Merge pull request #1326 from ilya-lavrenov:perf_ocl

pull/1311/merge
Roman Donchenko 12 years ago committed by OpenCV Buildbot
commit b43890a7e1
  1. 131
      modules/ocl/perf/main.cpp
  2. 1476
      modules/ocl/perf/perf_arithm.cpp
  3. 90
      modules/ocl/perf/perf_blend.cpp
  4. 186
      modules/ocl/perf/perf_brute_force_matcher.cpp
  5. 62
      modules/ocl/perf/perf_calib3d.cpp
  6. 52
      modules/ocl/perf/perf_canny.cpp
  7. 57
      modules/ocl/perf/perf_color.cpp
  8. 56
      modules/ocl/perf/perf_fft.cpp
  9. 430
      modules/ocl/perf/perf_filters.cpp
  10. 58
      modules/ocl/perf/perf_gemm.cpp
  11. 74
      modules/ocl/perf/perf_gftt.cpp
  12. 72
      modules/ocl/perf/perf_haar.cpp
  13. 59
      modules/ocl/perf/perf_hog.cpp
  14. 937
      modules/ocl/perf/perf_imgproc.cpp
  15. 138
      modules/ocl/perf/perf_match_template.cpp
  16. 185
      modules/ocl/perf/perf_matrix_operation.cpp
  17. 65
      modules/ocl/perf/perf_moments.cpp
  18. 56
      modules/ocl/perf/perf_norm.cpp
  19. 447
      modules/ocl/perf/perf_opticalflow.cpp
  20. 449
      modules/ocl/perf/perf_precomp.cpp
  21. 472
      modules/ocl/perf/perf_precomp.hpp
  22. 116
      modules/ocl/perf/perf_pyramid.cpp
  23. 165
      modules/ocl/perf/perf_split_merge.cpp
  24. 2
      modules/ocl/src/arithm.cpp
  25. 63
      modules/ocl/test/test_norm.cpp

@ -42,123 +42,54 @@
#include "perf_precomp.hpp"
int main(int argc, const char *argv[])
const char * impls[] =
{
const char *keys =
"{ h | help | false | print help message }"
"{ f | filter | | filter for test }"
"{ w | workdir | | set working directory }"
"{ l | list | false | show all tests }"
"{ d | device | 0 | device id }"
"{ c | cpu_ocl | false | use cpu as ocl device}"
"{ i | iters | 10 | iteration count }"
"{ m | warmup | 1 | gpu warm up iteration count}"
"{ t | xtop | 1.1 | xfactor top boundary}"
"{ b | xbottom | 0.9 | xfactor bottom boundary}"
"{ v | verify | false | only run gpu once to verify if problems occur}";
IMPL_OCL,
IMPL_PLAIN,
#ifdef HAVE_OPENCV_GPU
IMPL_GPU
#endif
};
int main(int argc, char ** argv)
{
const char * keys =
"{ h | help | false | print help message }"
"{ t | type | gpu | set device type:cpu or gpu}"
"{ p | platform | 0 | set platform id }"
"{ d | device | 0 | set device id }";
redirectError(cvErrorCallback);
CommandLineParser cmd(argc, argv, keys);
if (cmd.get<bool>("help"))
{
cout << "Avaible options:" << endl;
cout << "Available options besides google test option:" << endl;
cmd.printParams();
return 0;
}
// get ocl devices
bool use_cpu = cmd.get<bool>("c");
vector<ocl::Info> oclinfo;
int num_devices = 0;
if(use_cpu)
num_devices = getDevice(oclinfo, ocl::CVCL_DEVICE_TYPE_CPU);
else
num_devices = getDevice(oclinfo);
if (num_devices < 1)
{
cerr << "no device found\n";
return -1;
}
// show device info
int devidx = 0;
for (size_t i = 0; i < oclinfo.size(); i++)
{
for (size_t j = 0; j < oclinfo[i].DeviceName.size(); j++)
{
cout << "device " << devidx++ << ": " << oclinfo[i].DeviceName[j] << endl;
}
}
string type = cmd.get<string>("type");
unsigned int pid = cmd.get<unsigned int>("platform");
int device = cmd.get<int>("device");
if (device < 0 || device >= num_devices)
{
cerr << "Invalid device ID" << endl;
return -1;
}
// set this to overwrite binary cache every time the test starts
ocl::setBinaryDiskCache(ocl::CACHE_UPDATE);
if (cmd.get<bool>("verify"))
{
TestSystem::instance().setNumIters(1);
TestSystem::instance().setGPUWarmupIters(0);
TestSystem::instance().setCPUIters(0);
}
int flag = type == "cpu" ? cv::ocl::CVCL_DEVICE_TYPE_CPU :
cv::ocl::CVCL_DEVICE_TYPE_GPU;
devidx = 0;
for (size_t i = 0; i < oclinfo.size(); i++)
std::vector<cv::ocl::Info> oclinfo;
int devnums = cv::ocl::getDevice(oclinfo, flag);
if (devnums <= device || device < 0)
{
for (size_t j = 0; j < oclinfo[i].DeviceName.size(); j++, devidx++)
{
if (device == devidx)
{
ocl::setDevice(oclinfo[i], (int)j);
TestSystem::instance().setRecordName(oclinfo[i].DeviceName[j]);
cout << "use " << devidx << ": " <<oclinfo[i].DeviceName[j] << endl;
goto END_DEV;
}
}
}
END_DEV:
string filter = cmd.get<string>("filter");
string workdir = cmd.get<string>("workdir");
bool list = cmd.get<bool>("list");
int iters = cmd.get<int>("iters");
int wu_iters = cmd.get<int>("warmup");
double x_top = cmd.get<double>("xtop");
double x_bottom = cmd.get<double>("xbottom");
TestSystem::instance().setTopThreshold(x_top);
TestSystem::instance().setBottomThreshold(x_bottom);
if (!filter.empty())
{
TestSystem::instance().setTestFilter(filter);
}
if (!workdir.empty())
{
if (workdir[workdir.size() - 1] != '/' && workdir[workdir.size() - 1] != '\\')
{
workdir += '/';
}
TestSystem::instance().setWorkingDir(workdir);
std::cout << "device invalid\n";
return -1;
}
if (list)
if (pid >= oclinfo.size())
{
TestSystem::instance().setListMode(true);
std::cout << "platform invalid\n";
return -1;
}
TestSystem::instance().setNumIters(iters);
TestSystem::instance().setGPUWarmupIters(wu_iters);
TestSystem::instance().run();
cv::ocl::setDevice(oclinfo[pid], device);
cv::ocl::setBinaryDiskCache(cv::ocl::CACHE_UPDATE);
return 0;
CV_PERF_TEST_MAIN_INTERNALS(ocl, impls)
}

File diff suppressed because it is too large Load Diff

@ -45,9 +45,15 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// blend ////////////////////////
template <typename T>
void blendLinearGold(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &weights1, const cv::Mat &weights2, cv::Mat &result_gold)
static void blendLinearGold(const cv::Mat &img1, const cv::Mat &img2,
const cv::Mat &weights1, const cv::Mat &weights2,
cv::Mat &result_gold)
{
result_gold.create(img1.size(), img1.type());
@ -63,60 +69,46 @@ void blendLinearGold(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &we
for (int x = 0; x < img1.cols * cn; ++x)
{
float w1 = weights1_row[x / cn];
float w2 = weights2_row[x / cn];
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
int x1 = x * cn;
float w1 = weights1_row[x];
float w2 = weights2_row[x];
result_gold_row[x] = static_cast<T>((img1_row[x1] * w1
+ img2_row[x1] * w2) / (w1 + w2 + 1e-5f));
}
}
}
PERFTEST(blend)
typedef TestBaseWithParam<Size> blendLinearFixture;
PERF_TEST_P(blendLinearFixture, blendLinear, OCL_TYPICAL_MAT_SIZES)
{
Mat src1, src2, weights1, weights2, dst, ocl_dst;
ocl::oclMat d_src1, d_src2, d_weights1, d_weights2, d_dst;
const Size srcSize = GetParam();
const int type = CV_8UC1;
Mat src1(srcSize, type), src2(srcSize, CV_8UC1), dst;
Mat weights1(srcSize, CV_32FC1), weights2(srcSize, CV_32FC1);
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
declare.in(src1, src2, WARMUP_RNG);
randu(weights1, 0.0f, 1.0f);
randu(weights2, 0.0f, 1.0f);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] << " and CV_32FC1";
gen(src1, size, size, all_type[j], 0, 256);
gen(src2, size, size, all_type[j], 0, 256);
gen(weights1, size, size, CV_32FC1, 0, 1);
gen(weights2, size, size, CV_32FC1, 0, 1);
blendLinearGold<uchar>(src1, src2, weights1, weights2, dst);
CPU_ON;
blendLinearGold<uchar>(src1, src2, weights1, weights2, dst);
CPU_OFF;
d_src1.upload(src1);
d_src2.upload(src2);
d_weights1.upload(weights1);
d_weights2.upload(weights2);
WARMUP_ON;
ocl::blendLinear(d_src1, d_src2, d_weights1, d_weights2, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::blendLinear(d_src1, d_src2, d_weights1, d_weights2, d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src1.upload(src1);
d_src2.upload(src2);
d_weights1.upload(weights1);
d_weights2.upload(weights2);
ocl::blendLinear(d_src1, d_src2, d_weights1, d_weights2, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.f);
}
ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst;
ocl::oclMat oclWeights1(weights1), oclWeights2(weights2);
TEST_CYCLE() cv::ocl::blendLinear(oclSrc1, oclSrc2, oclWeights1, oclWeights2, oclDst);
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() blendLinearGold<uchar>(src1, src2, weights1, weights2, dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

@ -45,123 +45,119 @@
//M*/
#include "perf_precomp.hpp"
//////////////////// BruteForceMatch /////////////////
PERFTEST(BruteForceMatcher)
{
Mat trainIdx_cpu;
Mat distance_cpu;
Mat allDist_cpu;
Mat nMatches_cpu;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
// Init CPU matcher
int desc_len = 64;
BFMatcher matcher(NORM_L2);
Mat query;
gen(query, size, desc_len, CV_32F, 0, 1);
Mat train;
gen(train, size, desc_len, CV_32F, 0, 1);
// Output
vector< vector<DMatch> > matches(2);
vector< vector<DMatch> > d_matches(2);
// Init GPU matcher
ocl::BruteForceMatcher_OCL_base d_matcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
using namespace perf;
ocl::oclMat d_query(query);
ocl::oclMat d_train(train);
#define OCL_BFMATCHER_TYPICAL_MAT_SIZES ::testing::Values(cv::Size(128, 500), cv::Size(128, 1000), cv::Size(128, 2000))
ocl::oclMat d_trainIdx, d_distance, d_allDist, d_nMatches;
SUBTEST << size << "; match";
matcher.match(query, train, matches[0]);
//////////////////// BruteForceMatch /////////////////
CPU_ON;
matcher.match(query, train, matches[0]);
CPU_OFF;
typedef TestBaseWithParam<Size> BruteForceMatcherFixture;
WARMUP_ON;
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
WARMUP_OFF;
PERF_TEST_P(BruteForceMatcherFixture, DISABLED_match,
OCL_BFMATCHER_TYPICAL_MAT_SIZES) // TODO too big difference between implementations
{
const Size srcSize = GetParam();
GPU_ON;
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
GPU_OFF;
vector<DMatch> matches;
Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
declare.in(query, train).time(srcSize.height == 2000 ? 8 : 4 );
randu(query, 0.0f, 1.0f);
randu(train, 0.0f, 1.0f);
GPU_FULL_ON;
d_query.upload(query);
d_train.upload(train);
d_matcher.match(d_query, d_train, d_matches[0]);
GPU_FULL_OFF;
if (RUN_PLAIN_IMPL)
{
BFMatcher matcher(NORM_L2);
TEST_CYCLE() matcher.match(query, train, matches);
int diff = abs((int)d_matches[0].size() - (int)matches[0].size());
if(diff == 0)
TestSystem::instance().setAccurate(1, 0);
else
TestSystem::instance().setAccurate(0, diff);
SANITY_CHECK_MATCHES(matches);
}
else if (RUN_OCL_IMPL)
{
ocl::BruteForceMatcher_OCL_base oclMatcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
ocl::oclMat oclQuery(query), oclTrain(train);
SUBTEST << size << "; knnMatch";
TEST_CYCLE() oclMatcher.match(oclQuery, oclTrain, matches);
matcher.knnMatch(query, train, matches, 2);
SANITY_CHECK_MATCHES(matches);
}
else
OCL_PERF_ELSE
}
CPU_ON;
matcher.knnMatch(query, train, matches, 2);
CPU_OFF;
PERF_TEST_P(BruteForceMatcherFixture, DISABLED_knnMatch,
OCL_BFMATCHER_TYPICAL_MAT_SIZES) // TODO too many outliers
{
const Size srcSize = GetParam();
WARMUP_ON;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 2);
WARMUP_OFF;
vector<vector<DMatch> > matches(2);
Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
randu(query, 0.0f, 1.0f);
randu(train, 0.0f, 1.0f);
GPU_ON;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 2);
GPU_OFF;
declare.in(query, train);
if (srcSize.height == 2000)
declare.time(8);
GPU_FULL_ON;
d_query.upload(query);
d_train.upload(train);
d_matcher.knnMatch(d_query, d_train, d_matches, 2);
GPU_FULL_OFF;
if (RUN_PLAIN_IMPL)
{
BFMatcher matcher (NORM_L2);
TEST_CYCLE() matcher.knnMatch(query, train, matches, 2);
diff = abs((int)d_matches[0].size() - (int)matches[0].size());
if(diff == 0)
TestSystem::instance().setAccurate(1, 0);
else
TestSystem::instance().setAccurate(0, diff);
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
else if (RUN_OCL_IMPL)
{
ocl::BruteForceMatcher_OCL_base oclMatcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
ocl::oclMat oclQuery(query), oclTrain(train);
SUBTEST << size << "; radiusMatch";
TEST_CYCLE() oclMatcher.knnMatch(oclQuery, oclTrain, matches, 2);
float max_distance = 2.0f;
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
else
OCL_PERF_ELSE
}
matcher.radiusMatch(query, train, matches, max_distance);
PERF_TEST_P(BruteForceMatcherFixture, DISABLED_radiusMatch,
OCL_BFMATCHER_TYPICAL_MAT_SIZES) // TODO too many outliers
{
const Size srcSize = GetParam();
CPU_ON;
matcher.radiusMatch(query, train, matches, max_distance);
CPU_OFF;
const float max_distance = 2.0f;
vector<vector<DMatch> > matches(2);
Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
declare.in(query, train);
Mat trainIdx, distance, allDist;
d_trainIdx.release();
randu(query, 0.0f, 1.0f);
randu(train, 0.0f, 1.0f);
WARMUP_ON;
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, max_distance);
WARMUP_OFF;
if (RUN_PLAIN_IMPL)
{
BFMatcher matcher (NORM_L2);
TEST_CYCLE() matcher.radiusMatch(query, matches, max_distance);
GPU_ON;
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, max_distance);
GPU_OFF;
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
else if (RUN_OCL_IMPL)
{
ocl::oclMat oclQuery(query), oclTrain(train);
ocl::BruteForceMatcher_OCL_base oclMatcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
GPU_FULL_ON;
d_query.upload(query);
d_train.upload(train);
d_matcher.radiusMatch(d_query, d_train, d_matches, max_distance);
GPU_FULL_OFF;
TEST_CYCLE() oclMatcher.radiusMatch(oclQuery, oclTrain, matches, max_distance);
diff = abs((int)d_matches[0].size() - (int)matches[0].size());
if(diff == 0)
TestSystem::instance().setAccurate(1, 0);
else
TestSystem::instance().setAccurate(0, diff);
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
else
OCL_PERF_ELSE
}
#undef OCL_BFMATCHER_TYPICAL_MAT_SIZES

