implemented cv::gpu::merge and cv::gpu::split functions

pull/13383/head
Alexey Spizhevoy 15 years ago
parent 5a804717a7
commit b2cdb7fa39
  1. 24
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 452
      modules/gpu/src/cuda/split_merge.cu
  3. 151
      modules/gpu/src/split_merge.cpp
  4. 275
      tests/gpu/src/split_merge.cpp

@ -408,6 +408,30 @@ namespace cv
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift = 0, double yShift = 0, int interpolation = INTER_LINEAR);
//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge(const GpuMat* src, size_t n, GpuMat& dst);
//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge(const vector<GpuMat>& src, GpuMat& dst);
//! makes multi-channel array out of several single-channel arrays (async version)
CV_EXPORTS void merge(const GpuMat* src, size_t n, GpuMat& dst, const Stream& stream);
//! makes multi-channel array out of several single-channel arrays (async version)
CV_EXPORTS void merge(const vector<GpuMat>& src, GpuMat& dst, const Stream& stream);
//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split(const GpuMat& src, GpuMat* dst);
//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split(const GpuMat& src, vector<GpuMat>& dst);
//! copies each plane of a multi-channel array to a dedicated array (async version)
CV_EXPORTS void split(const GpuMat& src, GpuMat* dst, const Stream& stream);
//! copies each plane of a multi-channel array to a dedicated array (async version)
CV_EXPORTS void split(const GpuMat& src, vector<GpuMat>& dst, const Stream& stream);
////////////////////////////// Image processing //////////////////////////////
// DST[x,y] = SRC[xmap[x,y],ymap[x,y]] with bilinear interpolation.

@ -0,0 +1,452 @@
#include "opencv2/gpu/devmem2d.hpp"
#include "cuda_shared.hpp"
namespace cv { namespace gpu { namespace split_merge {
template <typename T, size_t elem_size = sizeof(T)>
struct TypeTraits
{
typedef T type;
typedef T type2;
typedef T type3;
typedef T type4;
};
template <typename T>
struct TypeTraits<T, 1>
{
typedef char type;
typedef char2 type2;
typedef char3 type3;
typedef char4 type4;
};
template <typename T>
struct TypeTraits<T, 2>
{
typedef short type;
typedef short2 type2;
typedef short3 type3;
typedef short4 type4;
};
template <typename T>
struct TypeTraits<T, 4>
{
typedef int type;
typedef int2 type2;
typedef int3 type3;
typedef int4 type4;
};
template <typename T>
struct TypeTraits<T, 8>
{
typedef double type;
typedef double2 type2;
//typedef double3 type3;
//typedef double4 type3;
};
typedef void (*MergeFunction)(const DevMem2D* src, DevMem2D& dst, const cudaStream_t& stream);
typedef void (*SplitFunction)(const DevMem2D& src, DevMem2D* dst, const cudaStream_t& stream);
//------------------------------------------------------------
// Merge
template <typename T>
static void mergeC2_(const DevMem2D* src, DevMem2D& dst, const cudaStream_t& stream)
{
dim3 blockDim(32, 8);
dim3 gridDim(divUp(dst.cols, blockDim.x), divUp(dst.rows, blockDim.y));
mergeC2_<T><<<gridDim, blockDim, 0, stream>>>(
src[0].ptr, src[0].step,
src[1].ptr, src[1].step,
dst.rows, dst.cols, dst.ptr, dst.step);
if (stream == 0)
cudaSafeCall(cudaThreadSynchronize());
}
template <typename T>
static void mergeC3_(const DevMem2D* src, DevMem2D& dst, const cudaStream_t& stream)
{
dim3 blockDim(32, 8);
dim3 gridDim(divUp(dst.cols, blockDim.x), divUp(dst.rows, blockDim.y));
