|
|
|
@ -41,340 +41,218 @@ |
|
|
|
|
|
|
|
|
|
#include "precomp.hpp" |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_CUDA |
|
|
|
|
|
|
|
|
|
using namespace cvtest; |
|
|
|
|
using namespace testing; |
|
|
|
|
namespace { |
|
|
|
|
|
|
|
|
|
//#define DUMP
|
|
|
|
|
|
|
|
|
|
#define OPTICAL_FLOW_DUMP_FILE "opticalflow/opticalflow_gold.bin" |
|
|
|
|
#define OPTICAL_FLOW_DUMP_FILE_CC20 "opticalflow/opticalflow_gold_cc20.bin" |
|
|
|
|
#define INTERPOLATE_FRAMES_DUMP_FILE "opticalflow/interpolate_frames_gold.bin" |
|
|
|
|
#define INTERPOLATE_FRAMES_DUMP_FILE_CC20 "opticalflow/interpolate_frames_gold_cc20.bin" |
|
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// BroxOpticalFlow
|
|
|
|
|
|
|
|
|
|
struct BroxOpticalFlow : TestWithParam<cv::gpu::DeviceInfo> |
|
|
|
|
#define BROX_OPTICAL_FLOW_DUMP_FILE "opticalflow/brox_optical_flow.bin" |
|
|
|
|
#define BROX_OPTICAL_FLOW_DUMP_FILE_CC20 "opticalflow/brox_optical_flow_cc20.bin" |
|
|
|
|
|
|
|
|
|
struct BroxOpticalFlow : testing::TestWithParam<cv::gpu::DeviceInfo> |
|
|
|
|
{ |
|
|
|
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
|
|
|
|
|
|
cv::Mat frame0; |
|
|
|
|
cv::Mat frame1; |
|
|
|
|
|
|
|
|
|
cv::Mat u_gold; |
|
|
|
|
cv::Mat v_gold; |
|
|
|
|
|
|
|
|
|
virtual void SetUp() |
|
|
|
|
{ |
|
|
|
|
devInfo = GetParam(); |
|
|
|
|
|
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
|
|
|
|
|
|
frame0 = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
|
|
|
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
|
frame0.convertTo(frame0, CV_32F, 1.0 / 255.0); |
|
|
|
|
|
|
|
|
|
frame1 = readImage("opticalflow/frame1.png", cv::IMREAD_GRAYSCALE); |
|
|
|
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
|
frame1.convertTo(frame1, CV_32F, 1.0 / 255.0); |
|
|
|
|
|
|
|
|
|
#ifndef DUMP |
|
|
|
|
|
|
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path()); |
|
|
|
|
if (devInfo.majorVersion() >= 2) |
|
|
|
|
fname += OPTICAL_FLOW_DUMP_FILE_CC20; |
|
|
|
|
else |
|
|
|
|
fname += OPTICAL_FLOW_DUMP_FILE; |
|
|
|
|
|
|
|
|
|
std::ifstream f(fname.c_str(), std::ios_base::binary); |
|
|
|
|
|
|
|
|
|
int rows, cols; |
|
|
|
|
|
|
|
|
|
f.read((char*)&rows, sizeof(rows)); |
|
|
|
|
f.read((char*)&cols, sizeof(cols)); |
|
|
|
|
|
|
|
|
|
u_gold.create(rows, cols, CV_32FC1); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < u_gold.rows; ++i) |
|
|
|
|
f.read((char*)u_gold.ptr(i), u_gold.cols * sizeof(float)); |
|
|
|
|
|
|
|
|
|
v_gold.create(rows, cols, CV_32FC1); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < v_gold.rows; ++i) |
|
|
|
|
f.read((char*)v_gold.ptr(i), v_gold.cols * sizeof(float)); |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
TEST_P(BroxOpticalFlow, Regression) |
|
|
|
|
{ |
|
|
|
|
cv::Mat u; |
|
|
|
|
cv::Mat v; |
|
|
|
|
|
|
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
|
|
|
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
|
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1); |
|
|
|
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_u;
|
|
|
|
|
cv::gpu::GpuMat d_v; |
|
|
|
|
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1); |
|
|
|
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
|
|
|
|
|
|
d_flow(cv::gpu::GpuMat(frame0), cv::gpu::GpuMat(frame1), d_u, d_v); |
|
|
|
|
cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, |
|
|
|
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
|
|
|
|
|
|
d_u.download(u); |
|
|
|
|
d_v.download(v); |
|
|
|
|
cv::gpu::GpuMat u; |