@ -45,48 +45,44 @@
//M*/
#include "perf_precomp.hpp"
///////////// StereoMatchBM ////////////////////////
PERFTEST(StereoMatchBM)
{
Mat left_image = imread(abspath("aloeL.jpg"), cv::IMREAD_GRAYSCALE);
Mat right_image = imread(abspath("aloeR.jpg"), cv::IMREAD_GRAYSCALE);
Mat disp,dst;
ocl::oclMat d_left, d_right,d_disp;
int n_disp= 128;
int winSize =19;
SUBTEST << left_image.cols << 'x' << left_image.rows << "; aloeL.jpg ;"<< right_image.cols << 'x' << right_image.rows << "; aloeR.jpg ";
PERF_TEST(StereoMatchBMFixture, DISABLED_StereoMatchBM) // TODO doesn't work properly
{
Mat left_image = imread(getDataPath("gpu/stereobm/aloe-L.png"), cv::IMREAD_GRAYSCALE);
Mat right_image = imread(getDataPath("gpu/stereobm/aloe-R.png"), cv::IMREAD_GRAYSCALE);
StereoBM bm(0, n_disp, winSize);
bm(left_image, right_image, dst);
ASSERT_TRUE(!left_image.empty()) << "no input image";
ASSERT_TRUE(!right_image.empty()) << "no input image";
ASSERT_TRUE(right_image.size() == left_image.size());
ASSERT_TRUE(right_image.size() == left_image.size());
CPU_ON;
bm(left_image, right_image, dst);
CPU_OFF;
const int n_disp = 128, winSize = 19;
Mat disp(left_image.size(), CV_16SC1);
d_left.upload(left_image);
d_right.upload(right_image);
declare.in(left_image, right_image).out(disp);
ocl::StereoBM_OCL d_bm(0, n_disp, winSize);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclLeft(left_image), oclRight(right_image),
oclDisp(left_image.size(), CV_16SC1);
ocl::StereoBM_OCL oclBM(0, n_disp, winSize);
WARMUP_ON;
d_bm(d_left, d_right, d_disp);
WARMUP_OFF;
TEST_CYCLE() oclBM(oclLeft, oclRight, oclDisp);
cv::Mat ocl_mat;
d_disp.download(ocl_mat);
ocl_mat.convertTo(ocl_mat, dst.type());
oclDisp.download(disp);
GPU_ON;
d_bm(d_left, d_right, d_disp);
GPU_OFF;
SANITY_CHECK(disp);
}
else if (RUN_PLAIN_IMPL)
{
StereoBM bm(0, n_disp, winSize);
GPU_FULL_ON;
d_left.upload(left_image);
d_right.upload(right_image);
d_bm(d_left, d_right, d_disp);
d_disp.download(disp);
GPU_FULL_OFF;
TEST_CYCLE() bm(left_image, right_image, disp);
TestSystem::instance().setAccurate(-1, 0.);
SANITY_CHECK(disp);
}
else
OCL_PERF_ELSE
}

@ -45,41 +45,33 @@
//M*/
#include "perf_precomp.hpp"
///////////// Canny ////////////////////////
PERFTEST(Canny)
{
Mat img = imread(abspath("aloeL.jpg"), CV_LOAD_IMAGE_GRAYSCALE);
if (img.empty())
{
throw runtime_error("can't open aloeL.jpg");
}
SUBTEST << img.cols << 'x' << img.rows << "; aloeL.jpg" << "; edges" << "; CV_8UC1";
using namespace perf;
Mat edges(img.size(), CV_8UC1), ocl_edges;
///////////// Canny ////////////////////////
CPU_ON;
Canny(img, edges, 50.0, 100.0);
CPU_OFF;
PERF_TEST(CannyFixture, DISABLED_Canny) // TODO difference between implmentations
{
Mat img = imread(getDataPath("gpu/stereobm/aloe-L.png"), cv::IMREAD_GRAYSCALE),
edges(img.size(), CV_8UC1);
ASSERT_TRUE(!img.empty()) << "can't open aloe-L.png";
ocl::oclMat d_img(img);
ocl::oclMat d_edges;
ocl::CannyBuf d_buf;
declare.in(img).out(edges);
WARMUP_ON;
ocl::Canny(d_img, d_buf, d_edges, 50.0, 100.0);
WARMUP_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclImg(img), oclEdges(img.size(), CV_8UC1);
GPU_ON;
ocl::Canny(d_img, d_buf, d_edges, 50.0, 100.0);
GPU_OFF;
TEST_CYCLE() ocl::Canny(oclImg, oclEdges, 50.0, 100.0);
oclEdges.download(edges);
GPU_FULL_ON;
d_img.upload(img);
ocl::Canny(d_img, d_buf, d_edges, 50.0, 100.0);
d_edges.download(ocl_edges);
GPU_FULL_OFF;
SANITY_CHECK(edges);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() Canny(img, edges, 50.0, 100.0);
TestSystem::instance().ExceptedMatSimilar(edges, ocl_edges, 2e-2);
SANITY_CHECK(edges);
}
else
OCL_PERF_ELSE
}

@ -45,49 +45,34 @@
//M*/
#include "perf_precomp.hpp"
///////////// cvtColor////////////////////////
PERFTEST(cvtColor)
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
int all_type[] = {CV_8UC4};
std::string type_name[] = {"CV_8UC4"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
gen(src, size, size, all_type[j], 0, 256);
SUBTEST << size << "x" << size << "; " << type_name[j] << " ; CV_RGBA2GRAY";
cvtColor(src, dst, CV_RGBA2GRAY, 4);
CPU_ON;
cvtColor(src, dst, CV_RGBA2GRAY, 4);
CPU_OFF;
using namespace perf;
d_src.upload(src);
///////////// cvtColor////////////////////////
WARMUP_ON;
ocl::cvtColor(d_src, d_dst, CV_RGBA2GRAY, 4);
WARMUP_OFF;
typedef TestBaseWithParam<Size> cvtColorFixture;
GPU_ON;
ocl::cvtColor(d_src, d_dst, CV_RGBA2GRAY, 4);
GPU_OFF;
PERF_TEST_P(cvtColorFixture, cvtColor, OCL_TYPICAL_MAT_SIZES)
{
const Size srcSize = GetParam();
GPU_FULL_ON;
d_src.upload(src);
ocl::cvtColor(d_src, d_dst, CV_RGBA2GRAY, 4);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
Mat src(srcSize, CV_8UC4), dst(srcSize, CV_8UC4);
declare.in(src, WARMUP_RNG).out(dst);
TestSystem::instance().ExceptedMatSimilar(dst, ocl_dst, 1e-5);
}
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(src.size(), CV_8UC4);
TEST_CYCLE() ocl::cvtColor(oclSrc, oclDst, CV_RGBA2GRAY, 4);
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::cvtColor(src, dst, CV_RGBA2GRAY, 4);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

@ -45,47 +45,39 @@
//M*/
#include "perf_precomp.hpp"
///////////// dft ////////////////////////
PERFTEST(dft)
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
int all_type[] = {CV_32FC2};
std::string type_name[] = {"CV_32FC2"};
using namespace perf;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] << " ; complex-to-complex";
///////////// dft ////////////////////////
gen(src, size, size, all_type[j], Scalar::all(0), Scalar::all(1));
typedef TestBaseWithParam<Size> dftFixture;
dft(src, dst);
PERF_TEST_P(dftFixture, DISABLED_dft, OCL_TYPICAL_MAT_SIZES) // TODO not implemented
{
const Size srcSize = GetParam();
CPU_ON;
dft(src, dst);
CPU_OFF;
Mat src(srcSize, CV_32FC2), dst;
randu(src, 0.0f, 1.0f);
declare.in(src);
d_src.upload(src);
if (srcSize == OCL_SIZE_4000)
declare.time(7.4);
WARMUP_ON;
ocl::dft(d_src, d_dst, Size(size, size));
WARMUP_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst;
GPU_ON;
ocl::dft(d_src, d_dst, Size(size, size));
GPU_OFF;
TEST_CYCLE() cv::ocl::dft(oclSrc, oclDst);
GPU_FULL_ON;
d_src.upload(src);
ocl::dft(d_src, d_dst, Size(size, size));
d_dst.download(ocl_dst);
GPU_FULL_OFF;
oclDst.download(dst);
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, src.size().area() * 1e-4);
}
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::dft(src, dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

