|
|
|
@ -1,14 +1,19 @@ |
|
|
|
|
import numpy as np |
|
|
|
|
import cv2 |
|
|
|
|
from common import anorm |
|
|
|
|
from functools import partial |
|
|
|
|
|
|
|
|
|
help_message = '''SURF image match |
|
|
|
|
|
|
|
|
|
USAGE: findobj.py [ <image1> <image2> ] |
|
|
|
|
''' |
|
|
|
|
|
|
|
|
|
FLANN_INDEX_KDTREE = 1 # bug: flann enums are missing |
|
|
|
|
|
|
|
|
|
def match(desc1, desc2, r_threshold = 0.75): |
|
|
|
|
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, |
|
|
|
|
trees = 4) |
|
|
|
|
|
|
|
|
|
def match_bruteforce(desc1, desc2, r_threshold = 0.75): |
|
|
|
|
res = [] |
|
|
|
|
for i in xrange(len(desc1)): |
|
|
|
|
dist = anorm( desc2 - desc1[i] ) |
|
|
|
@ -18,6 +23,14 @@ def match(desc1, desc2, r_threshold = 0.75): |
|
|
|
|
res.append((i, n1)) |
|
|
|
|
return np.array(res) |
|
|
|
|
|
|
|
|
|
def match_flann(desc1, desc2, r_threshold = 0.6): |
|
|
|
|
flann = cv2.flann_Index(desc2, flann_params) |
|
|
|
|
idx2, dist = flann.knnSearch(desc1, 2, params = {}) # bug: need to provide empty dict |
|
|
|
|
mask = dist[:,0] / dist[:,1] < r_threshold |
|
|
|
|
idx1 = np.arange(len(desc1)) |
|
|
|
|
pairs = np.int32( zip(idx1, idx2[:,0]) ) |
|
|
|
|
return pairs[mask] |
|
|
|
|
|
|
|
|
|
def draw_match(img1, img2, p1, p2, status = None, H = None): |
|
|
|
|
h1, w1 = img1.shape[:2] |
|
|
|
|
h2, w2 = img2.shape[:2] |
|
|
|
@ -50,6 +63,7 @@ def draw_match(img1, img2, p1, p2, status = None, H = None): |
|
|
|
|
cv2.line(vis, (x2+w1-r, y2+r), (x2+w1+r, y2-r), col, thickness) |
|
|
|
|
return vis |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
import sys |
|
|
|
|
try: fn1, fn2 = sys.argv[1:3] |
|
|
|
@ -68,12 +82,21 @@ if __name__ == '__main__': |
|
|
|
|
desc2.shape = (-1, surf.descriptorSize()) |
|
|
|
|
print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)) |
|
|
|
|
|
|
|
|
|
m = match(desc1, desc2) |
|
|
|
|
matched_p1 = np.array([kp1[i].pt for i, j in m]) |
|
|
|
|
matched_p2 = np.array([kp2[j].pt for i, j in m]) |
|
|
|
|
H, status = cv2.findHomography(matched_p1, matched_p2, cv2.RANSAC, 10.0) |
|
|
|
|
print '%d / %d inliers/matched' % (np.sum(status), len(status)) |
|
|
|
|
def match_and_draw(match, r_threshold): |
|
|
|
|
m = match(desc1, desc2, r_threshold) |
|
|
|
|
matched_p1 = np.array([kp1[i].pt for i, j in m]) |
|
|
|
|
matched_p2 = np.array([kp2[j].pt for i, j in m]) |
|
|
|
|
H, status = cv2.findHomography(matched_p1, matched_p2, cv2.RANSAC, 5.0) |
|
|
|
|
print '%d / %d inliers/matched' % (np.sum(status), len(status)) |
|
|
|
|
|
|
|
|
|
vis = draw_match(img1, img2, matched_p1, matched_p2, status, H) |
|
|
|
|
return vis |
|
|
|
|
|
|
|
|
|
vis = draw_match(img1, img2, matched_p1, matched_p2, status, H) |
|
|
|
|
cv2.imshow('find_obj SURF', vis) |
|
|
|
|
print 'bruteforce match:', |
|
|
|
|
vis_brute = match_and_draw( match_bruteforce, 0.75 ) |
|
|
|
|
print 'flann match:', |
|
|
|
|
vis_flann = match_and_draw( match_flann, 0.6 ) # flann tends to find more distant second |
|
|
|
|
# neighbours, so r_threshold is decreased |
|
|
|
|
cv2.imshow('find_obj SURF', vis_brute) |
|
|
|
|
cv2.imshow('find_obj SURF flann', vis_flann) |
|
|
|
|
cv2.waitKey() |