensional squeeze");
int axis = axes_dict.getIntValue(0);
layerParams.set("axis", axis - 1);
layerParams.set("end_axis", axis);
layerParams.type = "Flatten";
}
else if (layer_type == "Unsqueeze")
{
CV_Assert(node_proto.input_size() == 1);

@ -86,6 +86,8 @@ TEST_P(dump, Regression)
Net net = readNet(findDataFile("dnn/squeezenet_v1.1.prototxt"),
findDataFile("dnn/squeezenet_v1.1.caffemodel", false));
ASSERT_EQ(net.getLayerInputs(net.getLayerId("fire2/concat")).size(), 2);
int size[] = {1, 3, 227, 227};
Mat input = cv::Mat::ones(4, size, CV_32F);
net.setInput(input);

@ -322,6 +322,28 @@ TEST_P(Test_ONNX_layers, MultyInputs)
expectNoFallbacksFromIE(net);
}
TEST_P(Test_ONNX_layers, Div)
{
const String model = _tf("models/div.onnx");
Net net = readNetFromONNX(model);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat inp1 = blobFromNPY(_tf("data/input_div_0.npy"));
Mat inp2 = blobFromNPY(_tf("data/input_div_1.npy"));
Mat ref = blobFromNPY(_tf("data/output_div.npy"));
checkBackend(&inp1, &ref);
net.setInput(inp1, "0");
net.setInput(inp2, "1");
Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf);
expectNoFallbacksFromIE(net);
}
TEST_P(Test_ONNX_layers, DynamicReshape)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
@ -337,6 +359,16 @@ TEST_P(Test_ONNX_layers, Reshape)
testONNXModels("unsqueeze");
}
TEST_P(Test_ONNX_layers, Squeeze)
{
testONNXModels("squeeze");
}
TEST_P(Test_ONNX_layers, ReduceL2)
{
testONNXModels("reduceL2");
}
TEST_P(Test_ONNX_layers, Slice)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)