@ -45,333 +45,279 @@
//M*/
#include "perf_precomp.hpp"
///////////// Blur////////////////////////
PERFTEST(Blur)
{
Mat src1, dst, ocl_dst;
ocl::oclMat d_src1, d_dst;
using namespace perf;
using std::tr1::get;
using std::tr1::tuple;
Size ksize = Size(3, 3);
int bordertype = BORDER_CONSTANT;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
///////////// Blur////////////////////////
gen(src1, size, size, all_type[j], 0, 256);
gen(dst, size, size, all_type[j], 0, 256);
typedef Size_MatType BlurFixture;
blur(src1, dst, ksize, Point(-1, -1), bordertype);
PERF_TEST_P(BlurFixture, Blur,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params), ksize(3, 3);
const int type = get<1>(params), bordertype = BORDER_CONSTANT;
CPU_ON;
blur(src1, dst, ksize, Point(-1, -1), bordertype);
CPU_OFF;
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
d_src1.upload(src1);
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(5);
WARMUP_ON;
ocl::blur(d_src1, d_dst, ksize, Point(-1, -1), bordertype);
WARMUP_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
GPU_ON;
ocl::blur(d_src1, d_dst, ksize, Point(-1, -1), bordertype);
GPU_OFF;
TEST_CYCLE() cv::ocl::blur(oclSrc, oclDst, ksize, Point(-1, -1), bordertype);
GPU_FULL_ON;
d_src1.upload(src1);
ocl::blur(d_src1, d_dst, ksize, Point(-1, -1), bordertype);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
oclDst.download(dst);
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1.0);
}
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::blur(src, dst, ksize, Point(-1, -1), bordertype);
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
else
OCL_PERF_ELSE
}
///////////// Laplacian////////////////////////
PERFTEST(Laplacian)
{
Mat src1, dst, ocl_dst;
ocl::oclMat d_src1, d_dst;
int ksize = 3;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
///////////// Laplacian////////////////////////
gen(src1, size, size, all_type[j], 0, 256);
gen(dst, size, size, all_type[j], 0, 256);
typedef Size_MatType LaplacianFixture;
Laplacian(src1, dst, -1, ksize, 1);
PERF_TEST_P(LaplacianFixture, Laplacian,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 3;
CPU_ON;
Laplacian(src1, dst, -1, ksize, 1);
CPU_OFF;
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
d_src1.upload(src1);
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(6);
WARMUP_ON;
ocl::Laplacian(d_src1, d_dst, -1, ksize, 1);
WARMUP_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
GPU_ON;
ocl::Laplacian(d_src1, d_dst, -1, ksize, 1);
GPU_OFF;
TEST_CYCLE() cv::ocl::Laplacian(oclSrc, oclDst, -1, ksize, 1);
GPU_FULL_ON;
d_src1.upload(src1);
ocl::Laplacian(d_src1, d_dst, -1, ksize, 1);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
oclDst.download(dst);
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1e-5);
}
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::Laplacian(src, dst, -1, ksize, 1);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// Erode ////////////////////
PERFTEST(Erode)
{
Mat src, dst, ker, ocl_dst;
ocl::oclMat d_src, d_dst;
int all_type[] = {CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4", "CV_32FC1", "CV_32FC4"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
gen(src, size, size, all_type[j], Scalar::all(0), Scalar::all(256));
ker = getStructuringElement(MORPH_RECT, Size(3, 3));
typedef Size_MatType ErodeFixture;
erode(src, dst, ker);
PERF_TEST_P(ErodeFixture, Erode,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 3;
const Mat ker = getStructuringElement(MORPH_RECT, Size(ksize, ksize));
CPU_ON;
erode(src, dst, ker);
CPU_OFF;
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst).in(ker);
d_src.upload(src);
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(5);
WARMUP_ON;
ocl::erode(d_src, d_dst, ker);
WARMUP_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, type), oclKer(ker);
GPU_ON;
ocl::erode(d_src, d_dst, ker);
GPU_OFF;
TEST_CYCLE() cv::ocl::erode(oclSrc, oclDst, oclKer);
GPU_FULL_ON;
d_src.upload(src);
ocl::erode(d_src, d_dst, ker);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
oclDst.download(dst);
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1e-5);
}
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::erode(src, dst, ker);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// Sobel ////////////////////////
PERFTEST(Sobel)
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
int dx = 1;
int dy = 1;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
gen(src, size, size, all_type[j], 0, 256);
typedef Size_MatType SobelFixture;
Sobel(src, dst, -1, dx, dy);
PERF_TEST_P(SobelFixture, Sobel,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), dx = 1, dy = 1;
CPU_ON;
Sobel(src, dst, -1, dx, dy);
CPU_OFF;
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
d_src.upload(src);
if ((srcSize == OCL_SIZE_2000 && type == CV_8UC4) ||
(srcSize == OCL_SIZE_4000 && type == CV_8UC1))
declare.time(5.5);
else if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(20);
WARMUP_ON;
ocl::Sobel(d_src, d_dst, -1, dx, dy);
WARMUP_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
GPU_ON;
ocl::Sobel(d_src, d_dst, -1, dx, dy);
GPU_OFF;
TEST_CYCLE() cv::ocl::Sobel(oclSrc, oclDst, -1, dx, dy);
GPU_FULL_ON;
d_src.upload(src);
ocl::Sobel(d_src, d_dst, -1, dx, dy);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
oclDst.download(dst);
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1);
}
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::Sobel(src, dst, -1, dx, dy);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// Scharr ////////////////////////
PERFTEST(Scharr)
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
int dx = 1;
int dy = 0;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
///////////// Scharr ////////////////////////
gen(src, size, size, all_type[j], 0, 256);
typedef Size_MatType ScharrFixture;
Scharr(src, dst, -1, dx, dy);
PERF_TEST_P(ScharrFixture, Scharr,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), dx = 1, dy = 0;
CPU_ON;
Scharr(src, dst, -1, dx, dy);
CPU_OFF;
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
d_src.upload(src);
if ((srcSize == OCL_SIZE_2000 && type == CV_8UC4) ||
(srcSize == OCL_SIZE_4000 && type == CV_8UC1))
declare.time(5.5);
else if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(21);
WARMUP_ON;
ocl::Scharr(d_src, d_dst, -1, dx, dy);
WARMUP_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
GPU_ON;
ocl::Scharr(d_src, d_dst, -1, dx, dy);
GPU_OFF;
TEST_CYCLE() cv::ocl::Scharr(oclSrc, oclDst, -1, dx, dy);
GPU_FULL_ON;
d_src.upload(src);
ocl::Scharr(d_src, d_dst, -1, dx, dy);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
oclDst.download(dst);
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1);
}
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::Scharr(src, dst, -1, dx, dy);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// GaussianBlur ////////////////////////
PERFTEST(GaussianBlur)
{
Mat src, dst, ocl_dst;
int all_type[] = {CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4", "CV_32FC1", "CV_32FC4"};
const int ksize = 7;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
gen(src, size, size, all_type[j], 0, 256);
typedef Size_MatType GaussianBlurFixture;
GaussianBlur(src, dst, Size(ksize, ksize), 0);
PERF_TEST_P(GaussianBlurFixture, GaussianBlur,
::testing::Combine(::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000),
OCL_PERF_ENUM(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 7;
CPU_ON;
GaussianBlur(src, dst, Size(ksize, ksize), 0);
CPU_OFF;
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
ocl::oclMat d_src(src);
ocl::oclMat d_dst;
const double eps = src.depth() == CV_8U ? 1 + DBL_EPSILON : 3e-4;
WARMUP_ON;
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
WARMUP_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
GPU_ON;
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
GPU_OFF;
TEST_CYCLE() cv::ocl::GaussianBlur(oclSrc, oclDst, Size(ksize, ksize), 0);
GPU_FULL_ON;
d_src.upload(src);
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
oclDst.download(dst);
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1.0);
}
SANITY_CHECK(dst, eps);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::GaussianBlur(src, dst, Size(ksize, ksize), 0);
SANITY_CHECK(dst, eps);
}
else
OCL_PERF_ELSE
}
///////////// filter2D////////////////////////
PERFTEST(filter2D)
{
Mat src;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
gen(src, size, size, all_type[j], 0, 256);
const int ksize = 3;
SUBTEST << "ksize = " << ksize << "; " << size << 'x' << size << "; " << type_name[j] ;
Mat kernel;
gen(kernel, ksize, ksize, CV_32SC1, -3.0, 3.0);
typedef Size_MatType filter2DFixture;
Mat dst, ocl_dst;
cv::filter2D(src, dst, -1, kernel);
CPU_ON;
cv::filter2D(src, dst, -1, kernel);
CPU_OFF;
ocl::oclMat d_src(src), d_dst;
PERF_TEST_P(filter2DFixture, filter2D,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 3;
WARMUP_ON;
ocl::filter2D(d_src, d_dst, -1, kernel);
WARMUP_OFF;
Mat src(srcSize, type), dst(srcSize, type), kernel(ksize, ksize, CV_32SC1);
declare.in(src, WARMUP_RNG).in(kernel).out(dst);
randu(kernel, -3.0, 3.0);
GPU_ON;
ocl::filter2D(d_src, d_dst, -1, kernel);
GPU_OFF;
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(8);
GPU_FULL_ON;
d_src.upload(src);
ocl::filter2D(d_src, d_dst, -1, kernel);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, type), oclKernel(kernel);
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1e-5);
TEST_CYCLE() cv::ocl::filter2D(oclSrc, oclDst, -1, oclKernel);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::filter2D(src, dst, -1, kernel);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

@ -45,46 +45,40 @@
//M*/
#include "perf_precomp.hpp"
///////////// gemm ////////////////////////
PERFTEST(gemm)
{
Mat src1, src2, src3, dst, ocl_dst;
ocl::oclMat d_src1, d_src2, d_src3, d_dst;
using namespace perf;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
SUBTEST << size << 'x' << size;
///////////// gemm ////////////////////////
gen(src1, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10));
gen(src2, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10));
gen(src3, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10));
typedef TestBaseWithParam<Size> gemmFixture;
gemm(src1, src2, 1.0, src3, 1.0, dst);
PERF_TEST_P(gemmFixture, DISABLED_gemm, OCL_TYPICAL_MAT_SIZES) // TODO not implemented
{
const Size srcSize = GetParam();
CPU_ON;
gemm(src1, src2, 1.0, src3, 1.0, dst);
CPU_OFF;
Mat src1(srcSize, CV_32FC1), src2(srcSize, CV_32FC1),
src3(srcSize, CV_32FC1), dst(srcSize, CV_32FC1);
declare.in(src1, src2, src3).out(dst);
randu(src1, -10.0f, 10.0f);
randu(src2, -10.0f, 10.0f);
randu(src3, -10.0f, 10.0f);
d_src1.upload(src1);
d_src2.upload(src2);
d_src3.upload(src3);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc1(src1), oclSrc2(src2),
oclSrc3(src3), oclDst(srcSize, CV_32FC1);
WARMUP_ON;
ocl::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, d_dst);
WARMUP_OFF;
TEST_CYCLE() cv::ocl::gemm(oclSrc1, oclSrc2, 1.0, oclSrc3, 1.0, oclDst);
GPU_ON;
ocl::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, d_dst);
GPU_OFF;
oclDst.download(dst);
GPU_FULL_ON;
d_src1.upload(src1);
d_src2.upload(src2);
d_src3.upload(src3);
ocl::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::gemm(src1, src2, 1.0, src3, 1.0, dst);
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, src1.cols * src1.rows * 1e-4);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

@ -46,56 +46,50 @@
#include "perf_precomp.hpp"
///////////// GoodFeaturesToTrack ////////////////////////
PERFTEST(GoodFeaturesToTrack)
{
using namespace cv;
int maxCorners = 2000;
double qualityLevel = 0.01;
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
std::string images[] = { "rubberwhale1.png", "aloeL.jpg" };
std::vector<cv::Point2f> pts_gold, pts_ocl;
for(size_t imgIdx = 0; imgIdx < (sizeof(images)/sizeof(std::string)); ++imgIdx)
{
Mat frame = imread(abspath(images[imgIdx]), IMREAD_GRAYSCALE);
CV_Assert(!frame.empty());
///////////// GoodFeaturesToTrack ////////////////////////
for(float minDistance = 0; minDistance < 4; minDistance += 3.0)
{
SUBTEST << "image = " << images[imgIdx] << "; ";
SUBTEST << "minDistance = " << minDistance << "; ";
typedef tuple<string, double> GoodFeaturesToTrackParams;
typedef TestBaseWithParam<GoodFeaturesToTrackParams> GoodFeaturesToTrackFixture;
cv::goodFeaturesToTrack(frame, pts_gold, maxCorners, qualityLevel, minDistance);
PERF_TEST_P(GoodFeaturesToTrackFixture, GoodFeaturesToTrack,
::testing::Combine(::testing::Values(string("gpu/opticalflow/rubberwhale1.png"),
string("gpu/stereobm/aloe-L.png")),
::testing::Range(0.0, 4.0, 3.0)))
{
CPU_ON;
cv::goodFeaturesToTrack(frame, pts_gold, maxCorners, qualityLevel, minDistance);
CPU_OFF;
const GoodFeaturesToTrackParams param = GetParam();
const string fileName = getDataPath(get<0>(param));
const int maxCorners = 2000;
const double qualityLevel = 0.01, minDistance = get<1>(param);
cv::ocl::GoodFeaturesToTrackDetector_OCL detector(maxCorners, qualityLevel, minDistance);
Mat frame = imread(fileName, IMREAD_GRAYSCALE);
ASSERT_TRUE(!frame.empty()) << "no input image";
ocl::oclMat frame_ocl(frame), pts_oclmat;
vector<Point2f> pts_gold;
declare.in(frame);
WARMUP_ON;
detector(frame_ocl, pts_oclmat);
WARMUP_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclFrame(frame), pts_oclmat;
ocl::GoodFeaturesToTrackDetector_OCL detector(maxCorners, qualityLevel, minDistance);
detector.downloadPoints(pts_oclmat, pts_ocl);
TEST_CYCLE() detector(oclFrame, pts_oclmat);
double diff = abs(static_cast<float>(pts_gold.size() - pts_ocl.size()));
TestSystem::instance().setAccurate(diff == 0.0, diff);
detector.downloadPoints(pts_oclmat, pts_gold);
GPU_ON;
detector(frame_ocl, pts_oclmat);
GPU_OFF;
SANITY_CHECK(pts_gold);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::goodFeaturesToTrack(frame, pts_gold,
maxCorners, qualityLevel, minDistance);
GPU_FULL_ON;
frame_ocl.upload(frame);
detector(frame_ocl, pts_oclmat);
detector.downloadPoints(pts_oclmat, pts_ocl);
GPU_FULL_OFF;
}
SANITY_CHECK(pts_gold);
}
else
OCL_PERF_ELSE
}