mergeC3_<T><<<gridDim, blockDim, 0, stream>>>(
src[0].ptr, src[0].step,
src[1].ptr, src[1].step,
src[2].ptr, src[2].step,
dst.rows, dst.cols, dst.ptr, dst.step);
if (stream == 0)
cudaSafeCall(cudaThreadSynchronize());
}
template <typename T>
static void mergeC4_(const DevMem2D* src, DevMem2D& dst, const cudaStream_t& stream)
{
dim3 blockDim(32, 8);
dim3 gridDim(divUp(dst.cols, blockDim.x), divUp(dst.rows, blockDim.y));
mergeC4_<T><<<gridDim, blockDim, 0, stream>>>(
src[0].ptr, src[0].step,
src[1].ptr, src[1].step,
src[2].ptr, src[2].step,
src[3].ptr, src[3].step,
dst.rows, dst.cols, dst.ptr, dst.step);
if (stream == 0)
cudaSafeCall(cudaThreadSynchronize());
}
extern "C" void merge_caller(const DevMem2D* src, DevMem2D& dst,
int total_channels, int elem_size,
const cudaStream_t& stream)
{
static MergeFunction merge_func_tbl[] =
{
mergeC2_<char>, mergeC2_<short>, mergeC2_<int>, 0, mergeC2_<double>,
mergeC3_<char>, mergeC3_<short>, mergeC3_<int>, 0, mergeC3_<double>,
mergeC4_<char>, mergeC4_<short>, mergeC4_<int>, 0, mergeC4_<double>,
};
int merge_func_id = (total_channels - 2) * 5 + (elem_size >> 1);
MergeFunction merge_func = merge_func_tbl[merge_func_id];
if (merge_func == 0)
cv::gpu::error("Unsupported channel count or data type", __FILE__, __LINE__);
merge_func(src, dst, stream);
}
template <typename T>
__global__ void mergeC2_(const uchar* src0, size_t src0_step,
const uchar* src1, size_t src1_step,
int rows, int cols, uchar* dst, size_t dst_step)
{
typedef typename TypeTraits<T>::type2 dst_type;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const T* src0_y = (const T*)(src0 + y * src0_step);
const T* src1_y = (const T*)(src1 + y * src1_step);
dst_type* dst_y = (dst_type*)(dst + y * dst_step);
if (x < cols && y < rows)
{
dst_type dst_elem;
dst_elem.x = src0_y[x];
dst_elem.y = src1_y[x];
dst_y[x] = dst_elem;
}
}
template <typename T>
__global__ void mergeC3_(const uchar* src0, size_t src0_step,
const uchar* src1, size_t src1_step,
const uchar* src2, size_t src2_step,
int rows, int cols, uchar* dst, size_t dst_step)
{
typedef typename TypeTraits<T>::type3 dst_type;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const T* src0_y = (const T*)(src0 + y * src0_step);
const T* src1_y = (const T*)(src1 + y * src1_step);
const T* src2_y = (const T*)(src2 + y * src2_step);
dst_type* dst_y = (dst_type*)(dst + y * dst_step);
if (x < cols && y < rows)
{
dst_type dst_elem;
dst_elem.x = src0_y[x];
dst_elem.y = src1_y[x];
dst_elem.z = src2_y[x];
dst_y[x] = dst_elem;
}
}
template <>
__global__ void mergeC3_<double>(const uchar* src0, size_t src0_step,
const uchar* src1, size_t src1_step,
const uchar* src2, size_t src2_step,
int rows, int cols, uchar* dst, size_t dst_step)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const double* src0_y = (const double*)(src0 + y * src0_step);
const double* src1_y = (const double*)(src1 + y * src1_step);
const double* src2_y = (const double*)(src2 + y * src2_step);
double* dst_y = (double*)(dst + y * dst_step);
if (x < cols && y < rows)
{
dst_y[3 * x] = src0_y[x];
dst_y[3 * x + 1] = src1_y[x];
dst_y[3 * x + 2] = src2_y[x];
}
}
template <typename T>
__global__ void mergeC4_(const uchar* src0, size_t src0_step,
const uchar* src1, size_t src1_step,
const uchar* src2, size_t src2_step,
const uchar* src3, size_t src3_step,
