mirror of https://github.com/opencv/opencv.git
parent
518486ed3d
commit
b5a189a978
1 changed files with 0 additions and 308 deletions
@ -1,308 +0,0 @@ |
||||
// Copyright (c) 2020, Viktor Larsson
|
||||
// All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistributions in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in the
|
||||
// documentation and/or other materials provided with the distribution.
|
||||
//
|
||||
// * Neither the name of the copyright holder nor the
|
||||
// names of its contributors may be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
// ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
|
||||
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
#include "../precomp.hpp" |
||||
#include "../usac.hpp" |
||||
|
||||
namespace cv { namespace usac { |
||||
class MlesacLoss { |
||||
public: |
||||
MlesacLoss(double threshold) : squared_thr(threshold * threshold), norm_thr(squared_thr*3), one_over_thr(1/norm_thr), inv_sq_thr(1/squared_thr) {} |
||||
double loss(double r2) const { |
||||
return r2 < norm_thr ? r2 * one_over_thr - 1 : 0; |
||||
} |
||||
double weight(double r2) const { |
||||
// use Cauchly weight
|
||||
return 1.0 / (1.0 + r2 * inv_sq_thr); |
||||
} |
||||
const double squared_thr; |
||||
private: |
||||
const double norm_thr, one_over_thr, inv_sq_thr; |
||||
}; |
||||
|
||||
class RelativePoseJacobianAccumulator { |
||||
private: |
||||
const Mat* correspondences; |
||||
const std::vector<int> &sample; |
||||
const int sample_size; |
||||
const MlesacLoss &loss_fn; |
||||
const double *weights; |
||||
|
||||
public: |
||||
RelativePoseJacobianAccumulator( |
||||
const Mat& correspondences_, |
||||
const std::vector<int> &sample_, |
||||
const int sample_size_, |
||||
const MlesacLoss &l, |
||||
const double *w = nullptr) : |
||||
correspondences(&correspondences_), |
||||
sample(sample_), |
||||
sample_size(sample_size_), |
||||
loss_fn(l), |
||||
weights(w) {} |
||||
|
||||
Matx33d essential_from_motion(const CameraPose &pose) const { |
||||
return Matx33d(0.0, -pose.t(2), pose.t(1), |
||||
pose.t(2), 0.0, -pose.t(0), |
||||
-pose.t(1), pose.t(0), 0.0) * pose.R; |
||||
} |
||||
|
||||
double residual(const CameraPose &pose) const { |
||||
const Matx33d E = essential_from_motion(pose); |
||||
const float m11=static_cast<float>(E(0,0)), m12=static_cast<float>(E(0,1)), m13=static_cast<float>(E(0,2)); |
||||
const float m21=static_cast<float>(E(1,0)), m22=static_cast<float>(E(1,1)), m23=static_cast<float>(E(1,2)); |
||||
const float m31=static_cast<float>(E(2,0)), m32=static_cast<float>(E(2,1)), m33=static_cast<float>(E(2,2)); |
||||
const auto * const pts = (float *) correspondences->data; |
||||
double cost = 0.0; |
||||
for (int k = 0; k < sample_size; ++k) { |
||||
const int idx = 4*sample[k]; |
||||
const float x1=pts[idx], y1=pts[idx+1], x2=pts[idx+2], y2=pts[idx+3]; |
||||
const float F_pt1_x = m11 * x1 + m12 * y1 + m13, |
||||
F_pt1_y = m21 * x1 + m22 * y1 + m23; |
||||
const float pt2_F_x = x2 * m11 + y2 * m21 + m31, |
||||
pt2_F_y = x2 * m12 + y2 * m22 + m32; |
||||
const float pt2_F_pt1 = x2 * F_pt1_x + y2 * F_pt1_y + m31 * x1 + m32 * y1 + m33; |
||||
const float r2 = pt2_F_pt1 * pt2_F_pt1 / (F_pt1_x * F_pt1_x + F_pt1_y * F_pt1_y + |
||||
pt2_F_x * pt2_F_x + pt2_F_y * pt2_F_y); |
||||
if (weights == nullptr) |
||||
cost += loss_fn.loss(r2); |
||||
else cost += weights[k] * loss_fn.loss(r2); |
||||
} |
||||
return cost; |
||||
} |
||||
|
||||
void accumulate(const CameraPose &pose, Matx<double, 5, 5> &JtJ, Matx<double, 5, 1> &Jtr, Matx<double, 3, 2> &tangent_basis) const { |
||||
const auto * const pts = (float *) correspondences->data; |
||||
// We start by setting up a basis for the updates in the translation (orthogonal to t)
|
||||
// We find the minimum element of t and cross product with the corresponding basis vector.