|
|
|
|
cv::gpu::GpuMat v; |
|
|
|
|
brox(loadMat(frame0), loadMat(frame1), u, v); |
|
|
|
|
|
|
|
|
|
#ifndef DUMP |
|
|
|
|
|
|
|
|
|
EXPECT_MAT_NEAR(u_gold, u, 0); |
|
|
|
|
EXPECT_MAT_NEAR(v_gold, v, 0); |
|
|
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path()); |
|
|
|
|
if (devInfo.majorVersion() >= 2) |
|
|
|
|
fname += OPTICAL_FLOW_DUMP_FILE_CC20; |
|
|
|
|
fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20; |
|
|
|
|
else |
|
|
|
|
fname += OPTICAL_FLOW_DUMP_FILE; |
|
|
|
|
fname += BROX_OPTICAL_FLOW_DUMP_FILE; |
|
|
|
|
|
|
|
|
|
std::ofstream f(fname.c_str(), std::ios_base::binary); |
|
|
|
|
std::ifstream f(fname.c_str(), std::ios_base::binary); |
|
|
|
|
|
|
|
|
|
f.write((char*)&u.rows, sizeof(u.rows)); |
|
|
|
|
f.write((char*)&u.cols, sizeof(u.cols)); |
|
|
|
|
int rows, cols; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < u.rows; ++i) |
|
|
|
|
f.write((char*)u.ptr(i), u.cols * sizeof(float)); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < v.rows; ++i) |
|
|
|
|
f.write((char*)v.ptr(i), v.cols * sizeof(float)); |
|
|
|
|
f.read((char*)&rows, sizeof(rows)); |
|
|
|
|
f.read((char*)&cols, sizeof(cols)); |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
cv::Mat u_gold(rows, cols, CV_32FC1); |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, BroxOpticalFlow, ALL_DEVICES); |
|
|
|
|
for (int i = 0; i < u_gold.rows; ++i) |
|
|
|
|
f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float)); |
|
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// InterpolateFrames
|
|
|
|
|
cv::Mat v_gold(rows, cols, CV_32FC1); |
|
|
|
|
|
|
|
|
|
struct InterpolateFrames : TestWithParam<cv::gpu::DeviceInfo> |
|
|
|
|
{ |
|
|
|
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
|
|
|
|
|
|
cv::Mat frame0; |
|
|
|
|
cv::Mat frame1; |
|
|
|
|
|
|
|
|
|
cv::Mat newFrame_gold; |
|
|
|
|
|
|
|
|
|
virtual void SetUp() |
|
|
|
|
{ |
|
|
|
|
devInfo = GetParam(); |
|
|
|
|
|
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
|
|
|
|
|
|
frame0 = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
|
|
|
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
|
frame0.convertTo(frame0, CV_32F, 1.0 / 255.0); |
|
|
|
|
|
|
|
|
|
frame1 = readImage("opticalflow/frame1.png", cv::IMREAD_GRAYSCALE); |
|
|
|
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
|
frame1.convertTo(frame1, CV_32F, 1.0 / 255.0); |
|
|
|
|
|
|
|
|
|
#ifndef DUMP |
|
|
|
|
|
|
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path()); |
|
|
|
|
if (devInfo.majorVersion() >= 2) |
|
|
|
|
fname += INTERPOLATE_FRAMES_DUMP_FILE_CC20; |
|
|
|
|
else |
|
|
|
|
fname += INTERPOLATE_FRAMES_DUMP_FILE; |
|
|
|
|
|
|
|
|
|
std::ifstream f(fname.c_str(), std::ios_base::binary); |
|
|
|
|
|
|
|
|
|
int rows, cols; |
|
|
|
|
|
|
|
|
|
f.read((char*)&rows, sizeof(rows)); |
|
|
|
|
f.read((char*)&cols, sizeof(cols)); |
|
|
|
|
|
|
|
|
|
newFrame_gold.create(rows, cols, CV_32FC1); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < newFrame_gold.rows; ++i) |
|
|
|
|
f.read((char*)newFrame_gold.ptr(i), newFrame_gold.cols * sizeof(float)); |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
TEST_P(InterpolateFrames, Regression) |
|
|
|
|
{ |
|
|
|
|
cv::Mat newFrame; |
|
|
|
|
|
|
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
|
|
|
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_frame0(frame0); |
|
|
|
|
cv::gpu::GpuMat d_frame1(frame1); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_fu;
|
|
|
|
|