int rows, int cols, uchar* dst, size_t dst_step)
{
typedef typename TypeTraits<T>::type4 dst_type;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const T* src0_y = (const T*)(src0 + y * src0_step);
const T* src1_y = (const T*)(src1 + y * src1_step);
const T* src2_y = (const T*)(src2 + y * src2_step);
const T* src3_y = (const T*)(src3 + y * src3_step);
dst_type* dst_y = (dst_type*)(dst + y * dst_step);
if (x < cols && y < rows)
{
dst_type dst_elem;
dst_elem.x = src0_y[x];
dst_elem.y = src1_y[x];
dst_elem.z = src2_y[x];
dst_elem.w = src3_y[x];
dst_y[x] = dst_elem;
}
}
template <>
__global__ void mergeC4_<double>(const uchar* src0, size_t src0_step,
const uchar* src1, size_t src1_step,
const uchar* src2, size_t src2_step,
const uchar* src3, size_t src3_step,
int rows, int cols, uchar* dst, size_t dst_step)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const double* src0_y = (const double*)(src0 + y * src0_step);
const double* src1_y = (const double*)(src1 + y * src1_step);
const double* src2_y = (const double*)(src2 + y * src2_step);
const double* src3_y = (const double*)(src3 + y * src3_step);
double2* dst_y = (double2*)(dst + y * dst_step);
if (x < cols && y < rows)
{
dst_y[2 * x] = make_double2(src0_y[x], src1_y[x]);
dst_y[2 * x + 1] = make_double2(src2_y[x], src3_y[x]);
}
}
//------------------------------------------------------------
// Split
template <typename T>
static void splitC2_(const DevMem2D& src, DevMem2D* dst, const cudaStream_t& stream)
{
dim3 blockDim(32, 8);
dim3 gridDim(divUp(src.cols, blockDim.x), divUp(src.rows, blockDim.y));
splitC2_<T><<<gridDim, blockDim, 0, stream>>>(
src.ptr, src.step, src.rows, src.cols,
dst[0].ptr, dst[0].step,
dst[1].ptr, dst[1].step);
if (stream == 0)
cudaSafeCall(cudaThreadSynchronize());
}
template <typename T>
static void splitC3_(const DevMem2D& src, DevMem2D* dst, const cudaStream_t& stream)
{
dim3 blockDim(32, 8);
dim3 gridDim(divUp(src.cols, blockDim.x), divUp(src.rows, blockDim.y));
splitC3_<T><<<gridDim, blockDim, 0, stream>>>(
src.ptr, src.step, src.rows, src.cols,
dst[0].ptr, dst[0].step,
dst[1].ptr, dst[1].step,
dst[2].ptr, dst[2].step);
if (stream == 0)
cudaSafeCall(cudaThreadSynchronize());
}
template <typename T>
static void splitC4_(const DevMem2D& src, DevMem2D* dst, const cudaStream_t& stream)
{
dim3 blockDim(32, 8);
dim3 gridDim(divUp(src.cols, blockDim.x), divUp(src.rows, blockDim.y));
splitC4_<T><<<gridDim, blockDim, 0, stream>>>(
src.ptr, src.step, src.rows, src.cols,
dst[0].ptr, dst[0].step,
dst[1].ptr, dst[1].step,
dst[2].ptr, dst[2].step,
dst[3].ptr, dst[3].step);
if (stream == 0)
cudaSafeCall(cudaThreadSynchronize());
}
extern "C" void split_caller(const DevMem2D& src, DevMem2D* dst,
int num_channels, int elem_size1,
const cudaStream_t& stream)
{
static SplitFunction split_func_tbl[] =
{
splitC2_<char>, splitC2_<short>, splitC2_<int>, 0, splitC2_<double>,
splitC3_<char>, splitC3_<short>, splitC3_<int>, 0, splitC3_<double>,
splitC4_<char>, splitC4_<short>, splitC4_<int>, 0, splitC4_<double>,
};
int split_func_id = (num_channels - 2) * 5 + (elem_size1 >> 1);
SplitFunction split_func = split_func_tbl[split_func_id];
if (split_func == 0)
cv::gpu::error("Unsupported channel count or data type", __FILE__, __LINE__);
split_func(src, dst, stream);
}
template <typename T>
__global__ void splitC2_(const uchar* src, size_t src_step,
int rows, int cols,