|
||||
// (this ensures that the first cross product is not close to the zero vector)
|
||||
Vec3d tangent_basis_col0; |
||||
if (std::abs(pose.t(0)) < std::abs(pose.t(1))) { |
||||
// x < y
|
||||
if (std::abs(pose.t(0)) < std::abs(pose.t(2))) { |
||||
tangent_basis_col0 = pose.t.cross(Vec3d(1,0,0)); |
||||
} else { |
||||
tangent_basis_col0 = pose.t.cross(Vec3d(0,0,1)); |
||||
} |
||||
} else { |
||||
// x > y
|
||||
if (std::abs(pose.t(1)) < std::abs(pose.t(2))) { |
||||
tangent_basis_col0 = pose.t.cross(Vec3d(0,1,0)); |
||||
} else { |
||||
tangent_basis_col0 = pose.t.cross(Vec3d(0,0,1)); |
||||
} |
||||
} |
||||
tangent_basis_col0 /= norm(tangent_basis_col0); |
||||
Vec3d tangent_basis_col1 = pose.t.cross(tangent_basis_col0); |
||||
tangent_basis_col1 /= norm(tangent_basis_col1); |
||||
for (int i = 0; i < 3; i++) { |
||||
tangent_basis(i,0) = tangent_basis_col0(i); |
||||
tangent_basis(i,1) = tangent_basis_col1(i); |
||||
} |
||||
|
||||
const Matx33d E = essential_from_motion(pose); |
||||
|
||||
// Matrices contain the jacobians of E w.r.t. the rotation and translation parameters
|
||||
// Each column is vec(E*skew(e_k)) where e_k is k:th basis vector
|
||||
const Matx<double, 9, 3> dR = {0., -E(0,2), E(0,1), |
||||
0., -E(1,2), E(1,1), |
||||
0., -E(2,2), E(2,1), |
||||
E(0,2), 0., -E(0,0), |
||||
E(1,2), 0., -E(1,0), |
||||
E(2,2), 0., -E(2,0), |
||||
-E(0,1), E(0,0), 0., |
||||
-E(1,1), E(1,0), 0., |
||||
-E(2,1), E(2,0), 0.}; |
||||
|
||||
Matx<double, 9, 2> dt; |
||||
// Each column is vec(skew(tangent_basis[k])*R)
|
||||
for (int i = 0; i <= 2; i+=1) { |
||||
const Vec3d r_i(pose.R(0,i), pose.R(1,i), pose.R(2,i)); |
||||
for (int j = 0; j <= 1; j+= 1) { |
||||
const Vec3d v = (j == 0 ? tangent_basis_col0 : tangent_basis_col1).cross(r_i); |
||||
for (int k = 0; k < 3; k++) { |
||||
dt(3*i+k,j) = v[k]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
for (int k = 0; k < sample_size; ++k) { |
||||
const auto point_idx = 4*sample[k]; |
||||
const Vec3d pt1 (pts[point_idx], pts[point_idx+1], 1), pt2 (pts[point_idx+2], pts[point_idx+3], 1); |
||||
const double C = pt2.dot(E * pt1); |
||||
|
||||
// J_C is the Jacobian of the epipolar constraint w.r.t. the image points
|
||||
const Vec4d J_C ((E.col(0).t() * pt2)[0], (E.col(1).t() * pt2)[0], (E.row(0) * pt1)[0], (E.row(1) * pt1)[0]); |
||||
const double nJ_C = norm(J_C); |
||||
const double inv_nJ_C = 1.0 / nJ_C; |
||||
const double r = C * inv_nJ_C; |
||||
|
||||