@ -45,6 +45,8 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// Haar ////////////////////////
namespace cv
{
@ -83,61 +85,39 @@ public:
}
}
PERFTEST(Haar)
{
Mat img = imread(abspath("basketball1.png"), CV_LOAD_IMAGE_GRAYSCALE);
if (img.empty())
{
throw runtime_error("can't open basketball1.png");
}
CascadeClassifier faceCascadeCPU;
if (!faceCascadeCPU.load(abspath("haarcascade_frontalface_alt.xml")))
{
throw runtime_error("can't load haarcascade_frontalface_alt.xml");
}
PERF_TEST(HaarFixture, Haar)
{
vector<Rect> faces;
SUBTEST << img.cols << "x" << img.rows << "; scale image";
CPU_ON;
faceCascadeCPU.detectMultiScale(img, faces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
CPU_OFF;
Mat img = imread(getDataPath("gpu/haarcascade/basketball1.png"), CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_TRUE(!img.empty()) << "can't open basketball1.png";
declare.in(img);
if (RUN_PLAIN_IMPL)
{
CascadeClassifier faceCascade;
ASSERT_TRUE(faceCascade.load(getDataPath("gpu/haarcascade/haarcascade_frontalface_alt.xml")))
<< "can't load haarcascade_frontalface_alt.xml";
vector<Rect> oclfaces;
ocl::CascadeClassifier_GPU faceCascade;
TEST_CYCLE() faceCascade.detectMultiScale(img, faces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
if (!faceCascade.load(abspath("haarcascade_frontalface_alt.xml")))
{
throw runtime_error("can't load haarcascade_frontalface_alt.xml");
SANITY_CHECK(faces, 4 + 1e-4);
}
else if (RUN_OCL_IMPL)
{
ocl::CascadeClassifier_GPU faceCascade;
ocl::oclMat oclImg(img);
ocl::oclMat d_img(img);
ASSERT_TRUE(faceCascade.load(getDataPath("gpu/haarcascade/haarcascade_frontalface_alt.xml")))
<< "can't load haarcascade_frontalface_alt.xml";
WARMUP_ON;
faceCascade.detectMultiScale(d_img, oclfaces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
WARMUP_OFF;
TEST_CYCLE() faceCascade.detectMultiScale(oclImg, faces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
if(faces.size() == oclfaces.size())
TestSystem::instance().setAccurate(1, 0);
SANITY_CHECK(faces, 4 + 1e-4);
}
else
TestSystem::instance().setAccurate(0, abs((int)faces.size() - (int)oclfaces.size()));
faces.clear();
GPU_ON;
faceCascade.detectMultiScale(d_img, oclfaces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
GPU_OFF;
GPU_FULL_ON;
d_img.upload(img);
faceCascade.detectMultiScale(d_img, oclfaces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
GPU_FULL_OFF;
OCL_PERF_ELSE
}

@ -45,50 +45,37 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// HOG////////////////////////
PERFTEST(HOG)
PERF_TEST(HOGFixture, HOG)
{
Mat src = imread(abspath("road.png"), cv::IMREAD_GRAYSCALE);
if (src.empty())
{
throw runtime_error("can't open road.png");
}
cv::HOGDescriptor hog;
hog.setSVMDetector(hog.getDefaultPeopleDetector());
std::vector<cv::Rect> found_locations;
std::vector<cv::Rect> d_found_locations;
Mat src = imread(getDataPath("gpu/hog/road.png"), cv::IMREAD_GRAYSCALE);
ASSERT_TRUE(!src.empty()) << "can't open input image road.png";
SUBTEST << src.cols << 'x' << src.rows << "; road.png";
vector<cv::Rect> found_locations;
declare.in(src).time(5);
hog.detectMultiScale(src, found_locations);
if (RUN_PLAIN_IMPL)
{
HOGDescriptor hog;
hog.setSVMDetector(hog.getDefaultPeopleDetector());
CPU_ON;
hog.detectMultiScale(src, found_locations);
CPU_OFF;
TEST_CYCLE() hog.detectMultiScale(src, found_locations);
cv::ocl::HOGDescriptor ocl_hog;
ocl_hog.setSVMDetector(ocl_hog.getDefaultPeopleDetector());
ocl::oclMat d_src;
d_src.upload(src);
SANITY_CHECK(found_locations, 1 + DBL_EPSILON);
}
else if (RUN_OCL_IMPL)
{
ocl::HOGDescriptor ocl_hog;
ocl_hog.setSVMDetector(ocl_hog.getDefaultPeopleDetector());
ocl::oclMat oclSrc(src);
WARMUP_ON;
ocl_hog.detectMultiScale(d_src, d_found_locations);
WARMUP_OFF;
TEST_CYCLE() ocl_hog.detectMultiScale(oclSrc, found_locations);
if(d_found_locations.size() == found_locations.size())
TestSystem::instance().setAccurate(1, 0);
SANITY_CHECK(found_locations, 1 + DBL_EPSILON);
}
else
TestSystem::instance().setAccurate(0, abs((int)found_locations.size() - (int)d_found_locations.size()));
GPU_ON;
ocl_hog.detectMultiScale(d_src, found_locations);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl_hog.detectMultiScale(d_src, found_locations);
GPU_FULL_OFF;
OCL_PERF_ELSE
}

File diff suppressed because it is too large Load Diff

@ -45,101 +45,77 @@
//M*/
#include "perf_precomp.hpp"
/////////// matchTemplate ////////////////////////
//void InitMatchTemplate()
//{
// Mat src; gen(src, 500, 500, CV_32F, 0, 1);
// Mat templ; gen(templ, 500, 500, CV_32F, 0, 1);
// ocl::oclMat d_src(src), d_templ(templ), d_dst;
// ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
//}
PERFTEST(matchTemplate)
{
//InitMatchTemplate();
Mat src, templ, dst, ocl_dst;
int templ_size = 5;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
int all_type[] = {CV_32FC1, CV_32FC4};
std::string type_name[] = {"CV_32FC1", "CV_32FC4"};
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
for(templ_size = 5; templ_size <= 5; templ_size *= 5)
{
gen(src, size, size, all_type[j], 0, 1);
SUBTEST << src.cols << 'x' << src.rows << "; " << type_name[j] << "; templ " << templ_size << 'x' << templ_size << "; CCORR";
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
gen(templ, templ_size, templ_size, all_type[j], 0, 1);
matchTemplate(src, templ, dst, CV_TM_CCORR);
CPU_ON;
matchTemplate(src, templ, dst, CV_TM_CCORR);
CPU_OFF;
ocl::oclMat d_src(src), d_templ(templ), d_dst;
WARMUP_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
WARMUP_OFF;
/////////// matchTemplate ////////////////////////
GPU_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
GPU_OFF;
typedef Size_MatType CV_TM_CCORRFixture;
GPU_FULL_ON;
d_src.upload(src);
d_templ.upload(templ);
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
PERF_TEST_P(CV_TM_CCORRFixture, matchTemplate,
::testing::Combine(::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000),
OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params), templSize(5, 5);
const int type = get<1>(params);
Mat src(srcSize, type), templ(templSize, type);
const Size dstSize(src.cols - templ.cols + 1, src.rows - templ.rows + 1);
Mat dst(dstSize, CV_32F);
randu(src, 0.0f, 1.0f);
randu(templ, 0.0f, 1.0f);
declare.time(srcSize == OCL_SIZE_2000 ? 20 : 6).in(src, templ).out(dst);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclTempl(templ), oclDst(dstSize, CV_32F);
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, templ.rows * templ.cols * 1e-1);
}
}
TEST_CYCLE() cv::ocl::matchTemplate(oclSrc, oclTempl, oclDst, CV_TM_CCORR);
int all_type_8U[] = {CV_8UC1};
std::string type_name_8U[] = {"CV_8UC1"};
oclDst.download(dst);
for (size_t j = 0; j < sizeof(all_type_8U) / sizeof(int); j++)
{
for(templ_size = 5; templ_size <= 5; templ_size *= 5)
{
SUBTEST << src.cols << 'x' << src.rows << "; " << type_name_8U[j] << "; templ " << templ_size << 'x' << templ_size << "; CCORR_NORMED";
SANITY_CHECK(dst, 1e-4);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::matchTemplate(src, templ, dst, CV_TM_CCORR);
gen(src, size, size, all_type_8U[j], 0, 255);
SANITY_CHECK(dst, 1e-4);
}
else
OCL_PERF_ELSE
}
gen(templ, templ_size, templ_size, all_type_8U[j], 0, 255);
typedef TestBaseWithParam<Size> CV_TM_CCORR_NORMEDFixture;
matchTemplate(src, templ, dst, CV_TM_CCORR_NORMED);
PERF_TEST_P(CV_TM_CCORR_NORMEDFixture, matchTemplate, OCL_TYPICAL_MAT_SIZES)
{
const Size srcSize = GetParam(), templSize(5, 5);
CPU_ON;
matchTemplate(src, templ, dst, CV_TM_CCORR_NORMED);
CPU_OFF;
Mat src(srcSize, CV_8UC1), templ(templSize, CV_8UC1), dst;
const Size dstSize(src.cols - templ.cols + 1, src.rows - templ.rows + 1);
dst.create(dstSize, CV_8UC1);
declare.in(src, templ, WARMUP_RNG).out(dst)
.time(srcSize == OCL_SIZE_2000 ? 10 : srcSize == OCL_SIZE_4000 ? 23 : 2);
ocl::oclMat d_src(src);
ocl::oclMat d_templ(templ), d_dst;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclTempl(templ), oclDst(dstSize, CV_8UC1);
WARMUP_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR_NORMED);
WARMUP_OFF;
TEST_CYCLE() cv::ocl::matchTemplate(oclSrc, oclTempl, oclDst, CV_TM_CCORR_NORMED);
GPU_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR_NORMED);
GPU_OFF;
oclDst.download(dst);
GPU_FULL_ON;
d_src.upload(src);
d_templ.upload(templ);
ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR_NORMED);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
SANITY_CHECK(dst, 2e-2);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::matchTemplate(src, templ, dst, CV_TM_CCORR_NORMED);
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, templ.rows * templ.cols * 1e-1);
}
}
SANITY_CHECK(dst, 2e-2);
}
else
OCL_PERF_ELSE
}

@ -45,142 +45,113 @@
//M*/
#include "perf_precomp.hpp"
///////////// ConvertTo////////////////////////
PERFTEST(ConvertTo)
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] << " to 32FC1";
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
gen(src, size, size, all_type[j], 0, 256);
//gen(dst, size, size, all_type[j], 0, 256);
//d_dst.upload(dst);
src.convertTo(dst, CV_32FC1);
///////////// ConvertTo////////////////////////
CPU_ON;
src.convertTo(dst, CV_32FC1);
CPU_OFF;
typedef Size_MatType ConvertToFixture;
d_src.upload(src);
PERF_TEST_P(ConvertToFixture, ConvertTo,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
WARMUP_ON;
d_src.convertTo(d_dst, CV_32FC1);
WARMUP_OFF;
Mat src(srcSize, type), dst;
const int dstType = CV_MAKE_TYPE(CV_32F, src.channels());
dst.create(srcSize, dstType);
declare.in(src, WARMUP_RNG).out(dst);
GPU_ON;
d_src.convertTo(d_dst, CV_32FC1);
GPU_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, dstType);
GPU_FULL_ON;
d_src.upload(src);
d_src.convertTo(d_dst, CV_32FC1);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TEST_CYCLE() oclSrc.convertTo(oclDst, dstType);
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
}
///////////// copyTo////////////////////////
PERFTEST(copyTo)
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
else if (RUN_PLAIN_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
TEST_CYCLE() src.convertTo(dst, dstType);
gen(src, size, size, all_type[j], 0, 256);
//gen(dst, size, size, all_type[j], 0, 256);
//d_dst.upload(dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
src.copyTo(dst);
///////////// copyTo////////////////////////
CPU_ON;
src.copyTo(dst);
CPU_OFF;
typedef Size_MatType copyToFixture;
d_src.upload(src);
PERF_TEST_P(copyToFixture, copyTo,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
WARMUP_ON;
d_src.copyTo(d_dst);
WARMUP_OFF;
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
GPU_ON;
d_src.copyTo(d_dst);
GPU_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
GPU_FULL_ON;
d_src.upload(src);
d_src.copyTo(d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TEST_CYCLE() oclSrc.copyTo(oclDst);
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
}
///////////// setTo////////////////////////
PERFTEST(setTo)
{
Mat src, ocl_src;
Scalar val(1, 2, 3, 4);
ocl::oclMat d_src;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
else if (RUN_PLAIN_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
TEST_CYCLE() src.copyTo(dst);
gen(src, size, size, all_type[j], 0, 256);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
src.setTo(val);
///////////// setTo////////////////////////
CPU_ON;
src.setTo(val);
CPU_OFF;
typedef Size_MatType setToFixture;
d_src.upload(src);
PERF_TEST_P(setToFixture, setTo,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
const Scalar val(1, 2, 3, 4);
WARMUP_ON;
d_src.setTo(val);
WARMUP_OFF;
Mat src(srcSize, type);
declare.in(src);
d_src.download(ocl_src);
TestSystem::instance().ExpectedMatNear(src, ocl_src, 1.0);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(srcSize, type);
GPU_ON;;
d_src.setTo(val);
GPU_OFF;
TEST_CYCLE() oclSrc.setTo(val);
oclSrc.download(src);
GPU_FULL_ON;
d_src.upload(src);
d_src.setTo(val);
GPU_FULL_OFF;
}
SANITY_CHECK(src);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() src.setTo(val);
SANITY_CHECK(src);
}
else
OCL_PERF_ELSE
}

@ -43,50 +43,47 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
///////////// Moments ////////////////////////
PERFTEST(Moments)
{
Mat src;
bool binaryImage = 0;
int all_type[] = {CV_8UC1, CV_16SC1, CV_32FC1, CV_64FC1};
std::string type_name[] = {"CV_8UC1", "CV_16SC1", "CV_32FC1", "CV_64FC1"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j];
#include "perf_precomp.hpp"
gen(src, size, size, all_type[j], 0, 256);
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
cv::Moments CvMom = moments(src, binaryImage);
///////////// Moments ////////////////////////
CPU_ON;
moments(src, binaryImage);
CPU_OFF;
typedef Size_MatType MomentsFixture;
cv::Moments oclMom;
WARMUP_ON;
oclMom = ocl::ocl_moments(src, binaryImage);
WARMUP_OFF;
PERF_TEST_P(MomentsFixture, DISABLED_Moments,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_16SC1, CV_32FC1, CV_64FC1))) // TODO does not work properly (see below)
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
Mat gpu_dst, cpu_dst;
HuMoments(CvMom, cpu_dst);
HuMoments(oclMom, gpu_dst);
Mat src(srcSize, type), dst(7, 1, CV_64F);
const bool binaryImage = false;
cv::Moments mom;
GPU_ON;
ocl::ocl_moments(src, binaryImage);
GPU_OFF;
declare.in(src, WARMUP_RNG).out(dst);
GPU_FULL_ON;
ocl::ocl_moments(src, binaryImage);
GPU_FULL_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src);
TestSystem::instance().ExpectedMatNear(gpu_dst, cpu_dst, .5);
TEST_CYCLE() mom = cv::ocl::ocl_moments(oclSrc, binaryImage); // TODO Use oclSrc
cv::HuMoments(mom, dst);
}
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() mom = cv::moments(src, binaryImage);
cv::HuMoments(mom, dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