@ -38,8 +38,10 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/hal/intrin.hpp"
namespace cv
{
@ -211,7 +213,7 @@ struct MomentsInTile_SIMD
}
};
#if CV_SSE2
#if CV_SIMD128
template <>
struct MomentsInTile_SIMD<uchar, int, int>
@ -226,115 +228,33 @@ struct MomentsInTile_SIMD<uchar, int, int>
int x = 0;
{
__m128i dx = _mm_set1_epi16(8);
__m128i z = _mm_setzero_si128(), qx0 = z, qx1 = z, qx2 = z, qx3 = z, qx = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7);
v_int16x8 dx = v_setall_s16(8), qx = v_int16x8(0, 1, 2, 3, 4, 5, 6, 7);
v_uint32x4 z = v_setzero_u32(), qx0 = z, qx1 = z, qx2 = z, qx3 = z;
for( ; x <= len - 8; x += 8 )
{
__m128i p = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr + x)), z);
__m128i sx = _mm_mullo_epi16(qx, qx);
v_int16x8 p = v_reinterpret_as_s16(v_load_expand(ptr + x));
v_int16x8 sx = v_mul_wrap(qx, qx);
qx0 = _mm_add_epi16(qx0, p);
qx1 = _mm_add_epi32(qx1, _mm_madd_epi16(p, qx));
qx2 = _mm_add_epi32(qx2, _mm_madd_epi16(p, sx));
qx3 = _mm_add_epi32(qx3, _mm_madd_epi16( _mm_mullo_epi16(p, qx), sx));
qx0 += v_reinterpret_as_u32(p);
qx1 = v_reinterpret_as_u32(v_dotprod(p, qx, v_reinterpret_as_s32(qx1)));
qx2 = v_reinterpret_as_u32(v_dotprod(p, sx, v_reinterpret_as_s32(qx2)));
qx3 = v_reinterpret_as_u32(v_dotprod(v_mul_wrap(p, qx), sx, v_reinterpret_as_s32(qx3)));
qx = _mm_add_epi16(qx, dx);
qx += dx;
}
__m128i qx01_lo = _mm_unpacklo_epi32(qx0, qx1);
__m128i qx23_lo = _mm_unpacklo_epi32(qx2, qx3);
__m128i qx01_hi = _mm_unpackhi_epi32(qx0, qx1);
__m128i qx23_hi = _mm_unpackhi_epi32(qx2, qx3);
qx01_lo = _mm_add_epi32(qx01_lo, qx01_hi);
qx23_lo = _mm_add_epi32(qx23_lo, qx23_hi);
__m128i qx0123_lo = _mm_unpacklo_epi64(qx01_lo, qx23_lo);
__m128i qx0123_hi = _mm_unpackhi_epi64(qx01_lo, qx23_lo);
qx0123_lo = _mm_add_epi32(qx0123_lo, qx0123_hi);
_mm_store_si128((__m128i*)buf, qx0123_lo);
x0 = (buf[0] & 0xffff) + (buf[0] >> 16);
x1 = buf[1];
x2 = buf[2];
x3 = buf[3];
x0 = v_reduce_sum(qx0);
x0 = (x0 & 0xffff) + (x0 >> 16);
x1 = v_reduce_sum(qx1);
x2 = v_reduce_sum(qx2);
x3 = v_reduce_sum(qx3);
}
return x;
}
int CV_DECL_ALIGNED(16) buf[4];
};
#elif CV_NEON
template <>
struct MomentsInTile_SIMD<uchar, int, int>
{
MomentsInTile_SIMD()
{
ushort CV_DECL_ALIGNED(8) init[4] = { 0, 1, 2, 3 };
qx_init = vld1_u16(init);
v_step = vdup_n_u16(4);
}
int operator() (const uchar * ptr, int len, int & x0, int & x1, int & x2, int & x3)
{
int x = 0;
uint32x4_t v_z = vdupq_n_u32(0), v_x0 = v_z, v_x1 = v_z,
v_x2 = v_z, v_x3 = v_z;
uint16x4_t qx = qx_init;
for( ; x <= len - 8; x += 8 )
{
uint16x8_t v_src = vmovl_u8(vld1_u8(ptr + x));
// first part
uint32x4_t v_qx = vmovl_u16(qx);
uint16x4_t v_p = vget_low_u16(v_src);
uint32x4_t v_px = vmull_u16(qx, v_p);
v_x0 = vaddw_u16(v_x0, v_p);
v_x1 = vaddq_u32(v_x1, v_px);
v_px = vmulq_u32(v_px, v_qx);
v_x2 = vaddq_u32(v_x2, v_px);
v_x3 = vaddq_u32(v_x3, vmulq_u32(v_px, v_qx));
qx = vadd_u16(qx, v_step);
// second part
v_qx = vmovl_u16(qx);
v_p = vget_high_u16(v_src);
v_px = vmull_u16(qx, v_p);
v_x0 = vaddw_u16(v_x0, v_p);
v_x1 = vaddq_u32(v_x1, v_px);
v_px = vmulq_u32(v_px, v_qx);
v_x2 = vaddq_u32(v_x2, v_px);
v_x3 = vaddq_u32(v_x3, vmulq_u32(v_px, v_qx));
qx = vadd_u16(qx, v_step);
}
vst1q_u32(buf, v_x0);
x0 = buf[0] + buf[1] + buf[2] + buf[3];
vst1q_u32(buf, v_x1);
x1 = buf[0] + buf[1] + buf[2] + buf[3];
vst1q_u32(buf, v_x2);
x2 = buf[0] + buf[1] + buf[2] + buf[3];
vst1q_u32(buf, v_x3);
x3 = buf[0] + buf[1] + buf[2] + buf[3];
return x;
}
uint CV_DECL_ALIGNED(16) buf[4];
uint16x4_t qx_init, v_step;
};
#endif
#if CV_SSE4_1
template <>
struct MomentsInTile_SIMD<ushort, int, int64>
{
@ -348,49 +268,39 @@ struct MomentsInTile_SIMD<ushort, int, int64>
int x = 0;
{
__m128i v_delta = _mm_set1_epi32(4), v_zero = _mm_setzero_si128(), v_x0 = v_zero,
v_x1 = v_zero, v_x2 = v_zero, v_x3 = v_zero, v_ix0 = _mm_setr_epi32(0, 1, 2, 3);
v_int32x4 v_delta = v_setall_s32(4), v_ix0 = v_int32x4(0, 1, 2, 3);
v_uint32x4 z = v_setzero_u32(), v_x0 = z, v_x1 = z, v_x2 = z;
v_uint64x2 v_x3 = v_reinterpret_as_u64(z);
for( ; x <= len - 4; x += 4 )
{
__m128i v_src = _mm_loadl_epi64((const __m128i *)(ptr + x));
v_src = _mm_unpacklo_epi16(v_src, v_zero);
v_int32x4 v_src = v_reinterpret_as_s32(v_load_expand(ptr + x));
v_x0 = _mm_add_epi32(v_x0, v_src);
v_x1 = _mm_add_epi32(v_x1, _mm_mullo_epi32(v_src, v_ix0));
v_x0 += v_reinterpret_as_u32(v_src);
v_x1 += v_reinterpret_as_u32(v_src * v_ix0);
__m128i v_ix1 = _mm_mullo_epi32(v_ix0, v_ix0);
v_x2 = _mm_add_epi32(v_x2, _mm_mullo_epi32(v_src, v_ix1));
v_int32x4 v_ix1 = v_ix0 * v_ix0;
v_x2 += v_reinterpret_as_u32(v_src * v_ix1);
v_ix1 = _mm_mullo_epi32(v_ix0, v_ix1);
v_src = _mm_mullo_epi32(v_src, v_ix1);
v_x3 = _mm_add_epi64(v_x3, _mm_add_epi64(_mm_unpacklo_epi32(v_src, v_zero), _mm_unpackhi_epi32(v_src, v_zero)));
v_ix1 = v_ix0 * v_ix1;
v_src = v_src * v_ix1;
v_uint64x2 v_lo, v_hi;
v_expand(v_reinterpret_as_u32(v_src), v_lo, v_hi);
v_x3 += v_lo + v_hi;
v_ix0 = _mm_add_epi32(v_ix0, v_delta);
v_ix0 += v_delta;
}
__m128i v_x01_lo = _mm_unpacklo_epi32(v_x0, v_x1);
__m128i v_x22_lo = _mm_unpacklo_epi32(v_x2, v_x2);
__m128i v_x01_hi = _mm_unpackhi_epi32(v_x0, v_x1);
__m128i v_x22_hi = _mm_unpackhi_epi32(v_x2, v_x2);
v_x01_lo = _mm_add_epi32(v_x01_lo, v_x01_hi);
v_x22_lo = _mm_add_epi32(v_x22_lo, v_x22_hi);
__m128i v_x0122_lo = _mm_unpacklo_epi64(v_x01_lo, v_x22_lo);
__m128i v_x0122_hi = _mm_unpackhi_epi64(v_x01_lo, v_x22_lo);
v_x0122_lo = _mm_add_epi32(v_x0122_lo, v_x0122_hi);
_mm_store_si128((__m128i*)buf64, v_x3);
_mm_store_si128((__m128i*)buf, v_x0122_lo);
x0 = buf[0];
x1 = buf[1];
x2 = buf[2];
x0 = v_reduce_sum(v_x0);
x1 = v_reduce_sum(v_x1);
x2 = v_reduce_sum(v_x2);
v_store_aligned(buf64, v_reinterpret_as_s64(v_x3));
x3 = buf64[0] + buf64[1];
}
return x;
}
int CV_DECL_ALIGNED(16) buf[4];
int64 CV_DECL_ALIGNED(16) buf64[2];
};

