From b3c61ee0fe75a61450e15dd28c9cce93ff5554ad Mon Sep 17 00:00:00 2001 From: Philipp Wagner Date: Sun, 10 Jun 2012 22:42:20 +0000 Subject: [PATCH] Minor grammatical correction in comments. --- modules/contrib/src/facerec.cpp | 17 ++++++++--------- samples/cpp/facerec_demo.cpp | 15 ++++++++------- 2 files changed, 16 insertions(+), 16 deletions(-) diff --git a/modules/contrib/src/facerec.cpp b/modules/contrib/src/facerec.cpp index 1bf7f9b708..632fe0154d 100644 --- a/modules/contrib/src/facerec.cpp +++ b/modules/contrib/src/facerec.cpp @@ -53,7 +53,7 @@ static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double // make sure the input data is a vector of matrices or vector of vector if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR) { string error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >)."; - error(Exception(CV_StsBadArg, error_message, "asRowMatrix", __FILE__, __LINE__)); + CV_Error(CV_StsBadArg, error_message); } // number of samples size_t n = src.total(); @@ -69,7 +69,7 @@ static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double // make sure data can be reshaped, throw exception if not! if(src.getMat(i).total() != d) { string error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, d, src.getMat(i).total()); - error(Exception(CV_StsBadArg, error_message, "cv::asRowMatrix", __FILE__, __LINE__)); + CV_Error(CV_StsBadArg, error_message); } // get a hold of the current row Mat xi = data.row(i); @@ -125,8 +125,7 @@ public: // corresponding labels in labels. num_components will be kept for // classification. Eigenfaces(InputArray src, InputArray labels, - int num_components = 0, - double threshold = DBL_MAX) : + int num_components = 0, double threshold = DBL_MAX) : _num_components(num_components), _threshold(threshold) { train(src, labels); @@ -178,10 +177,8 @@ public: // Initializes and computes a Fisherfaces model with images in src and // corresponding labels in labels. num_components will be kept for // classification. - Fisherfaces(InputArray src, - InputArray labels, - int num_components = 0, - double threshold = DBL_MAX) : + Fisherfaces(InputArray src, InputArray labels, + int num_components = 0, double threshold = DBL_MAX) : _num_components(num_components), _threshold(threshold) { train(src, labels); @@ -235,7 +232,9 @@ public: // // radius, neighbors are used in the local binary patterns creation. // grid_x, grid_y control the grid size of the spatial histograms. - LBPH(int radius=1, int neighbors=8, int grid_x=8, int grid_y=8, double threshold = DBL_MAX) : + LBPH(int radius=1, int neighbors=8, + int grid_x=8, int grid_y=8, + double threshold = DBL_MAX) : _grid_x(grid_x), _grid_y(grid_y), _radius(radius), diff --git a/samples/cpp/facerec_demo.cpp b/samples/cpp/facerec_demo.cpp index d252ba1eec..a06a119fcd 100644 --- a/samples/cpp/facerec_demo.cpp +++ b/samples/cpp/facerec_demo.cpp @@ -30,8 +30,9 @@ using namespace std; static Mat toGrayscale(InputArray _src) { Mat src = _src.getMat(); // only allow one channel - if(src.channels() != 1) + if(src.channels() != 1) { CV_Error(CV_StsBadArg, "Only Matrices with one channel are supported"); + } // create and return normalized image Mat dst; cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1); @@ -130,16 +131,16 @@ int main(int argc, const char *argv[]) { // cv::Algorithm, you can query the data. // // First we'll use it to set the threshold of the FaceRecognizer - // without retraining the model: + // to 0.0 without retraining the model. This can be useful if + // you are evaluating the model: // model->set("threshold", 0.0); - // Now the threshold is of this model is 0.0. A prediction - // now returns -1, as it's impossible to have a distance - // below it - // + // Now the threshold of this model is set to 0.0. A prediction + // now returns -1, as it's impossible to have a distance below + // it predictedLabel = model->predict(testSample); cout << "Predicted class = " << predictedLabel << endl; - // Now here is how to get the eigenvalues of this Eigenfaces model: + // Here is how to get the eigenvalues of this Eigenfaces model: Mat eigenvalues = model->getMat("eigenvalues"); // And we can do the same to display the Eigenvectors (read Eigenfaces): Mat W = model->getMat("eigenvectors");