cv::gpu::GpuMat d_fv; |
|
|
|
|
cv::gpu::GpuMat d_bu;
|
|
|
|
|
cv::gpu::GpuMat d_bv; |
|
|
|
|
|
|
|
|
|
d_flow(d_frame0, d_frame1, d_fu, d_fv); |
|
|
|
|
d_flow(d_frame1, d_frame0, d_bu, d_bv); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_newFrame; |
|
|
|
|
cv::gpu::GpuMat d_buf; |
|
|
|
|
|
|
|
|
|
cv::gpu::interpolateFrames(d_frame0, d_frame1, d_fu, d_fv, d_bu, d_bv, 0.5f, d_newFrame, d_buf); |
|
|
|
|
|
|
|
|
|
d_newFrame.download(newFrame); |
|
|
|
|
|
|
|
|
|
#ifndef DUMP |
|
|
|
|
|
|
|
|
|
EXPECT_MAT_NEAR(newFrame_gold, newFrame, 1e-3); |
|
|
|
|
for (int i = 0; i < v_gold.rows; ++i) |
|
|
|
|
f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float)); |
|
|
|
|
|
|
|
|
|
EXPECT_MAT_NEAR(u_gold, u, 0); |
|
|
|
|
EXPECT_MAT_NEAR(v_gold, v, 0); |
|
|
|
|
#else |
|
|
|
|
|
|
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path()); |
|
|
|
|
if (devInfo.majorVersion() >= 2) |
|
|
|
|
fname += INTERPOLATE_FRAMES_DUMP_FILE_CC20; |
|
|
|
|
fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20; |
|
|
|
|
else |
|
|
|
|
fname += INTERPOLATE_FRAMES_DUMP_FILE; |
|
|
|
|
fname += BROX_OPTICAL_FLOW_DUMP_FILE; |
|
|
|
|
|
|
|
|
|
std::ofstream f(fname.c_str(), std::ios_base::binary); |
|
|
|
|
|
|
|
|
|
f.write((char*)&newFrame.rows, sizeof(newFrame.rows)); |
|
|
|
|
f.write((char*)&newFrame.cols, sizeof(newFrame.cols)); |
|
|
|
|
f.write((char*)&u.rows, sizeof(u.rows)); |
|
|
|
|
f.write((char*)&u.cols, sizeof(u.cols)); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < newFrame.rows; ++i) |
|
|
|
|
f.write((char*)newFrame.ptr(i), newFrame.cols * sizeof(float)); |
|
|
|
|
cv::Mat h_u(u); |
|
|
|
|
cv::Mat h_v(v); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < u.rows; ++i) |
|
|
|
|
f.write(h_u.ptr<char>(i), u.cols * sizeof(float)); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < v.rows; ++i) |
|
|
|
|
f.write(h_v.ptr<char>(i), v.cols * sizeof(float)); |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, InterpolateFrames, ALL_DEVICES); |
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES); |
|
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// GoodFeaturesToTrack
|
|
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, double) |
|
|
|
|
IMPLEMENT_PARAM_CLASS(MinDistance, double) |
|
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance) |
|
|
|
|
{ |
|
|
|
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
|
|
|
|
|
|
cv::Mat image; |
|
|
|
|
|
|
|
|
|
int maxCorners; |
|
|
|
|
double qualityLevel; |
|
|
|
|
double minDistance; |
|
|
|
|
|
|
|
|
|
std::vector<cv::Point2f> pts_gold; |
|
|
|
|
|
|
|
|
|
virtual void SetUp() |
|
|
|
|
{ |
|
|
|
|
devInfo = GET_PARAM(0); |
|
|
|
|
minDistance = GET_PARAM(1); |
|
|
|
|
|
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
|
|
|
|
|
|
image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
|
|
|
|
ASSERT_FALSE(image.empty()); |
|
|
|
|
|
|
|
|
|
maxCorners = 1000; |
|
|
|
|
qualityLevel= 0.01; |
|
|
|
|
|
|
|
|
|
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
TEST_P(GoodFeaturesToTrack, Accuracy) |
|
|
|
|
{ |
|
|
|
|
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance); |
|
|
|
|
cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
|
|
|
|
ASSERT_FALSE(image.empty()); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_pts; |
|
|
|
|
int maxCorners = 1000; |
|
|
|
|
double qualityLevel = 0.01; |
|
|
|
|
|
|
|
|
|
detector(loadMat(image), d_pts); |
|
|
|
|
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance); |