uchar* dst0, size_t dst0_step,
uchar* dst1, size_t dst1_step)
{
typedef typename TypeTraits<T>::type2 src_type;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const src_type* src_y = (const src_type*)(src + y * src_step);
T* dst0_y = (T*)(dst0 + y * dst0_step);
T* dst1_y = (T*)(dst1 + y * dst1_step);
if (x < cols && y < rows)
{
src_type src_elem = src_y[x];
dst0_y[x] = src_elem.x;
dst1_y[x] = src_elem.y;
}
}
template <typename T>
__global__ void splitC3_(const uchar* src, size_t src_step,
int rows, int cols,
uchar* dst0, size_t dst0_step,
uchar* dst1, size_t dst1_step,
uchar* dst2, size_t dst2_step)
{
typedef typename TypeTraits<T>::type3 src_type;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const src_type* src_y = (const src_type*)(src + y * src_step);
T* dst0_y = (T*)(dst0 + y * dst0_step);
T* dst1_y = (T*)(dst1 + y * dst1_step);
T* dst2_y = (T*)(dst2 + y * dst2_step);
if (x < cols && y < rows)
{
src_type src_elem = src_y[x];
dst0_y[x] = src_elem.x;
dst1_y[x] = src_elem.y;
dst2_y[x] = src_elem.z;
}
}
template <>
__global__ void splitC3_<double>(
const uchar* src, size_t src_step, int rows, int cols,
uchar* dst0, size_t dst0_step,
uchar* dst1, size_t dst1_step,
uchar* dst2, size_t dst2_step)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const double* src_y = (const double*)(src + y * src_step);
double* dst0_y = (double*)(dst0 + y * dst0_step);
double* dst1_y = (double*)(dst1 + y * dst1_step);
double* dst2_y = (double*)(dst2 + y * dst2_step);
if (x < cols && y < rows)
{
dst0_y[x] = src_y[3 * x];
dst1_y[x] = src_y[3 * x + 1];
dst2_y[x] = src_y[3 * x + 2];
}
}
template <typename T>
__global__ void splitC4_(const uchar* src, size_t src_step, int rows, int cols,
uchar* dst0, size_t dst0_step,
uchar* dst1, size_t dst1_step,
uchar* dst2, size_t dst2_step,
uchar* dst3, size_t dst3_step)
{
typedef typename TypeTraits<T>::type4 src_type;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const src_type* src_y = (const src_type*)(src + y * src_step);
T* dst0_y = (T*)(dst0 + y * dst0_step);
T* dst1_y = (T*)(dst1 + y * dst1_step);
T* dst2_y = (T*)(dst2 + y * dst2_step);
T* dst3_y = (T*)(dst3 + y * dst3_step);
if (x < cols && y < rows)
{
src_type src_elem = src_y[x];
dst0_y[x] = src_elem.x;
dst1_y[x] = src_elem.y;
dst2_y[x] = src_elem.z;
dst3_y[x] = src_elem.w;
}
}
template <>
__global__ void splitC4_<double>(
const uchar* src, size_t src_step, int rows, int cols,
uchar* dst0, size_t dst0_step,
uchar* dst1, size_t dst1_step,
uchar* dst2, size_t dst2_step,
uchar* dst3, size_t dst3_step)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const double2* src_y = (const double2*)(src + y * src_step);
double* dst0_y = (double*)(dst0 + y * dst0_step);
double* dst1_y = (double*)(dst1 + y * dst1_step);
double* dst2_y = (double*)(dst2 + y * dst2_step);
double* dst3_y = (double*)(dst3 + y * dst3_step);
if (x < cols && y < rows)
{
double2 src_elem1 = src_y[2 * x];
double2 src_elem2 = src_y[2 * x + 1];
dst0_y[x] = src_elem1.x;
dst1_y[x] = src_elem1.y;
dst2_y[x] = src_elem2.x;
dst3_y[x] = src_elem2.y;
}
}
}}} // namespace cv::gpu::split_merge

@ -0,0 +1,151 @@
#include "precomp.hpp"
#include <vector>
using namespace std;
#if !defined (HAVE_CUDA)
void cv::gpu::merge(const GpuMat* /*src*/, size_t /*count*/, GpuMat& /*dst*/) { throw_nogpu(); }
void cv::gpu::merge(const vector<GpuMat>& /*src*/, GpuMat& /*dst*/) { throw_nogpu(); }