@ -45,43 +45,39 @@
//M*/
#include "perf_precomp.hpp"
///////////// norm////////////////////////
PERFTEST(norm)
{
Mat src1, src2, ocl_src1;
ocl::oclMat d_src1, d_src2;
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
SUBTEST << size << 'x' << size << "; CV_8UC1; NORM_INF";
gen(src1, size, size, CV_8UC1, Scalar::all(0), Scalar::all(1));
gen(src2, size, size, CV_8UC1, Scalar::all(0), Scalar::all(1));
///////////// norm////////////////////////
norm(src1, src2, NORM_INF);
typedef TestBaseWithParam<Size> normFixture;
CPU_ON;
norm(src1, src2, NORM_INF);
CPU_OFF;
PERF_TEST_P(normFixture, DISABLED_norm, OCL_TYPICAL_MAT_SIZES) // TODO doesn't work properly
{
const Size srcSize = GetParam();
const std::string impl = getSelectedImpl();
double value = 0.0;
d_src1.upload(src1);
d_src2.upload(src2);
Mat src1(srcSize, CV_8UC1), src2(srcSize, CV_8UC1);
declare.in(src1, src2);
randu(src1, 0, 1);
randu(src2, 0, 1);
WARMUP_ON;
ocl::norm(d_src1, d_src2, NORM_INF);
WARMUP_OFF;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc1(src1), oclSrc2(src2);
d_src1.download(ocl_src1);
TestSystem::instance().ExpectedMatNear(src1, ocl_src1, .5);
TEST_CYCLE() value = cv::ocl::norm(oclSrc1, oclSrc2, NORM_INF);
GPU_ON;
ocl::norm(d_src1, d_src2, NORM_INF);
GPU_OFF;
SANITY_CHECK(value);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() value = cv::norm(src1, src2, NORM_INF);
GPU_FULL_ON;
d_src1.upload(src1);
d_src2.upload(src2);
ocl::norm(d_src1, d_src2, NORM_INF);
GPU_FULL_OFF;
SANITY_CHECK(value);
}
else
OCL_PERF_ELSE
}

@ -46,311 +46,228 @@
#include "perf_precomp.hpp"
///////////// PyrLKOpticalFlow ////////////////////////
PERFTEST(PyrLKOpticalFlow)
{
std::string images1[] = {"rubberwhale1.png", "aloeL.jpg"};
std::string images2[] = {"rubberwhale2.png", "aloeR.jpg"};
for (size_t i = 0; i < sizeof(images1) / sizeof(std::string); i++)
{
Mat frame0 = imread(abspath(images1[i]), i == 0 ? IMREAD_COLOR : IMREAD_GRAYSCALE);
using namespace perf;
using std::tr1::get;
using std::tr1::tuple;
using std::tr1::make_tuple;
if (frame0.empty())
{
std::string errstr = "can't open " + images1[i];
throw runtime_error(errstr);
}
template <typename T>
static vector<T> & MatToVector(const ocl::oclMat & oclSrc, vector<T> & instance)
{
Mat src;
oclSrc.download(src);
Mat frame1 = imread(abspath(images2[i]), i == 0 ? IMREAD_COLOR : IMREAD_GRAYSCALE);
for (int i = 0; i < src.cols; ++i)
instance.push_back(src.at<T>(0, i));
if (frame1.empty())
{
std::string errstr = "can't open " + images2[i];
throw runtime_error(errstr);
}
return instance;
}
Mat gray_frame;
CV_ENUM(LoadMode, IMREAD_GRAYSCALE, IMREAD_COLOR)
typedef tuple<int, tuple<string, string, LoadMode> > PyrLKOpticalFlowParamType;
typedef TestBaseWithParam<PyrLKOpticalFlowParamType> PyrLKOpticalFlowFixture;
PERF_TEST_P(PyrLKOpticalFlowFixture,
DISABLED_PyrLKOpticalFlow,
::testing::Combine(
::testing::Values(1000, 2000, 4000),
::testing::Values(
make_tuple<string, string, LoadMode>
(
string("gpu/opticalflow/rubberwhale1.png"),
string("gpu/opticalflow/rubberwhale2.png"),
LoadMode(IMREAD_COLOR)
)
, make_tuple<string, string, LoadMode>
(
string("gpu/stereobm/aloe-L.png"),
string("gpu/stereobm/aloe-R.png"),
LoadMode(IMREAD_GRAYSCALE)
)
)
)
) // TODO to big difference between implementations
{
PyrLKOpticalFlowParamType params = GetParam();
tuple<string, string, LoadMode> fileParam = get<1>(params);
const int pointsCount = get<0>(params);
const int openMode = static_cast<int>(get<2>(fileParam));
const string fileName0 = get<0>(fileParam), fileName1 = get<1>(fileParam);
Mat frame0 = imread(getDataPath(fileName0), openMode);
Mat frame1 = imread(getDataPath(fileName1), openMode);
ASSERT_FALSE(frame0.empty()) << "can't load " << fileName0;
ASSERT_FALSE(frame1.empty()) << "can't load " << fileName1;
Mat grayFrame;
if (openMode == IMREAD_COLOR)
cvtColor(frame0, grayFrame, COLOR_BGR2GRAY);
else
grayFrame = frame0;
vector<Point2f> pts, nextPts;
vector<unsigned char> status;
vector<float> err;
goodFeaturesToTrack(grayFrame, pts, pointsCount, 0.01, 0.0);
if (RUN_PLAIN_IMPL)
{
TEST_CYCLE()
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
if (i == 0)
{
cvtColor(frame0, gray_frame, COLOR_BGR2GRAY);
}
SANITY_CHECK(nextPts);
SANITY_CHECK(status);
SANITY_CHECK(err);
}
else if (RUN_OCL_IMPL)
{
ocl::PyrLKOpticalFlow oclPyrLK;
ocl::oclMat oclFrame0(frame0), oclFrame1(frame1);
ocl::oclMat oclPts(1, static_cast<int>(pts.size()), CV_32FC2, (void *)&pts[0]);
ocl::oclMat oclNextPts, oclStatus, oclErr;
for (int points = Min_Size; points <= Max_Size; points *= Multiple)
{
if (i == 0)
SUBTEST << frame0.cols << "x" << frame0.rows << "; color; " << points << " points";
else
SUBTEST << frame0.cols << "x" << frame0.rows << "; gray; " << points << " points";
Mat ocl_nextPts;
Mat ocl_status;
vector<Point2f> pts;
goodFeaturesToTrack(i == 0 ? gray_frame : frame0, pts, points, 0.01, 0.0);
vector<Point2f> nextPts;
vector<unsigned char> status;
vector<float> err;
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
CPU_ON;
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
CPU_OFF;
ocl::PyrLKOpticalFlow d_pyrLK;
ocl::oclMat d_frame0(frame0);
ocl::oclMat d_frame1(frame1);
ocl::oclMat d_pts;
Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void *)&pts[0]);
d_pts.upload(pts_mat);
ocl::oclMat d_nextPts;
ocl::oclMat d_status;
ocl::oclMat d_err;
WARMUP_ON;
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
WARMUP_OFF;
GPU_ON;
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
GPU_OFF;
GPU_FULL_ON;
d_frame0.upload(frame0);
d_frame1.upload(frame1);
d_pts.upload(pts_mat);
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
if (!d_nextPts.empty())
d_nextPts.download(ocl_nextPts);
if (!d_status.empty())
d_status.download(ocl_status);
GPU_FULL_OFF;
size_t mismatch = 0;
for (int i = 0; i < (int)nextPts.size(); ++i)
{
if(status[i] != ocl_status.at<unsigned char>(0, i))
{
mismatch++;
continue;
}
if(status[i])
{
Point2f gpu_rst = ocl_nextPts.at<Point2f>(0, i);
Point2f cpu_rst = nextPts[i];
if(fabs(gpu_rst.x - cpu_rst.x) >= 1. || fabs(gpu_rst.y - cpu_rst.y) >= 1.)
mismatch++;
}
}
double ratio = (double)mismatch / (double)nextPts.size();
if(ratio < .02)
TestSystem::instance().setAccurate(1, ratio);
else
TestSystem::instance().setAccurate(0, ratio);
}
TEST_CYCLE()
oclPyrLK.sparse(oclFrame0, oclFrame1, oclPts, oclNextPts, oclStatus, &oclErr);
MatToVector(oclNextPts, nextPts);
MatToVector(oclStatus, status);
MatToVector(oclErr, err);
SANITY_CHECK(nextPts);
SANITY_CHECK(status);
SANITY_CHECK(err);
}
else
OCL_PERF_ELSE
}
PERFTEST(tvl1flow)
PERF_TEST(tvl1flowFixture, tvl1flow)
{
cv::Mat frame0 = imread("rubberwhale1.png", cv::IMREAD_GRAYSCALE);
assert(!frame0.empty());
Mat frame0 = imread(getDataPath("gpu/opticalflow/rubberwhale1.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty()) << "can't load rubberwhale1.png";
cv::Mat frame1 = imread("rubberwhale2.png", cv::IMREAD_GRAYSCALE);
assert(!frame1.empty());
Mat frame1 = imread(getDataPath("gpu/opticalflow/rubberwhale2.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty()) << "can't load rubberwhale2.png";
cv::ocl::OpticalFlowDual_TVL1_OCL d_alg;
cv::ocl::oclMat d_flowx(frame0.size(), CV_32FC1);
cv::ocl::oclMat d_flowy(frame1.size(), CV_32FC1);
const Size srcSize = frame0.size();
const double eps = 1.2;
Mat flow(srcSize, CV_32FC2), flow1(srcSize, CV_32FC1), flow2(srcSize, CV_32FC1);
declare.in(frame0, frame1).out(flow1, flow2).time(159);
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
cv::Mat flow;
if (RUN_PLAIN_IMPL)
{
Ptr<DenseOpticalFlow> alg = createOptFlow_DualTVL1();
TEST_CYCLE() alg->calc(frame0, frame1, flow);
SUBTEST << frame0.cols << 'x' << frame0.rows << "; rubberwhale1.png; "<<frame1.cols<<'x'<<frame1.rows<<"; rubberwhale2.png";
alg->collectGarbage();
Mat flows[2] = { flow1, flow2 };
split(flow, flows);
alg->calc(frame0, frame1, flow);
SANITY_CHECK(flow1, eps);
SANITY_CHECK(flow2, eps);
}
else if (RUN_OCL_IMPL)
{
ocl::OpticalFlowDual_TVL1_OCL oclAlg;
ocl::oclMat oclFrame0(frame0), oclFrame1(frame1), oclFlow1(srcSize, CV_32FC1),
oclFlow2(srcSize, CV_32FC1);
CPU_ON;
alg->calc(frame0, frame1, flow);
CPU_OFF;
TEST_CYCLE() oclAlg(oclFrame0, oclFrame1, oclFlow1, oclFlow2);
cv::Mat gold[2];
cv::split(flow, gold);
oclAlg.collectGarbage();
cv::ocl::oclMat d0(frame0.size(), CV_32FC1);
d0.upload(frame0);
cv::ocl::oclMat d1(frame1.size(), CV_32FC1);
d1.upload(frame1);
oclFlow1.download(flow1);
oclFlow2.download(flow2);
WARMUP_ON;
d_alg(d0, d1, d_flowx, d_flowy);
WARMUP_OFF;
/*
double diff1 = 0.0, diff2 = 0.0;
if(ExceptedMatSimilar(gold[0], cv::Mat(d_flowx), 3e-3, diff1) == 1
&&ExceptedMatSimilar(gold[1], cv::Mat(d_flowy), 3e-3, diff2) == 1)
TestSystem::instance().setAccurate(1);
else
TestSystem::instance().setAccurate(0);
SANITY_CHECK(flow1, eps);
SANITY_CHECK(flow2, eps);
}
else
OCL_PERF_ELSE
}
TestSystem::instance().setDiff(diff1);
TestSystem::instance().setDiff(diff2);
*/
///////////// FarnebackOpticalFlow ////////////////////////
CV_ENUM(farneFlagType, 0, OPTFLOW_FARNEBACK_GAUSSIAN)
GPU_ON;
d_alg(d0, d1, d_flowx, d_flowy);
d_alg.collectGarbage();
GPU_OFF;
typedef tuple<tuple<int, double>, farneFlagType, bool> FarnebackOpticalFlowParams;
typedef TestBaseWithParam<FarnebackOpticalFlowParams> FarnebackOpticalFlowFixture;
PERF_TEST_P(FarnebackOpticalFlowFixture, FarnebackOpticalFlow,
::testing::Combine(
::testing::Values(make_tuple<int, double>(5, 1.1),
make_tuple<int, double>(7, 1.5)),
farneFlagType::all(),
::testing::Bool()))
{
Mat frame0 = imread(getDataPath("gpu/opticalflow/rubberwhale1.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty()) << "can't load rubberwhale1.png";
cv::Mat flowx, flowy;
Mat frame1 = imread(getDataPath("gpu/opticalflow/rubberwhale2.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty()) << "can't load rubberwhale2.png";
GPU_FULL_ON;
d0.upload(frame0);
d1.upload(frame1);
d_alg(d0, d1, d_flowx, d_flowy);
d_alg.collectGarbage();
d_flowx.download(flowx);
d_flowy.download(flowy);
GPU_FULL_OFF;
const Size srcSize = frame0.size();
TestSystem::instance().ExceptedMatSimilar(gold[0], flowx, 3e-3);
TestSystem::instance().ExceptedMatSimilar(gold[1], flowy, 3e-3);
}
const FarnebackOpticalFlowParams params = GetParam();
const tuple<int, double> polyParams = get<0>(params);
const int polyN = get<0>(polyParams), flags = get<1>(params);
const double polySigma = get<1>(polyParams), pyrScale = 0.5;
const bool useInitFlow = get<2>(params);
const double eps = 1.5;
///////////// FarnebackOpticalFlow ////////////////////////
PERFTEST(FarnebackOpticalFlow)
{
cv::Mat frame0 = imread("rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
Mat flowx(srcSize, CV_32FC1), flowy(srcSize, CV_32FC1), flow(srcSize, CV_32FC2);
declare.in(frame0, frame1).out(flowx, flowy);
cv::Mat frame1 = imread("rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
ocl::FarnebackOpticalFlow farn;
farn.pyrScale = pyrScale;
farn.polyN = polyN;
farn.polySigma = polySigma;
farn.flags = flags;
cv::ocl::oclMat d_frame0(frame0), d_frame1(frame1);
if (RUN_PLAIN_IMPL)
{
if (useInitFlow)
{
calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
farn.flags |= OPTFLOW_USE_INITIAL_FLOW;
}
int polyNs[2] = { 5, 7 };
double polySigmas[2] = { 1.1, 1.5 };
int farneFlags[2] = { 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN };
bool UseInitFlows[2] = { false, true };
double pyrScale = 0.5;
TEST_CYCLE()
calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
string farneFlagStrs[2] = { "BoxFilter", "GaussianBlur" };
string useInitFlowStrs[2] = { "", "UseInitFlow" };
Mat flowxy[2] = { flowx, flowy };
split(flow, flowxy);
for ( int i = 0; i < 2; ++i)
SANITY_CHECK(flowx, eps);
SANITY_CHECK(flowy, eps);
}
else if (RUN_OCL_IMPL)
{
int polyN = polyNs[i];
double polySigma = polySigmas[i];
ocl::oclMat oclFrame0(frame0), oclFrame1(frame1),
oclFlowx(srcSize, CV_32FC1), oclFlowy(srcSize, CV_32FC1);
for ( int j = 0; j < 2; ++j)
if (useInitFlow)
{
int flags = farneFlags[j];
for ( int k = 0; k < 2; ++k)
{
bool useInitFlow = UseInitFlows[k];
SUBTEST << "polyN(" << polyN << "); " << farneFlagStrs[j] << "; " << useInitFlowStrs[k];
cv::ocl::FarnebackOpticalFlow farn;
farn.pyrScale = pyrScale;
farn.polyN = polyN;
farn.polySigma = polySigma;
farn.flags = flags;
cv::ocl::oclMat d_flowx, d_flowy;
cv::Mat flow, flowBuf, flowxBuf, flowyBuf;
WARMUP_ON;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
if (useInitFlow)
{
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
cv::merge(flowxy, 2, flow);
flow.copyTo(flowBuf);
flowxy[0].copyTo(flowxBuf);
flowxy[1].copyTo(flowyBuf);
farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
}
WARMUP_OFF;
cv::calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
std::vector<cv::Mat> flowxy;
cv::split(flow, flowxy);
farn(oclFrame0, oclFrame1, oclFlowx, oclFlowy);
farn.flags |= OPTFLOW_USE_INITIAL_FLOW;
}
Mat md_flowx = cv::Mat(d_flowx);
Mat md_flowy = cv::Mat(d_flowy);
TestSystem::instance().ExceptedMatSimilar(flowxy[0], md_flowx, 0.1);
TestSystem::instance().ExceptedMatSimilar(flowxy[1], md_flowy, 0.1);
TEST_CYCLE()
farn(oclFrame0, oclFrame1, oclFlowx, oclFlowy);
if (useInitFlow)
{
cv::Mat flowx, flowy;
farn.flags = (flags | cv::OPTFLOW_USE_INITIAL_FLOW);
oclFlowx.download(flowx);
oclFlowy.download(flowy);
CPU_ON;
cv::calcOpticalFlowFarneback(
frame0, frame1, flowBuf, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
CPU_OFF;
GPU_ON;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
GPU_OFF;
GPU_FULL_ON;
d_frame0.upload(frame0);
d_frame1.upload(frame1);
d_flowx.upload(flowxBuf);
d_flowy.upload(flowyBuf);
farn(d_frame0, d_frame1, d_flowx, d_flowy);
d_flowx.download(flowx);
d_flowy.download(flowy);
GPU_FULL_OFF;
}
else
{
cv::Mat flow, flowx, flowy;
cv::ocl::oclMat d_flowx, d_flowy;
farn.flags = flags;
CPU_ON;
cv::calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
CPU_OFF;
GPU_ON;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
GPU_OFF;
GPU_FULL_ON;
d_frame0.upload(frame0);
d_frame1.upload(frame1);
farn(d_frame0, d_frame1, d_flowx, d_flowy);
d_flowx.download(flowx);
d_flowy.download(flowy);
GPU_FULL_OFF;
}
}
}
SANITY_CHECK(flowx, eps);
SANITY_CHECK(flowy, eps);
}
else
OCL_PERF_ELSE
}