|
|
|
|
|
|
|
|
|
std::vector<cv::Point2f> pts(d_pts.cols); |
|
|
|
|
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]); |
|
|
|
|
d_pts.download(pts_mat); |
|
|
|
|
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS)) |
|
|
|
|
{ |
|
|
|
|
try |
|
|
|
|
{ |
|
|
|
|
cv::gpu::GpuMat d_pts; |
|
|
|
|
detector(loadMat(image), d_pts); |
|
|
|
|
} |
|
|
|
|
catch (const cv::Exception& e) |
|
|
|
|
{ |
|
|
|
|
ASSERT_EQ(CV_StsNotImplemented, e.code); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
cv::gpu::GpuMat d_pts; |
|
|
|
|
detector(loadMat(image), d_pts); |
|
|
|
|
|
|
|
|
|
ASSERT_EQ(pts_gold.size(), pts.size()); |
|
|
|
|
std::vector<cv::Point2f> pts(d_pts.cols); |
|
|
|
|
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]); |
|
|
|
|
d_pts.download(pts_mat); |
|
|
|
|
|
|
|
|
|
size_t mistmatch = 0; |
|
|
|
|
std::vector<cv::Point2f> pts_gold; |
|
|
|
|
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance); |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < pts.size(); ++i) |
|
|
|
|
{ |
|
|
|
|
cv::Point2i a = pts_gold[i]; |
|
|
|
|
cv::Point2i b = pts[i]; |
|
|
|
|
ASSERT_EQ(pts_gold.size(), pts.size()); |
|
|
|
|
|
|
|
|
|
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1; |
|
|
|
|
size_t mistmatch = 0; |
|
|
|
|
for (size_t i = 0; i < pts.size(); ++i) |
|
|
|
|
{ |
|
|
|
|
cv::Point2i a = pts_gold[i]; |
|
|
|
|
cv::Point2i b = pts[i]; |
|
|
|
|
|
|
|
|
|
if (!eq) |
|
|
|
|
++mistmatch; |
|
|
|
|
} |
|
|
|
|
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1; |
|
|
|
|
|
|
|
|
|
double bad_ratio = static_cast<double>(mistmatch) / pts.size(); |
|
|
|
|
if (!eq) |
|
|
|
|
++mistmatch; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
ASSERT_LE(bad_ratio, 0.01); |
|
|
|
|
double bad_ratio = static_cast<double>(mistmatch) / pts.size(); |
|
|
|
|
|
|
|
|
|
ASSERT_LE(bad_ratio, 0.01); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, Combine(ALL_DEVICES, Values(0.0, 3.0))); |
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine( |
|
|
|
|
ALL_DEVICES, |
|
|
|
|
testing::Values(MinDistance(0.0), MinDistance(3.0)))); |
|
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// PyrLKOpticalFlow
|
|
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, bool) |
|
|
|
|
IMPLEMENT_PARAM_CLASS(UseGray, bool) |
|
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray) |
|
|
|
|
{ |
|
|
|
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
|
|
|
|
|
|
cv::Mat frame0; |
|
|
|
|
cv::Mat frame1; |
|
|
|
|
|
|
|
|
|
std::vector<cv::Point2f> pts; |
|
|
|
|
|
|
|
|
|
std::vector<cv::Point2f> nextPts_gold; |
|
|
|
|
std::vector<unsigned char> status_gold; |
|
|
|
|
std::vector<float> err_gold; |
|
|
|
|
bool useGray; |
|
|
|
|
|
|
|
|
|
virtual void SetUp() |
|
|
|
|
{ |
|
|
|
|
devInfo = GET_PARAM(0); |
|
|
|
|
bool useGray = GET_PARAM(1); |
|
|
|
|
useGray = GET_PARAM(1); |
|
|
|
|
|
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
|
|
|
|
|
|
frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
|
|
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
|
|
|
|
|
|
frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
|
|
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
|
|
|
|
|
|
cv::Mat gray_frame; |
|
|
|
|
if (useGray) |
|
|
|
|
gray_frame = frame0; |
|
|
|
|
else |
|
|
|
|
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); |
|
|
|
|
|
|
|
|
|
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0); |
|
|
|
|
|
|
|
|
|