void cv::gpu::merge(const GpuMat* /*src*/, size_t /*count*/, GpuMat& /*dst*/, const Stream& /*stream*/) { throw_nogpu(); }
void cv::gpu::merge(const vector<GpuMat>& /*src*/, GpuMat& /*dst*/, const Stream& /*stream*/) { throw_nogpu(); }
void cv::gpu::split(const GpuMat& /*src*/, GpuMat* /*dst*/) { throw_nogpu(); }
void cv::gpu::split(const GpuMat& /*src*/, vector<GpuMat>& /*dst*/) { throw_nogpu(); }
void cv::gpu::split(const GpuMat& /*src*/, GpuMat* /*dst*/, const Stream& /*stream*/) { throw_nogpu(); }
void cv::gpu::split(const GpuMat& /*src*/, vector<GpuMat>& /*dst*/, const Stream& /*stream*/) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace split_merge
{
extern "C" void merge_caller(const DevMem2D* src, DevMem2D& dst,
int total_channels, int elem_size,
const cudaStream_t& stream);
extern "C" void split_caller(const DevMem2D& src, DevMem2D* dst,
int num_channels, int elem_size1,
const cudaStream_t& stream);
void merge(const GpuMat* src, size_t n, GpuMat& dst, const cudaStream_t& stream)
{
CV_Assert(src);
CV_Assert(n > 0);
int depth = src[0].depth();
Size size = src[0].size();
bool single_channel_only = true;
int total_channels = 0;
for (size_t i = 0; i < n; ++i)
{
CV_Assert(src[i].size() == size);
CV_Assert(src[i].depth() == depth);
single_channel_only = single_channel_only && src[i].channels() == 1;
total_channels += src[i].channels();
}
CV_Assert(single_channel_only);
CV_Assert(total_channels <= 4);
if (total_channels == 1)
src[0].copyTo(dst);
else
{
dst.create(size, CV_MAKETYPE(depth, total_channels));
DevMem2D src_as_devmem[4];
for(size_t i = 0; i < n; ++i)
src_as_devmem[i] = src[i];
split_merge::merge_caller(src_as_devmem, (DevMem2D)dst,
total_channels, CV_ELEM_SIZE(depth),
stream);
}
}
void split(const GpuMat& src, GpuMat* dst, const cudaStream_t& stream)
{
CV_Assert(dst);
int depth = src.depth();
int num_channels = src.channels();
Size size = src.size();
if (num_channels == 1)
{
src.copyTo(dst[0]);
return;
}
for (int i = 0; i < num_channels; ++i)
dst[i].create(src.size(), depth);
CV_Assert(num_channels <= 4);
DevMem2D dst_as_devmem[4];
for (int i = 0; i < num_channels; ++i)
dst_as_devmem[i] = dst[i];
split_merge::split_caller((DevMem2D)src, dst_as_devmem,
num_channels, src.elemSize1(),
stream);
}
}}}
void cv::gpu::merge(const GpuMat* src, size_t n, GpuMat& dst)
{
split_merge::merge(src, n, dst, 0);
}
void cv::gpu::merge(const vector<GpuMat>& src, GpuMat& dst)
{
split_merge::merge(&src[0], src.size(), dst, 0);
}
void cv::gpu::merge(const GpuMat* src, size_t n, GpuMat& dst, const Stream& stream)
{
split_merge::merge(src, n, dst, StreamAccessor::getStream(stream));
}
void cv::gpu::merge(const vector<GpuMat>& src, GpuMat& dst, const Stream& stream)
{
split_merge::merge(&src[0], src.size(), dst, StreamAccessor::getStream(stream));
}
void cv::gpu::split(const GpuMat& src, GpuMat* dst)
{
split_merge::split(src, dst, 0);
}
void cv::gpu::split(const GpuMat& src, vector<GpuMat>& dst)
{
dst.resize(src.channels());
if(src.channels() > 0)
split_merge::split(src, &dst[0], 0);
}
void cv::gpu::split(const GpuMat& src, GpuMat* dst, const Stream& stream)
{
split_merge::split(src, dst, StreamAccessor::getStream(stream));
}
void cv::gpu::split(const GpuMat& src, vector<GpuMat>& dst, const Stream& stream)
{
dst.resize(src.channels());
if(src.channels() > 0)