@ -41,452 +41,3 @@
//M*/
#include "perf_precomp.hpp"
#if GTEST_OS_WINDOWS
#ifndef NOMINMAX
#define NOMINMAX
#endif
# include <windows.h>
#endif
// This program test most of the functions in ocl module and generate data metrix of x-factor in .csv files
// All images needed in this test are in samples/gpu folder.
// For haar template, haarcascade_frontalface_alt.xml shouold be in working directory
void TestSystem::run()
{
if (is_list_mode_)
{
for (vector<Runnable *>::iterator it = tests_.begin(); it != tests_.end(); ++it)
{
cout << (*it)->name() << endl;
}
return;
}
// Run test initializers
for (vector<Runnable *>::iterator it = inits_.begin(); it != inits_.end(); ++it)
{
if ((*it)->name().find(test_filter_, 0) != string::npos)
{
(*it)->run();
}
}
printHeading();
writeHeading();
// Run tests
for (vector<Runnable *>::iterator it = tests_.begin(); it != tests_.end(); ++it)
{
try
{
if ((*it)->name().find(test_filter_, 0) != string::npos)
{
cout << endl << (*it)->name() << ":\n";
setCurrentTest((*it)->name());
//fprintf(record_,"%s\n",(*it)->name().c_str());
(*it)->run();
finishCurrentSubtest();
}
}
catch (const Exception &)
{
// Message is printed via callback
resetCurrentSubtest();
}
catch (const runtime_error &e)
{
printError(e.what());
resetCurrentSubtest();
}
}
printSummary();
writeSummary();
}
void TestSystem::finishCurrentSubtest()
{
if (cur_subtest_is_empty_)
// There is no need to print subtest statistics
{
return;
}
double cpu_time = cpu_elapsed_ / getTickFrequency() * 1000.0;
double gpu_time = gpu_elapsed_ / getTickFrequency() * 1000.0;
double gpu_full_time = gpu_full_elapsed_ / getTickFrequency() * 1000.0;
double speedup = static_cast<double>(cpu_elapsed_) / std::max(1.0, gpu_elapsed_);
speedup_total_ += speedup;
double fullspeedup = static_cast<double>(cpu_elapsed_) / std::max(1.0, gpu_full_elapsed_);
speedup_full_total_ += fullspeedup;
if (speedup > top_)
{
speedup_faster_count_++;
}
else if (speedup < bottom_)
{
speedup_slower_count_++;
}
else
{
speedup_equal_count_++;
}
if (fullspeedup > top_)
{
speedup_full_faster_count_++;
}
else if (fullspeedup < bottom_)
{
speedup_full_slower_count_++;
}
else
{
speedup_full_equal_count_++;
}
// compute min, max and
std::sort(gpu_times_.begin(), gpu_times_.end());
double gpu_min = gpu_times_.front() / getTickFrequency() * 1000.0;
double gpu_max = gpu_times_.back() / getTickFrequency() * 1000.0;
double deviation = 0;
if (gpu_times_.size() > 1)
{
double sum = 0;
for (size_t i = 0; i < gpu_times_.size(); i++)
{
int64 diff = gpu_times_[i] - static_cast<int64>(gpu_elapsed_);
double diff_time = diff * 1000 / getTickFrequency();
sum += diff_time * diff_time;
}
deviation = std::sqrt(sum / gpu_times_.size());
}
printMetrics(is_accurate_, cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup);
writeMetrics(cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup, gpu_min, gpu_max, deviation);
num_subtests_called_++;
resetCurrentSubtest();
}
double TestSystem::meanTime(const vector<int64> &samples)
{
double sum = accumulate(samples.begin(), samples.end(), 0.);
return sum / samples.size();
}
void TestSystem::printHeading()
{
cout << endl;
cout<< setiosflags(ios_base::left);
#if 0
cout<<TAB<<setw(7)<< "Accu." << setw(10) << "CPU (ms)" << setw(10) << "GPU, ms"
<< setw(8) << "Speedup"<< setw(10)<<"GPUTotal" << setw(10) << "Total"
<< "Description\n";
cout<<TAB<<setw(7)<<""<<setw(10)<<""<<setw(10)<<""<<setw(8)<<""<<setw(10)<<"(ms)"<<setw(10)<<"Speedup\n";
#endif
cout<<TAB<< setw(10) << "CPU (ms)" << setw(10) << "GPU, ms"
<< setw(8) << "Speedup"<< setw(10)<<"GPUTotal" << setw(10) << "Total"
<< "Description\n";
cout<<TAB<<setw(10)<<""<<setw(10)<<""<<setw(8)<<""<<setw(10)<<"(ms)"<<setw(10)<<"Speedup\n";
cout << resetiosflags(ios_base::left);
}
void TestSystem::writeHeading()
{
if (!record_)
{
recordname_ += "_OCL.csv";
record_ = fopen(recordname_.c_str(), "w");
if(record_ == NULL)
{
cout<<".csv file open failed.\n";
exit(0);
}
}
fprintf(record_, "NAME,DESCRIPTION,ACCURACY,DIFFERENCE,CPU (ms),GPU (ms),SPEEDUP,GPUTOTAL (ms),TOTALSPEEDUP,GPU Min (ms),GPU Max (ms), Standard deviation (ms)\n");
fflush(record_);
}
void TestSystem::printSummary()
{
cout << setiosflags(ios_base::fixed);
cout << "\naverage GPU speedup: x"
<< setprecision(3) << speedup_total_ / std::max(1, num_subtests_called_)
<< endl;
cout << "\nGPU exceeded: "
<< setprecision(3) << speedup_faster_count_
<< "\nGPU passed: "
<< setprecision(3) << speedup_equal_count_
<< "\nGPU failed: "
<< setprecision(3) << speedup_slower_count_
<< endl;
cout << "\nGPU exceeded rate: "
<< setprecision(3) << (float)speedup_faster_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< "\nGPU passed rate: "
<< setprecision(3) << (float)speedup_equal_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< "\nGPU failed rate: "
<< setprecision(3) << (float)speedup_slower_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< endl;
cout << "\naverage GPUTOTAL speedup: x"
<< setprecision(3) << speedup_full_total_ / std::max(1, num_subtests_called_)
<< endl;
cout << "\nGPUTOTAL exceeded: "
<< setprecision(3) << speedup_full_faster_count_
<< "\nGPUTOTAL passed: "
<< setprecision(3) << speedup_full_equal_count_
<< "\nGPUTOTAL failed: "
<< setprecision(3) << speedup_full_slower_count_
<< endl;
cout << "\nGPUTOTAL exceeded rate: "
<< setprecision(3) << (float)speedup_full_faster_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< "\nGPUTOTAL passed rate: "
<< setprecision(3) << (float)speedup_full_equal_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< "\nGPUTOTAL failed rate: "
<< setprecision(3) << (float)speedup_full_slower_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< endl;
cout << resetiosflags(ios_base::fixed);
}
enum GTestColor {
COLOR_DEFAULT,
COLOR_RED,
COLOR_GREEN,
COLOR_YELLOW
};
#if GTEST_OS_WINDOWS&&!GTEST_OS_WINDOWS_MOBILE
// Returns the character attribute for the given color.
static WORD GetColorAttribute(GTestColor color) {
switch (color) {
case COLOR_RED: return FOREGROUND_RED;
case COLOR_GREEN: return FOREGROUND_GREEN;
case COLOR_YELLOW: return FOREGROUND_RED | FOREGROUND_GREEN;
default: return 0;
}
}
#else
static const char* GetAnsiColorCode(GTestColor color) {
switch (color) {
case COLOR_RED: return "1";
case COLOR_GREEN: return "2";
case COLOR_YELLOW: return "3";
default: return NULL;
};
}
#endif
static void printMetricsUti(double cpu_time, double gpu_time, double gpu_full_time, double speedup, double fullspeedup, std::stringstream& stream, std::stringstream& cur_subtest_description)
{
//cout <<TAB<< setw(7) << stream.str();
cout <<TAB;
stream.str("");
stream << cpu_time;
cout << setw(10) << stream.str();
stream.str("");
stream << gpu_time;
cout << setw(10) << stream.str();
stream.str("");
stream << "x" << setprecision(3) << speedup;
cout << setw(8) << stream.str();
stream.str("");
stream << gpu_full_time;
cout << setw(10) << stream.str();
stream.str("");
stream << "x" << setprecision(3) << fullspeedup;
cout << setw(10) << stream.str();
cout << cur_subtest_description.str();
cout << resetiosflags(ios_base::left) << endl;
}
void TestSystem::printMetrics(int is_accurate, double cpu_time, double gpu_time, double gpu_full_time, double speedup, double fullspeedup)
{
cout << setiosflags(ios_base::left);
stringstream stream;
std::stringstream &cur_subtest_description = getCurSubtestDescription();
#if GTEST_OS_WINDOWS&&!GTEST_OS_WINDOWS_MOBILE
WORD color;
const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE);
// Gets the current text color.
CONSOLE_SCREEN_BUFFER_INFO buffer_info;
GetConsoleScreenBufferInfo(stdout_handle, &buffer_info);
const WORD old_color_attrs = buffer_info.wAttributes;
// We need to flush the stream buffers into the console before each
// SetConsoleTextAttribute call lest it affect the text that is already
// printed but has not yet reached the console.
fflush(stdout);
if(is_accurate == 1||is_accurate == -1)
{
color = old_color_attrs;
printMetricsUti(cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup, stream, cur_subtest_description);
}else
{
color = GetColorAttribute(COLOR_RED);
SetConsoleTextAttribute(stdout_handle,
color| FOREGROUND_INTENSITY);
printMetricsUti(cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup, stream, cur_subtest_description);
fflush(stdout);
// Restores the text color.
SetConsoleTextAttribute(stdout_handle, old_color_attrs);
}
#else
GTestColor color = COLOR_RED;
if(is_accurate == 1|| is_accurate == -1)
{
printMetricsUti(cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup, stream, cur_subtest_description);
}else
{
printf("\033[0;3%sm", GetAnsiColorCode(color));
printMetricsUti(cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup, stream, cur_subtest_description);
printf("\033[m"); // Resets the terminal to default.
}
#endif
}
void TestSystem::writeMetrics(double cpu_time, double gpu_time, double gpu_full_time, double speedup, double fullspeedup, double gpu_min, double gpu_max, double std_dev)
{
if (!record_)
{
recordname_ += ".csv";
record_ = fopen(recordname_.c_str(), "w");
}
string _is_accurate_;
if(is_accurate_ == 1)
_is_accurate_ = "Pass";
else if(is_accurate_ == 0)
_is_accurate_ = "Fail";
else if(is_accurate_ == -1)
_is_accurate_ = " ";
else
{
std::cout<<"is_accurate errer: "<<is_accurate_<<"\n";
exit(-1);
}
fprintf(record_, "%s,%s,%s,%.2f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f\n",
itname_changed_ ? itname_.c_str() : "",
cur_subtest_description_.str().c_str(),
_is_accurate_.c_str(),
accurate_diff_,
cpu_time, gpu_time, speedup, gpu_full_time, fullspeedup,
gpu_min, gpu_max, std_dev);
if (itname_changed_)
{
itname_changed_ = false;
}
fflush(record_);
}
void TestSystem::writeSummary()
{
if (!record_)
{
recordname_ += ".csv";
record_ = fopen(recordname_.c_str(), "w");
}
fprintf(record_, "\nAverage GPU speedup: %.3f\n"
"exceeded: %d (%.3f%%)\n"
"passed: %d (%.3f%%)\n"
"failed: %d (%.3f%%)\n"
"\nAverage GPUTOTAL speedup: %.3f\n"
"exceeded: %d (%.3f%%)\n"
"passed: %d (%.3f%%)\n"
"failed: %d (%.3f%%)\n",
speedup_total_ / std::max(1, num_subtests_called_),
speedup_faster_count_, (float)speedup_faster_count_ / std::max(1, num_subtests_called_) * 100,
speedup_equal_count_, (float)speedup_equal_count_ / std::max(1, num_subtests_called_) * 100,
speedup_slower_count_, (float)speedup_slower_count_ / std::max(1, num_subtests_called_) * 100,
speedup_full_total_ / std::max(1, num_subtests_called_),
speedup_full_faster_count_, (float)speedup_full_faster_count_ / std::max(1, num_subtests_called_) * 100,
speedup_full_equal_count_, (float)speedup_full_equal_count_ / std::max(1, num_subtests_called_) * 100,
speedup_full_slower_count_, (float)speedup_full_slower_count_ / std::max(1, num_subtests_called_) * 100
);
fflush(record_);
}
void TestSystem::printError(const std::string &msg)
{
if(msg != "CL_INVALID_BUFFER_SIZE")
{
cout << TAB << "[error: " << msg << "] " << cur_subtest_description_.str() << endl;
}
}
void gen(Mat &mat, int rows, int cols, int type, Scalar low, Scalar high)
{
mat.create(rows, cols, type);
RNG rng(0);
rng.fill(mat, RNG::UNIFORM, low, high);
}
string abspath(const string &relpath)
{
return TestSystem::instance().workingDir() + relpath;
}
int CV_CDECL cvErrorCallback(int /*status*/, const char * /*func_name*/,
const char *err_msg, const char * /*file_name*/,
int /*line*/, void * /*userdata*/)
{
TestSystem::instance().printError(err_msg);
return 0;
}
double checkNorm(const Mat &m)
{
return norm(m, NORM_INF);
}
double checkNorm(const Mat &m1, const Mat &m2)
{
return norm(m1, m2, NORM_INF);
}
double checkSimilarity(const Mat &m1, const Mat &m2)
{
Mat diff;
matchTemplate(m1, m2, diff, CV_TM_CCORR_NORMED);
return std::abs(diff.at<float>(0, 0) - 1.f);
}