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold, cv::Size(21, 21), 3,
|
|
|
|
|
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, 0.01), 0.5); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
TEST_P(PyrLKOpticalFlowSparse, Accuracy) |
|
|
|
|
TEST_P(PyrLKOpticalFlow, Sparse) |
|
|
|
|
{ |
|
|
|
|
cv::gpu::PyrLKOpticalFlow d_pyrLK; |
|
|
|
|
cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
|
|
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
|
|
|
|
|
|
cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
|
|
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
|
|
|
|
|
|
cv::Mat gray_frame; |
|
|
|
|
if (useGray) |
|
|
|
|
gray_frame = frame0; |
|
|
|
|
else |
|
|
|
|
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); |
|
|
|
|
|
|
|
|
|
std::vector<cv::Point2f> pts; |
|
|
|
|
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0); |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_pts; |
|
|
|
|
cv::Mat pts_mat(1, pts.size(), CV_32FC2, (void*)&pts[0]); |
|
|
|
|
d_pts.upload(pts_mat); |
|
|
|
|
|
|
|
|
|
cv::gpu::PyrLKOpticalFlow pyrLK; |
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat d_nextPts; |
|
|
|
|
cv::gpu::GpuMat d_status; |
|
|
|
|
cv::gpu::GpuMat d_err; |
|
|
|
|
|
|
|
|
|
d_pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status, &d_err); |
|
|
|
|
pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status, &d_err); |
|
|
|
|
|
|
|
|
|
std::vector<cv::Point2f> nextPts(d_nextPts.cols); |
|
|
|
|
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]); |
|
|
|
@ -388,12 +266,16 @@ TEST_P(PyrLKOpticalFlowSparse, Accuracy) |
|
|
|
|
cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]); |
|
|
|
|
d_err.download(err_mat); |
|
|
|
|
|
|
|
|
|
std::vector<cv::Point2f> nextPts_gold; |
|
|
|
|
std::vector<unsigned char> status_gold; |
|
|
|
|
std::vector<float> err_gold; |
|
|
|
|
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold); |
|
|
|
|
|
|
|
|
|
ASSERT_EQ(nextPts_gold.size(), nextPts.size()); |
|
|
|
|
ASSERT_EQ(status_gold.size(), status.size()); |
|
|
|
|
ASSERT_EQ(err_gold.size(), err.size()); |
|
|
|
|
|
|
|
|
|
size_t mistmatch = 0; |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < nextPts.size(); ++i) |
|
|
|
|
{ |
|
|
|
|
if (status[i] != status_gold[i]) |
|
|
|
@ -420,77 +302,86 @@ TEST_P(PyrLKOpticalFlowSparse, Accuracy) |
|
|
|
|
ASSERT_LE(bad_ratio, 0.01); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, Combine(ALL_DEVICES, Bool())); |
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine( |
|
|
|
|
ALL_DEVICES, |
|
|
|
|
testing::Values(UseGray(true), UseGray(false)))); |
|
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// FarnebackOpticalFlow
|
|
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo, double, int, int, bool) |
|
|
|
|
{ |
|
|
|
|
cv::Mat frame0, frame1; |
|
|
|
|
IMPLEMENT_PARAM_CLASS(PyrScale, double) |
|
|
|
|
IMPLEMENT_PARAM_CLASS(PolyN, int) |
|
|
|
|
CV_FLAGS(FarnebackOptFlowFlags, 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN) |
|
|
|
|
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool) |
|
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow) |
|
|
|
|
{ |
|
|
|
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
|
double pyrScale; |
|
|
|
|
int polyN; |
|
|
|
|
double polySigma; |
|
|
|
|
int flags; |
|
|
|
|
bool useInitFlow; |
|
|
|
|
|
|
|
|
|
virtual void SetUp() |
|
|
|
|
{ |
|
|
|
|
frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); |
|
|
|
|
frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); |