split_merge::split(src, &dst[0], StreamAccessor::getStream(stream));
}
#endif /* !defined (HAVE_CUDA) */

@ -0,0 +1,275 @@
#include "gputest.hpp"
#include <opencv2/opencv.hpp>
#include <opencv2/gpu/gpu.hpp>
#include <iostream>
#include <string>
#include <vector>
using namespace std;
using namespace cv;
struct CV_MergeTest : public CvTest
{
CV_MergeTest() : CvTest("GPU-Merge", "merge") {}
void can_merge(size_t rows, size_t cols);
void can_merge_submatrixes(size_t rows, size_t cols);
void run(int);
} merge_test;
void CV_MergeTest::can_merge(size_t rows, size_t cols)
{
for (size_t num_channels = 1; num_channels <= 4; ++num_channels)
for (size_t depth = CV_8U; depth <= CV_64F; ++depth)
{
vector<Mat> src;
for (size_t i = 0; i < num_channels; ++i)
src.push_back(Mat(rows, cols, depth, Scalar::all(static_cast<double>(i))));
Mat dst(rows, cols, CV_MAKETYPE(depth, num_channels));
cv::merge(src, dst);
vector<gpu::GpuMat> dev_src;
for (size_t i = 0; i < num_channels; ++i)
dev_src.push_back(gpu::GpuMat(src[i]));
gpu::GpuMat dev_dst(rows, cols, CV_MAKETYPE(depth, num_channels));
cv::gpu::merge(dev_src, dev_dst);
Mat host_dst = dev_dst;
double err = norm(dst, host_dst, NORM_INF);
if (err > 1e-3)
{
//ts->printf(CvTS::CONSOLE, "\nNorm: %f\n", err);
//ts->printf(CvTS::CONSOLE, "Depth: %d\n", depth);
//ts->printf(CvTS::CONSOLE, "Rows: %d\n", rows);
//ts->printf(CvTS::CONSOLE, "Cols: %d\n", cols);
//ts->printf(CvTS::CONSOLE, "NumChannels: %d\n", num_channels);
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
return;
}
}
}
void CV_MergeTest::can_merge_submatrixes(size_t rows, size_t cols)
{
for (size_t num_channels = 1; num_channels <= 4; ++num_channels)
for (size_t depth = CV_8U; depth <= CV_64F; ++depth)
{
vector<Mat> src;
for (size_t i = 0; i < num_channels; ++i)
{
Mat m(rows * 2, cols * 2, depth, Scalar::all(static_cast<double>(i)));
src.push_back(m(Range(rows / 2, rows / 2 + rows), Range(cols / 2, cols / 2 + cols)));
}
Mat dst(rows, cols, CV_MAKETYPE(depth, num_channels));
cv::merge(src, dst);
vector<gpu::GpuMat> dev_src;
for (size_t i = 0; i < num_channels; ++i)
dev_src.push_back(gpu::GpuMat(src[i]));
gpu::GpuMat dev_dst(rows, cols, CV_MAKETYPE(depth, num_channels));
cv::gpu::merge(dev_src, dev_dst);
Mat host_dst = dev_dst;
double err = norm(dst, host_dst, NORM_INF);
if (err > 1e-3)
{
//ts->printf(CvTS::CONSOLE, "\nNorm: %f\n", err);
//ts->printf(CvTS::CONSOLE, "Depth: %d\n", depth);
//ts->printf(CvTS::CONSOLE, "Rows: %d\n", rows);
//ts->printf(CvTS::CONSOLE, "Cols: %d\n", cols);
//ts->printf(CvTS::CONSOLE, "NumChannels: %d\n", num_channels);
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
return;
}
}
}
void CV_MergeTest::run(int)
{
try
{
can_merge(1, 1);
can_merge(1, 7);
can_merge(53, 7);
can_merge_submatrixes(1, 1);
can_merge_submatrixes(1, 7);
can_merge_submatrixes(53, 7);
}
catch(const cv::Exception& e)
{
if (!check_and_treat_gpu_exception(e, ts))
throw;
}
}
struct CV_SplitTest : public CvTest
{
CV_SplitTest() : CvTest("GPU-Split", "split") {}
void can_split(size_t rows, size_t cols);
void can_split_submatrix(size_t rows, size_t cols);
void run(int);
} split_test;
void CV_SplitTest::can_split(size_t rows, size_t cols)
{
for (size_t num_channels = 1; num_channels <= 4; ++num_channels)
for (size_t depth = CV_8U; depth <= CV_64F; ++depth)
{
Mat src(rows, cols, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0));
vector<Mat> dst;