@ -40,6 +40,14 @@
//
//M*/
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
@ -50,6 +58,7 @@
#include <cstdio>
#include <vector>
#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
@ -59,455 +68,38 @@
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/ocl/ocl.hpp"
#include "opencv2/ts/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/ts/ts_gtest.h"
#define Min_Size 1000
#define Max_Size 4000
#define Multiple 2
#define TAB " "
using namespace std;
using namespace cv;
void gen(Mat &mat, int rows, int cols, int type, Scalar low, Scalar high);
void gen(Mat &mat, int rows, int cols, int type, int low, int high, int n);
string abspath(const string &relpath);
int CV_CDECL cvErrorCallback(int, const char *, const char *, const char *, int, void *);
typedef struct
{
short x;
short y;
} COOR;
COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep,
cv::Size size, int sp, int sr, int maxIter, float eps, int *tab);
void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi,
int sp, int sr, cv::TermCriteria crit);
template<class T1, class T2>
int ExpectedEQ(T1 expected, T2 actual)
{
if(expected == actual)
return 1;
return 0;
}
template<class T1>
int EeceptDoubleEQ(T1 expected, T1 actual)
{
testing::internal::Double lhs(expected);
testing::internal::Double rhs(actual);
if (lhs.AlmostEquals(rhs))
{
return 1;
}
return 0;
}
template<class T>
int AssertEQ(T expected, T actual)
{
if(expected == actual)
{
return 1;
}
return 0;
}
int ExceptDoubleNear(double val1, double val2, double abs_error);
bool match_rect(cv::Rect r1, cv::Rect r2, int threshold);
double checkNorm(const cv::Mat &m);
double checkNorm(const cv::Mat &m1, const cv::Mat &m2);
double checkSimilarity(const cv::Mat &m1, const cv::Mat &m2);
int ExpectedMatNear(cv::Mat dst, cv::Mat cpu_dst, double eps);
int ExceptedMatSimilar(cv::Mat dst, cv::Mat cpu_dst, double eps);
class Runnable
{
public:
explicit Runnable(const std::string &runname): name_(runname) {}
virtual ~Runnable() {}
const std::string &name() const
{
return name_;
}
virtual void run() = 0;
private:
std::string name_;
};
class TestSystem
{
public:
static TestSystem &instance()
{
static TestSystem me;
return me;
}
void setWorkingDir(const std::string &val)
{
working_dir_ = val;
}
const std::string &workingDir() const
{
return working_dir_;
}
void setTestFilter(const std::string &val)
{
test_filter_ = val;
}
const std::string &testFilter() const
{
return test_filter_;
}
void setNumIters(int num_iters)
{
num_iters_ = num_iters;
}
void setGPUWarmupIters(int num_iters)
{
gpu_warmup_iters_ = num_iters;
}
void setCPUIters(int num_iters)
{
cpu_num_iters_ = num_iters;
}
void setTopThreshold(double top)
{
top_ = top;
}
void setBottomThreshold(double bottom)
{
bottom_ = bottom;
}
void addInit(Runnable *init)
{
inits_.push_back(init);
}
void addTest(Runnable *test)
{
tests_.push_back(test);
}
void run();
// It's public because OpenCV callback uses it
void printError(const std::string &msg);
std::stringstream &startNewSubtest()
{
finishCurrentSubtest();
return cur_subtest_description_;
}
bool stop() const
{
return cur_iter_idx_ >= num_iters_;
}
bool cpu_stop() const
{
return cur_iter_idx_ >= cpu_num_iters_;
}
int get_cur_iter_idx()
{
return cur_iter_idx_;
}
int get_cpu_num_iters()
{
return cpu_num_iters_;
}
bool warmupStop()
{
return cur_warmup_idx_++ >= gpu_warmup_iters_;
}
void warmupComplete()
{
cur_warmup_idx_ = 0;
}
#define OCL_SIZE_1000 Size(1000, 1000)
#define OCL_SIZE_2000 Size(2000, 2000)
#define OCL_SIZE_4000 Size(4000, 4000)
void cpuOn()
{
cpu_started_ = cv::getTickCount();
}
void cpuOff()
{
int64 delta = cv::getTickCount() - cpu_started_;
cpu_times_.push_back(delta);
++cur_iter_idx_;
}
void cpuComplete()
{
cpu_elapsed_ += meanTime(cpu_times_);
cur_subtest_is_empty_ = false;
cur_iter_idx_ = 0;
}
#define OCL_TYPICAL_MAT_SIZES ::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000, OCL_SIZE_4000)
void gpuOn()
{
gpu_started_ = cv::getTickCount();
}
void gpuOff()
{
int64 delta = cv::getTickCount() - gpu_started_;
gpu_times_.push_back(delta);
++cur_iter_idx_;
}
void gpuComplete()
{
gpu_elapsed_ += meanTime(gpu_times_);
cur_subtest_is_empty_ = false;
cur_iter_idx_ = 0;
}
#define OCL_PERF_ENUM(type, ...) ::testing::Values(type, ## __VA_ARGS__ )
void gpufullOn()
{
gpu_full_started_ = cv::getTickCount();
}
void gpufullOff()
{
int64 delta = cv::getTickCount() - gpu_full_started_;
gpu_full_times_.push_back(delta);
++cur_iter_idx_;
}
void gpufullComplete()
{
gpu_full_elapsed_ += meanTime(gpu_full_times_);
cur_subtest_is_empty_ = false;
cur_iter_idx_ = 0;
}
#define IMPL_OCL "ocl"
#define IMPL_GPU "gpu"
#define IMPL_PLAIN "plain"
bool isListMode() const
{
return is_list_mode_;
}
void setListMode(bool value)
{
is_list_mode_ = value;
}
#define RUN_OCL_IMPL (IMPL_OCL == getSelectedImpl())
#define RUN_PLAIN_IMPL (IMPL_PLAIN == getSelectedImpl())
void setRecordName(const std::string &name)
{
recordname_ = name;
}
void setCurrentTest(const std::string &name)
{
itname_ = name;
itname_changed_ = true;
}
void setAccurate(int accurate, double diff)
{
is_accurate_ = accurate;
accurate_diff_ = diff;
}
void ExpectMatsNear(vector<Mat>& dst, vector<Mat>& cpu_dst, vector<double>& eps)
{
assert(dst.size() == cpu_dst.size());
assert(cpu_dst.size() == eps.size());
is_accurate_ = 1;
for(size_t i=0; i<dst.size(); i++)
{
double cur_diff = checkNorm(dst[i], cpu_dst[i]);
accurate_diff_ = max(accurate_diff_, cur_diff);
if(cur_diff > eps[i])
is_accurate_ = 0;
}
}
void ExpectedMatNear(cv::Mat& dst, cv::Mat& cpu_dst, double eps)
{
assert(dst.type() == cpu_dst.type());
assert(dst.size() == cpu_dst.size());
accurate_diff_ = checkNorm(dst, cpu_dst);
if(accurate_diff_ <= eps)
is_accurate_ = 1;
else
is_accurate_ = 0;
}
void ExceptedMatSimilar(cv::Mat& dst, cv::Mat& cpu_dst, double eps)
{
assert(dst.type() == cpu_dst.type());
assert(dst.size() == cpu_dst.size());
accurate_diff_ = checkSimilarity(cpu_dst, dst);
if(accurate_diff_ <= eps)
is_accurate_ = 1;
else
is_accurate_ = 0;
}
std::stringstream &getCurSubtestDescription()
{
return cur_subtest_description_;
}
private:
TestSystem():
cur_subtest_is_empty_(true), cpu_elapsed_(0),
gpu_elapsed_(0), gpu_full_elapsed_(0), speedup_total_(0.0),
num_subtests_called_(0),
speedup_faster_count_(0), speedup_slower_count_(0), speedup_equal_count_(0),
speedup_full_faster_count_(0), speedup_full_slower_count_(0), speedup_full_equal_count_(0), is_list_mode_(false),
num_iters_(10), cpu_num_iters_(2),
gpu_warmup_iters_(1), cur_iter_idx_(0), cur_warmup_idx_(0),
record_(0), recordname_("performance"), itname_changed_(true),
is_accurate_(-1), accurate_diff_(0.)
{
cpu_times_.reserve(num_iters_);
gpu_times_.reserve(num_iters_);
gpu_full_times_.reserve(num_iters_);
}
void finishCurrentSubtest();
void resetCurrentSubtest()
{
cpu_elapsed_ = 0;
gpu_elapsed_ = 0;
gpu_full_elapsed_ = 0;
cur_subtest_description_.str("");
cur_subtest_is_empty_ = true;
cur_iter_idx_ = 0;
cur_warmup_idx_ = 0;
cpu_times_.clear();
gpu_times_.clear();
gpu_full_times_.clear();
is_accurate_ = -1;
accurate_diff_ = 0.;
}
double meanTime(const std::vector<int64> &samples);
void printHeading();
void printSummary();
void printMetrics(int is_accurate, double cpu_time, double gpu_time = 0.0f, double gpu_full_time = 0.0f, double speedup = 0.0f, double fullspeedup = 0.0f);
void writeHeading();
void writeSummary();
void writeMetrics(double cpu_time, double gpu_time = 0.0f, double gpu_full_time = 0.0f,
double speedup = 0.0f, double fullspeedup = 0.0f,
double gpu_min = 0.0f, double gpu_max = 0.0f, double std_dev = 0.0f);
std::string working_dir_;
std::string test_filter_;
std::vector<Runnable *> inits_;
std::vector<Runnable *> tests_;
std::stringstream cur_subtest_description_;
bool cur_subtest_is_empty_;
int64 cpu_started_;
int64 gpu_started_;
int64 gpu_full_started_;
double cpu_elapsed_;
double gpu_elapsed_;
double gpu_full_elapsed_;
double speedup_total_;
double speedup_full_total_;
int num_subtests_called_;
int speedup_faster_count_;
int speedup_slower_count_;
int speedup_equal_count_;
int speedup_full_faster_count_;
int speedup_full_slower_count_;
int speedup_full_equal_count_;
bool is_list_mode_;
double top_;
double bottom_;
int num_iters_;
int cpu_num_iters_; //there's no need to set cpu running same times with gpu
int gpu_warmup_iters_; //gpu warm up times, default is 1
int cur_iter_idx_;
int cur_warmup_idx_; //current gpu warm up times
std::vector<int64> cpu_times_;
std::vector<int64> gpu_times_;
std::vector<int64> gpu_full_times_;
FILE *record_;
std::string recordname_;
std::string itname_;
bool itname_changed_;
int is_accurate_;
double accurate_diff_;
};
#define GLOBAL_INIT(name) \
struct name##_init: Runnable { \
name##_init(): Runnable(#name) { \
TestSystem::instance().addInit(this); \
} \
void run(); \
} name##_init_instance; \
void name##_init::run()
#define PERFTEST(name) \
struct name##_test: Runnable { \
name##_test(): Runnable(#name) { \
TestSystem::instance().addTest(this); \
} \
void run(); \
} name##_test_instance; \
void name##_test::run()
#define SUBTEST TestSystem::instance().startNewSubtest()
#define CPU_ON \
while (!TestSystem::instance().cpu_stop()) { \
TestSystem::instance().cpuOn()
#define CPU_OFF \
TestSystem::instance().cpuOff(); \
} TestSystem::instance().cpuComplete()
#define GPU_ON \
while (!TestSystem::instance().stop()) { \
TestSystem::instance().gpuOn()
#define GPU_OFF \
ocl::finish();\
TestSystem::instance().gpuOff(); \
} TestSystem::instance().gpuComplete()
#define GPU_FULL_ON \
while (!TestSystem::instance().stop()) { \
TestSystem::instance().gpufullOn()
#define GPU_FULL_OFF \
TestSystem::instance().gpufullOff(); \
} TestSystem::instance().gpufullComplete()
#ifdef HAVE_OPENCV_GPU
# define RUN_GPU_IMPL (IMPL_GPU == getSelectedImpl())
#endif
#define WARMUP_ON \
while (!TestSystem::instance().warmupStop()) {
#define WARMUP_OFF \
ocl::finish();\
} TestSystem::instance().warmupComplete()
#ifdef HAVE_OPENCV_GPU
#define OCL_PERF_ELSE \
if (RUN_GPU_IMPL) \
CV_TEST_FAIL_NO_IMPL(); \
else \
CV_TEST_FAIL_NO_IMPL();
#else
#define OCL_PERF_ELSE \
CV_TEST_FAIL_NO_IMPL();
#endif
#endif