if (r*r > loss_fn.squared_thr) continue; |
||||
|
||||
// Compute weight from robust loss function (used in the IRLS)
|
||||
double weight = loss_fn.weight(r * r) / sample_size; |
||||
if (weights != nullptr) |
||||
weight = weights[k] * weight; |
||||
|
||||
if(weight < DBL_EPSILON) |
||||
continue; |
||||
|
||||
// Compute Jacobian of Sampson error w.r.t the fundamental/essential matrix (3x3)
|
||||
Matx<double, 1, 9> dF (pt1(0) * pt2(0), pt1(0) * pt2(1), pt1(0), pt1(1) * pt2(0), pt1(1) * pt2(1), pt1(1), pt2(0), pt2(1), 1.0); |
||||
const double s = C * inv_nJ_C * inv_nJ_C; |
||||
dF(0) -= s * (J_C(2) * pt1(0) + J_C(0) * pt2(0)); |
||||
dF(1) -= s * (J_C(3) * pt1(0) + J_C(0) * pt2(1)); |
||||
dF(2) -= s * (J_C(0)); |
||||
dF(3) -= s * (J_C(2) * pt1(1) + J_C(1) * pt2(0)); |
||||
dF(4) -= s * (J_C(3) * pt1(1) + J_C(1) * pt2(1)); |
||||
dF(5) -= s * (J_C(1)); |
||||
dF(6) -= s * (J_C(2)); |
||||
dF(7) -= s * (J_C(3)); |
||||
dF *= inv_nJ_C; |
||||
|
||||
// and then w.r.t. the pose parameters (rotation + tangent basis for translation)
|
||||
const Matx13d dFdR = dF * dR; |
||||
const Matx12d dFdt = dF * dt; |
||||
const Matx<double, 1, 5> J (dFdR(0), dFdR(1), dFdR(2), dFdt(0), dFdt(1)); |
||||
|
||||
// Accumulate into JtJ and Jtr
|
||||
Jtr += weight * C * inv_nJ_C * J.t(); |
||||
JtJ(0, 0) += weight * (J(0) * J(0)); |
||||
JtJ(1, 0) += weight * (J(1) * J(0)); |
||||
JtJ(1, 1) += weight * (J(1) * J(1)); |
||||
JtJ(2, 0) += weight * (J(2) * J(0)); |
||||
JtJ(2, 1) += weight * (J(2) * J(1)); |
||||
JtJ(2, 2) += weight * (J(2) * J(2)); |
||||
JtJ(3, 0) += weight * (J(3) * J(0)); |
||||
JtJ(3, 1) += weight * (J(3) * J(1)); |
||||
JtJ(3, 2) += weight * (J(3) * J(2)); |
||||
JtJ(3, 3) += weight * (J(3) * J(3)); |
||||
JtJ(4, 0) += weight * (J(4) * J(0)); |
||||
JtJ(4, 1) += weight * (J(4) * J(1)); |
||||
JtJ(4, 2) += weight * (J(4) * J(2)); |
||||
JtJ(4, 3) += weight * (J(4) * J(3)); |
||||
JtJ(4, 4) += weight * (J(4) * J(4)); |
||||
} |
||||
} |
||||
}; |
||||
|
||||
bool satisfyCheirality (const Matx33d& R, const Vec3d &t, const Vec3d &x1, const Vec3d &x2) { |
||||
// This code assumes that x1 and x2 are unit vectors
|
||||
const auto Rx1 = R * x1; |
||||
// lambda_2 * x2 = R * ( lambda_1 * x1 ) + t
|
||||
// [1 a; a 1] * [lambda1; lambda2] = [b1; b2]
|
||||
// [lambda1; lambda2] = [1 -a; -a 1] * [b1; b2] / (1 - a*a)
|
||||
const double a = -Rx1.dot(x2), b1 = -Rx1.dot(t), b2 = x2.dot(t); |
||||
// Note that we drop the factor 1.0/(1-a*a) since it is always positive.