cv::split(src, dst);
gpu::GpuMat dev_src(src);
vector<gpu::GpuMat> dev_dst;
cv::gpu::split(dev_src, dev_dst);
if (dev_dst.size() != dst.size())
{
ts->printf(CvTS::CONSOLE, "Bad output sizes");
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
}
for (size_t i = 0; i < num_channels; ++i)
{
Mat host_dst = dev_dst[i];
double err = norm(dst[i], host_dst, NORM_INF);
if (err > 1e-3)
{
//ts->printf(CvTS::CONSOLE, "\nNorm: %f\n", err);
//ts->printf(CvTS::CONSOLE, "Depth: %d\n", depth);
//ts->printf(CvTS::CONSOLE, "Rows: %d\n", rows);
//ts->printf(CvTS::CONSOLE, "Cols: %d\n", cols);
//ts->printf(CvTS::CONSOLE, "NumChannels: %d\n", num_channels);
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
return;
}
}
}
}
void CV_SplitTest::can_split_submatrix(size_t rows, size_t cols)
{
for (size_t num_channels = 1; num_channels <= 4; ++num_channels)
for (size_t depth = CV_8U; depth <= CV_64F; ++depth)
{
Mat src_data(rows * 2, cols * 2, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0));
Mat src(src_data(Range(rows / 2, rows / 2 + rows), Range(cols / 2, cols / 2 + cols)));
vector<Mat> dst;
cv::split(src, dst);
gpu::GpuMat dev_src(src);
vector<gpu::GpuMat> dev_dst;
cv::gpu::split(dev_src, dev_dst);
if (dev_dst.size() != dst.size())
{
ts->printf(CvTS::CONSOLE, "Bad output sizes");
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
}
for (size_t i = 0; i < num_channels; ++i)
{
Mat host_dst = dev_dst[i];
double err = norm(dst[i], host_dst, NORM_INF);
if (err > 1e-3)
{
//ts->printf(CvTS::CONSOLE, "\nNorm: %f\n", err);
//ts->printf(CvTS::CONSOLE, "Depth: %d\n", depth);
//ts->printf(CvTS::CONSOLE, "Rows: %d\n", rows);
//ts->printf(CvTS::CONSOLE, "Cols: %d\n", cols);
//ts->printf(CvTS::CONSOLE, "NumChannels: %d\n", num_channels);
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
return;
}
}
}
}
void CV_SplitTest::run(int)
{
try
{
can_split(1, 1);
can_split(1, 7);
can_split(7, 53);
can_split_submatrix(1, 1);
can_split_submatrix(1, 7);
can_split_submatrix(7, 53);
}
catch(const cv::Exception& e)
{
if (!check_and_treat_gpu_exception(e, ts))
throw;
}
}
struct CV_SplitMergeTest : public CvTest
{
CV_SplitMergeTest() : CvTest("GPU-SplitMerge", "split merge") {}
void can_split_merge(size_t rows, size_t cols);
void run(int);
} split_merge_test;
void CV_SplitMergeTest::can_split_merge(size_t rows, size_t cols) {
for (size_t num_channels = 1; num_channels <= 4; ++num_channels)
for (size_t depth = CV_8U; depth <= CV_64F; ++depth)
{
Mat orig(rows, cols, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0));
gpu::GpuMat dev_orig(orig);
vector<gpu::GpuMat> dev_vec;
cv::gpu::split(dev_orig, dev_vec);
gpu::GpuMat dev_final(rows, cols, CV_MAKETYPE(depth, num_channels));
cv::gpu::merge(dev_vec, dev_final);
double err = cv::norm((Mat)dev_orig, (Mat)dev_final, NORM_INF);
if (err > 1e-3)
{
//ts->printf(CvTS::CONSOLE, "\nNorm: %f\n", err);
//ts->printf(CvTS::CONSOLE, "Depth: %d\n", depth);
//ts->printf(CvTS::CONSOLE, "Rows: %d\n", rows);
//ts->printf(CvTS::CONSOLE, "Cols: %d\n", cols);
//ts->printf(CvTS::CONSOLE, "NumChannels: %d\n", num_channels);
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
return;
}
}
}
void CV_SplitMergeTest::run(int)
{
try
{
can_split_merge(1, 1);
can_split_merge(1, 7);
can_split_merge(7, 53);
}
catch(const cv::Exception& e)
{
if (!check_and_treat_gpu_exception(e, ts))
throw;
}
}
Loading…
Cancel
Save