@ -45,88 +45,80 @@
//M*/
#include "perf_precomp.hpp"
///////////// pyrDown //////////////////////
PERFTEST(pyrDown)
{
Mat src, dst, ocl_dst;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
///////////// pyrDown //////////////////////
gen(src, size, size, all_type[j], 0, 256);
typedef Size_MatType pyrDownFixture;
pyrDown(src, dst);
PERF_TEST_P(pyrDownFixture, pyrDown,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
CPU_ON;
pyrDown(src, dst);
CPU_OFF;
Mat src(srcSize, type), dst;
Size dstSize((srcSize.height + 1) >> 1, (srcSize.width + 1) >> 1);
dst.create(dstSize, type);
declare.in(src, WARMUP_RNG).out(dst);
ocl::oclMat d_src(src);
ocl::oclMat d_dst;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(dstSize, type);
WARMUP_ON;
ocl::pyrDown(d_src, d_dst);
WARMUP_OFF;
TEST_CYCLE() ocl::pyrDown(oclSrc, oclDst);
GPU_ON;
ocl::pyrDown(d_src, d_dst);
GPU_OFF;
oclDst.download(dst);
GPU_FULL_ON;
d_src.upload(src);
ocl::pyrDown(d_src, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() pyrDown(src, dst);
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, dst.depth() == CV_32F ? 1e-4f : 1.0f);
}
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// pyrUp ////////////////////////
PERFTEST(pyrUp)
{
Mat src, dst, ocl_dst;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
for (int size = 500; size <= 2000; size *= 2)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
gen(src, size, size, all_type[j], 0, 256);
typedef Size_MatType pyrUpFixture;
pyrUp(src, dst);
PERF_TEST_P(pyrUpFixture, pyrUp,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
CPU_ON;
pyrUp(src, dst);
CPU_OFF;
Mat src(srcSize, type), dst;
Size dstSize(srcSize.height << 1, srcSize.width << 1);
dst.create(dstSize, type);
declare.in(src, WARMUP_RNG).out(dst);
ocl::oclMat d_src(src);
ocl::oclMat d_dst;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(dstSize, type);
WARMUP_ON;
ocl::pyrUp(d_src, d_dst);
WARMUP_OFF;
TEST_CYCLE() ocl::pyrDown(oclSrc, oclDst);
GPU_ON;
ocl::pyrUp(d_src, d_dst);
GPU_OFF;
oclDst.download(dst);
GPU_FULL_ON;
d_src.upload(src);
ocl::pyrUp(d_src, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() pyrDown(src, dst);
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, (src.depth() == CV_32F ? 1e-4f : 1.0));
}
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

@ -45,110 +45,97 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// Merge////////////////////////
PERFTEST(Merge)
{
Mat dst, ocl_dst;
ocl::oclMat d_dst;
int channels = 4;
int all_type[] = {CV_8UC1, CV_32FC1};
std::string type_name[] = {"CV_8UC1", "CV_32FC1"};
typedef Size_MatType MergeFixture;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
PERF_TEST_P(MergeFixture, Merge,
::testing::Combine(::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000),
OCL_PERF_ENUM(CV_8U, CV_32F)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int depth = get<1>(params), channels = 3;
const int dstType = CV_MAKE_TYPE(depth, channels);
Mat dst(srcSize, dstType);
vector<Mat> src(channels);
for (vector<Mat>::iterator i = src.begin(), end = src.end(); i != end; ++i)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
Size size1 = Size(size, size);
std::vector<Mat> src(channels);
for (int i = 0; i < channels; ++i)
{
src[i] = Mat(size1, all_type[j], cv::Scalar::all(i));
}
merge(src, dst);
CPU_ON;
merge(src, dst);
CPU_OFF;
std::vector<ocl::oclMat> d_src(channels);
for (int i = 0; i < channels; ++i)
{
d_src[i] = ocl::oclMat(size1, all_type[j], cv::Scalar::all(i));
}
WARMUP_ON;
ocl::merge(d_src, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::merge(d_src, d_dst);
GPU_OFF;
GPU_FULL_ON;
for (int i = 0; i < channels; ++i)
{
d_src[i] = ocl::oclMat(size1, all_type[j], cv::Scalar::all(i));
}
ocl::merge(d_src, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0);
}
i->create(srcSize, CV_MAKE_TYPE(depth, 1));
declare.in(*i, WARMUP_RNG);
}
}
declare.out(dst);
///////////// Split////////////////////////
PERFTEST(Split)
{
//int channels = 4;
int all_type[] = {CV_8UC1, CV_32FC1};
std::string type_name[] = {"CV_8UC1", "CV_32FC1"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j];
Size size1 = Size(size, size);
Mat src(size1, CV_MAKE_TYPE(all_type[j], 4), cv::Scalar(1, 2, 3, 4));
ocl::oclMat oclDst(srcSize, dstType);
vector<ocl::oclMat> oclSrc(src.size());
for (vector<ocl::oclMat>::size_type i = 0, end = src.size(); i < end; ++i)
oclSrc[i] = src[i];
std::vector<cv::Mat> dst, ocl_dst(4);
TEST_CYCLE() cv::ocl::merge(oclSrc, oclDst);
split(src, dst);
oclDst.download(dst);
CPU_ON;
split(src, dst);
CPU_OFF;
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::merge(src, dst);
ocl::oclMat d_src(size1, CV_MAKE_TYPE(all_type[j], 4), cv::Scalar(1, 2, 3, 4));
std::vector<cv::ocl::oclMat> d_dst;
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
WARMUP_ON;
ocl::split(d_src, d_dst);
WARMUP_OFF;
///////////// Split////////////////////////
GPU_ON;
ocl::split(d_src, d_dst);
GPU_OFF;
typedef Size_MatType SplitFixture;
GPU_FULL_ON;
d_src.upload(src);
ocl::split(d_src, d_dst);
for(size_t i = 0; i < dst.size(); i++)
d_dst[i].download(ocl_dst[i]);
GPU_FULL_OFF;
PERF_TEST_P(SplitFixture, Split,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8U, CV_32F)))
{
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int depth = get<1>(params), channels = 3;
vector<double> eps(4, 0.);
TestSystem::instance().ExpectMatsNear(dst, ocl_dst, eps);
}
Mat src(srcSize, CV_MAKE_TYPE(depth, channels));
declare.in(src, WARMUP_RNG);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src);
vector<ocl::oclMat> oclDst(channels, ocl::oclMat(srcSize, CV_MAKE_TYPE(depth, 1)));
TEST_CYCLE() cv::ocl::split(oclSrc, oclDst);
ASSERT_EQ(3, channels);
Mat dst0, dst1, dst2;
oclDst[0].download(dst0);
oclDst[1].download(dst1);
oclDst[2].download(dst2);
SANITY_CHECK(dst0);
SANITY_CHECK(dst1);
SANITY_CHECK(dst2);
}
else if (RUN_PLAIN_IMPL)
{
vector<Mat> dst(channels, Mat(srcSize, CV_MAKE_TYPE(depth, 1)));
TEST_CYCLE() cv::split(src, dst);
ASSERT_EQ(3, channels);
Mat & dst0 = dst[0], & dst1 = dst[1], & dst2 = dst[2];
SANITY_CHECK(dst0);
SANITY_CHECK(dst1);
SANITY_CHECK(dst2);
}
else
OCL_PERF_ELSE
}

@ -2336,7 +2336,7 @@ void cv::ocl::pow(const oclMat &x, double p, oclMat &y)
return;
}
CV_Assert((x.type() == y.type() && x.size() == y.size() && x.depth() == CV_32F) || x.depth() == CV_64F);
CV_Assert(x.depth() == CV_32F || x.depth() == CV_64F);
y.create(x.size(), x.type());
string kernelName = "arithm_pow";

@ -0,0 +1,63 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
typedef ::testing::TestWithParam<cv::Size> normFixture;
TEST_P(normFixture, DISABLED_accuracy)
{
const cv::Size srcSize = GetParam();
cv::Mat src1(srcSize, CV_8UC1), src2(srcSize, CV_8UC1);
cv::randu(src1, 0, 2);
cv::randu(src2, 0, 2);
cv::ocl::oclMat oclSrc1(src1), oclSrc2(src2);
double value = cv::norm(src1, src2, cv::NORM_INF);
double oclValue = cv::ocl::norm(oclSrc1, oclSrc2, cv::NORM_INF);
ASSERT_EQ(value, oclValue);
}
INSTANTIATE_TEST_CASE_P(oclNormTest, normFixture,
::testing::Values(cv::Size(500, 500), cv::Size(1000, 1000)));
Loading…
Cancel
Save