|
||||
return (b1 - a * b2 > 0) && (-a * b1 + b2 > 0); |
||||
} |
||||
|
||||
int refine_relpose(const Mat &correspondences_, |
||||
const std::vector<int> &sample_, |
||||
const int sample_size_, |
||||
CameraPose *pose, |
||||
const BundleOptions &opt, |
||||
const double* weights) { |
||||
MlesacLoss loss_fn(opt.loss_scale); |
||||
RelativePoseJacobianAccumulator accum(correspondences_, sample_, sample_size_, loss_fn, weights); |
||||
// return lm_5dof_impl(accum, pose, opt);
|
||||
|
||||
Matx<double, 5, 5> JtJ; |
||||
Matx<double, 5, 1> Jtr; |
||||
Matx<double, 3, 2> tangent_basis; |
||||
Matx33d sw = Matx33d::zeros(); |
||||
double lambda = opt.initial_lambda; |
||||
|
||||
// Compute initial cost
|
||||
double cost = accum.residual(*pose); |
||||
bool recompute_jac = true; |
||||
int iter; |
||||
for (iter = 0; iter < opt.max_iterations; ++iter) { |
||||
// We only recompute jacobian and residual vector if last step was successful
|
||||
if (recompute_jac) { |
||||
std::fill(JtJ.val, JtJ.val+25, 0); |
||||
std::fill(Jtr.val, Jtr.val +5, 0); |
||||
accum.accumulate(*pose, JtJ, Jtr, tangent_basis); |
||||
if (norm(Jtr) < opt.gradient_tol) |
||||
break; |
||||
} |
||||
|
||||
// Add dampening
|
||||
JtJ(0, 0) += lambda; |
||||
JtJ(1, 1) += lambda; |
||||
JtJ(2, 2) += lambda; |
||||
JtJ(3, 3) += lambda; |
||||
JtJ(4, 4) += lambda; |
||||
|
||||
Matx<double, 5, 1> sol; |
||||
Matx<double, 5, 5> JtJ_symm = JtJ; |
||||
for (int i = 0; i < 5; i++) |
||||
for (int j = i+1; j < 5; j++) |
||||
JtJ_symm(i,j) = JtJ(j,i); |
||||
|
||||
const bool success = solve(-JtJ_symm, Jtr, sol); |
||||
if (!success || norm(sol) < opt.step_tol) |
||||
break; |
||||
|
||||
Vec3d w (sol(0,0), sol(1,0), sol(2,0)); |
||||
const double theta = norm(w); |
||||
w /= theta; |
||||
const double a = std::sin(theta); |
||||
const double b = std::cos(theta); |
||||
sw(0, 1) = -w(2); |
||||
sw(0, 2) = w(1); |
||||
sw(1, 2) = -w(0); |
||||
sw(1, 0) = w(2); |
||||
sw(2, 0) = -w(1); |
||||
sw(2, 1) = w(0); |
||||
|
||||
CameraPose pose_new; |
||||
pose_new.R = pose->R + pose->R * (a * sw + (1 - b) * sw * sw); |
||||
// In contrast to the 6dof case, we don't apply R here
|
||||
// (since this can already be added into tangent_basis)
|
||||
pose_new.t = pose->t + Vec3d(Mat(tangent_basis * Matx21d(sol(3,0), sol(4,0)))); |
||||
double cost_new = accum.residual(pose_new); |
||||
|
||||
if (cost_new < cost) { |
||||
*pose = pose_new; |
||||
lambda /= 10; |
||||
cost = cost_new; |
||||
recompute_jac = true; |
||||
} else { |
||||
JtJ(0, 0) -= lambda; |
||||
JtJ(1, 1) -= lambda; |
||||
JtJ(2, 2) -= lambda; |
||||
JtJ(3, 3) -= lambda; |
||||
JtJ(4, 4) -= lambda; |
||||
lambda *= 10; |
||||
recompute_jac = false; |
||||
} |
||||
} |
||||
return iter; |
||||
} |
||||
}} |
Loading…
Reference in new issue