|
|
|
|
ASSERT_FALSE(frame0.empty()); ASSERT_FALSE(frame1.empty()); |
|
|
|
|
|
|
|
|
|
cv::gpu::setDevice(GET_PARAM(0).deviceID()); |
|
|
|
|
|
|
|
|
|
devInfo = GET_PARAM(0); |
|
|
|
|
pyrScale = GET_PARAM(1); |
|
|
|
|
polyN = GET_PARAM(2); |
|
|
|
|
polySigma = polyN <= 5 ? 1.1 : 1.5; |
|
|
|
|
flags = GET_PARAM(3); |
|
|
|
|
useInitFlow = GET_PARAM(4); |
|
|
|
|
|
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
TEST_P(FarnebackOpticalFlowTest, Accuracy) |
|
|
|
|
TEST_P(FarnebackOpticalFlow, Accuracy) |
|
|
|
|
{ |
|
|
|
|
using namespace cv; |
|
|
|
|
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); |
|
|
|
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
|
|
|
|
|
|
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); |
|
|
|
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
|
|
|
|
|
|
gpu::FarnebackOpticalFlow calc; |
|
|
|
|
double polySigma = polyN <= 5 ? 1.1 : 1.5; |
|
|
|
|
|
|
|
|
|
cv::gpu::FarnebackOpticalFlow calc; |
|
|
|
|
calc.pyrScale = pyrScale; |
|
|
|
|
calc.polyN = polyN; |
|
|
|
|
calc.polySigma = polySigma; |
|
|
|
|
calc.flags = flags; |
|
|
|
|
|
|
|
|
|
gpu::GpuMat d_flowx, d_flowy; |
|
|
|
|
calc(gpu::GpuMat(frame0), gpu::GpuMat(frame1), d_flowx, d_flowy); |
|
|
|
|
cv::gpu::GpuMat d_flowx, d_flowy; |
|
|
|
|
calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy); |
|
|
|
|
|
|
|
|
|
Mat flow; |
|
|
|
|
cv::Mat flow; |
|
|
|
|
if (useInitFlow) |
|
|
|
|
{ |
|
|
|
|
Mat flowxy[] = {(Mat)d_flowx, (Mat)d_flowy}; |
|
|
|
|
merge(flowxy, 2, flow); |
|
|
|
|
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)}; |
|
|
|
|
cv::merge(flowxy, 2, flow); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (useInitFlow) |
|
|
|
|
{ |
|
|
|
|
calc.flags |= OPTFLOW_USE_INITIAL_FLOW; |
|
|
|
|
calc(gpu::GpuMat(frame0), gpu::GpuMat(frame1), d_flowx, d_flowy); |
|
|
|
|
calc.flags |= cv::OPTFLOW_USE_INITIAL_FLOW; |
|
|
|
|
calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
calcOpticalFlowFarneback( |
|
|
|
|
frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize, |
|
|
|
|
calc.numIters, calc.polyN, calc.polySigma, calc.flags); |
|
|
|
|
cv::calcOpticalFlowFarneback( |
|
|
|
|
frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize, |
|
|
|
|
calc.numIters, calc.polyN, calc.polySigma, calc.flags); |
|
|
|
|
|
|
|
|
|
std::vector<cv::Mat> flowxy; |
|
|
|
|
cv::split(flow, flowxy); |
|
|
|
|
|
|
|
|
|
std::vector<Mat> flowxy; split(flow, flowxy); |
|
|
|
|
/*std::cout << checkSimilarity(flowxy[0], (Mat)d_flowx) << " "
|
|
|
|
|
<< checkSimilarity(flowxy[1], (Mat)d_flowy) << std::endl;*/ |
|
|
|
|
EXPECT_LT(checkSimilarity(flowxy[0], (Mat)d_flowx), 0.1); |
|
|
|
|
EXPECT_LT(checkSimilarity(flowxy[1], (Mat)d_flowy), 0.1); |
|
|
|
|
EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1); |
|
|
|
|
EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, FarnebackOpticalFlowTest, |
|
|
|
|
Combine(ALL_DEVICES, |
|
|
|
|
Values(0.3, 0.5, 0.8), |
|
|
|
|
Values(5, 7), |
|
|
|
|
Values(0, (int)cv::OPTFLOW_FARNEBACK_GAUSSIAN), |
|
|
|
|
Values(false, true))); |
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine( |
|
|
|
|
ALL_DEVICES, |
|
|
|
|
testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)), |
|
|
|
|
testing::Values(PolyN(5), PolyN(7)), |
|
|
|
|
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)), |
|
|
|
|
testing::Values(UseInitFlow(false), UseInitFlow(true)))); |
|
|
|
|
|
|
|
|
|
#endif // HAVE_CUDA
|
|
|
|
|
} // namespace
|
|
|
|
|