mirror of https://github.com/opencv/opencv.git
parent
21c8e6d02d
commit
b4813e6bdf
1 changed files with 160 additions and 0 deletions
@ -0,0 +1,160 @@ |
||||
#include <opencv2/dnn.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
|
||||
using namespace cv; |
||||
using namespace cv::dnn; |
||||
|
||||
#include <iostream> |
||||
#include <cstdlib> |
||||
using namespace std; |
||||
|
||||
const size_t inWidth = 300; |
||||
const size_t inHeight = 300; |
||||
const double inScaleFactor = 1.0; |
||||
const Scalar meanVal(104.0, 177.0, 123.0); |
||||
|
||||
const char* about = "This sample uses Single-Shot Detector " |
||||
"(https://arxiv.org/abs/1512.02325) " |
||||
"with ResNet-10 architecture to detect faces on camera/video/image.\n" |
||||
"More information about the training is available here: " |
||||
"<OPENCV_SRC_DIR>/samples/dnn/face_detector/how_to_train_face_detector.txt\n" |
||||
".caffemodel model's file is available here: " |
||||
"<OPENCV_SRC_DIR>/samples/dnn/face_detector/res10_300x300_ssd_iter_140000.caffemodel\n" |
||||
".prototxt file is available here: " |
||||
"<OPENCV_SRC_DIR>/samples/dnn/face_detector/deploy.prototxt\n"; |
||||
|
||||
const char* params |
||||
= "{ help | false | print usage }" |
||||
"{ proto | | model configuration (deploy.prototxt) }" |
||||
"{ model | | model weights (res10_300x300_ssd_iter_140000.caffemodel) }" |
||||
"{ camera_device | 0 | camera device number }" |
||||
"{ video | | video or image for detection }" |
||||
"{ min_confidence | 0.5 | min confidence }"; |
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
CommandLineParser parser(argc, argv, params); |
||||
|
||||
if (parser.get<bool>("help")) |
||||
{ |
||||
cout << about << endl; |
||||
parser.printMessage(); |
||||
return 0; |
||||
} |
||||
|
||||
String modelConfiguration = parser.get<string>("proto"); |
||||
String modelBinary = parser.get<string>("model"); |
||||
|
||||
//! [Initialize network]
|
||||
dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary); |
||||
//! [Initialize network]
|
||||
|
||||
if (net.empty()) |
||||
{ |
||||
cerr << "Can't load network by using the following files: " << endl; |
||||
cerr << "prototxt: " << modelConfiguration << endl; |
||||
cerr << "caffemodel: " << modelBinary << endl; |
||||
cerr << "Models are available here:" << endl; |
||||
cerr << "<OPENCV_SRC_DIR>/samples/dnn/face_detector" << endl; |
||||
cerr << "or here:" << endl; |
||||
cerr << "https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector" << endl; |
||||
exit(-1); |
||||
} |
||||
|
||||
VideoCapture cap; |
||||
if (parser.get<String>("video").empty()) |
||||
{ |
||||
int cameraDevice = parser.get<int>("camera_device"); |
||||
cap = VideoCapture(cameraDevice); |
||||
if(!cap.isOpened()) |
||||
{ |
||||
cout << "Couldn't find camera: " << cameraDevice << endl; |
||||
return -1; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cap.open(parser.get<String>("video")); |
||||
if(!cap.isOpened()) |
||||
{ |
||||
cout << "Couldn't open image or video: " << parser.get<String>("video") << endl; |
||||
return -1; |
||||
} |
||||
} |
||||
|
||||
for(;;) |
||||
{ |
||||
Mat frame; |
||||
cap >> frame; // get a new frame from camera/video or read image
|
||||
|
||||
if (frame.empty()) |
||||
{ |
||||
waitKey(); |
||||
break; |
||||
} |
||||
|
||||
if (frame.channels() == 4) |
||||
cvtColor(frame, frame, COLOR_BGRA2BGR); |
||||
|
||||
//! [Prepare blob]
|
||||
Mat inputBlob = blobFromImage(frame, inScaleFactor, |
||||
Size(inWidth, inHeight), meanVal, false, false); //Convert Mat to batch of images
|
||||
//! [Prepare blob]
|
||||
|
||||
//! [Set input blob]
|
||||
net.setInput(inputBlob, "data"); //set the network input
|
||||
//! [Set input blob]
|
||||
|
||||
//! [Make forward pass]
|
||||
Mat detection = net.forward("detection_out"); //compute output
|
||||
//! [Make forward pass]
|
||||
|
||||
vector<double> layersTimings; |
||||
double freq = getTickFrequency() / 1000; |
||||
double time = net.getPerfProfile(layersTimings) / freq; |
||||
|
||||
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); |
||||
|
||||
ostringstream ss; |
||||
ss << "FPS: " << 1000/time << " ; time: " << time << " ms"; |
||||
putText(frame, ss.str(), Point(20,20), 0, 0.5, Scalar(0,0,255)); |
||||
|
||||
float confidenceThreshold = parser.get<float>("min_confidence"); |
||||
for(int i = 0; i < detectionMat.rows; i++) |
||||
{ |
||||
float confidence = detectionMat.at<float>(i, 2); |
||||
|
||||
if(confidence > confidenceThreshold) |
||||
{ |
||||
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); |
||||
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); |
||||
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); |
||||
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); |
||||
|
||||
Rect object((int)xLeftBottom, (int)yLeftBottom, |
||||
(int)(xRightTop - xLeftBottom), |
||||
(int)(yRightTop - yLeftBottom)); |
||||
|
||||
rectangle(frame, object, Scalar(0, 255, 0)); |
||||
|
||||
ss.str(""); |
||||
ss << confidence; |
||||
String conf(ss.str()); |
||||
String label = "Face: " + conf; |
||||
int baseLine = 0; |
||||
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
||||
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), |
||||
Size(labelSize.width, labelSize.height + baseLine)), |
||||
Scalar(255, 255, 255), CV_FILLED); |
||||
putText(frame, label, Point(xLeftBottom, yLeftBottom), |
||||
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); |
||||
} |
||||
} |
||||
|
||||
imshow("detections", frame); |
||||
if (waitKey(1) >= 0) break; |
||||
} |
||||
|
||||
return 0; |
||||
} // main
|
Loading…
Reference in new issue