@ -38,6 +38,10 @@
// the use of this software, even if advised of the possibility of such damage.
//
if (typeof Module.FS === 'undefined' && typeof FS !== 'undefined') {
Module.FS = FS;
}
Module['imread'] = function(imageSource) {
var img = null;
if (typeof imageSource === 'string') {

@ -687,18 +687,20 @@ bool GStreamerCapture::open(const String &filename_)
// else, we might have a file or a manual pipeline.
// if gstreamer cannot parse the manual pipeline, we assume we were given and
// ordinary file path.
CV_LOG_INFO(NULL, "OpenCV | GStreamer: " << filename);
if (!gst_uri_is_valid(filename))
{
if (utils::fs::exists(filename_))
{
uri.attach(g_filename_to_uri(filename, NULL, NULL));
GSafePtr<GError> err;
uri.attach(gst_filename_to_uri(filename, err.getRef()));
if (uri)
{
file = true;
}
else
{
CV_WARN("Error opening file: " << filename << " (" << uri.get() << ")");
CV_WARN("Error opening file: " << filename << " (" << err->message << ")");
return false;
}
}
@ -718,7 +720,7 @@ bool GStreamerCapture::open(const String &filename_)
{
uri.attach(g_strdup(filename));
}
CV_LOG_INFO(NULL, "OpenCV | GStreamer: mode - " << (file ? "FILE" : manualpipeline ? "MANUAL" : "URI"));
bool element_from_uri = false;
if (!uridecodebin)
{

Loading…
Cancel
Save