|
|
|
@ -42,9 +42,8 @@ |
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
|
|
#include "test_precomp.hpp" |
|
|
|
|
#include "npy_blob.hpp" |
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
|
#include <opencv2/core/ocl.hpp> |
|
|
|
|
#include <opencv2/ts/ocl_test.hpp> |
|
|
|
|
|
|
|
|
|
namespace opencv_test { namespace { |
|
|
|
|
|
|
|
|
@ -66,238 +65,136 @@ TEST(Test_Darknet, read_yolo_voc) |
|
|
|
|
ASSERT_FALSE(net.empty()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
OCL_TEST(Reproducibility_TinyYoloVoc, Accuracy) |
|
|
|
|
// Test object detection network from Darknet framework.
|
|
|
|
|
static void testDarknetModel(const std::string& cfg, const std::string& weights, |
|
|
|
|
const std::vector<cv::String>& outNames, |
|
|
|
|
const std::vector<int>& refClassIds, |
|
|
|
|
const std::vector<float>& refConfidences, |
|
|
|
|
const std::vector<Rect2f>& refBoxes, |
|
|
|
|
int targetId, float confThreshold = 0.24) |
|
|
|
|
{ |
|
|
|
|
Net net; |
|
|
|
|
Mat sample = imread(_tf("dog416.png")); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0/255, Size(416, 416), Scalar(), true, false); |
|
|
|
|
|
|
|
|
|
Net net = readNet(findDataFile("dnn/" + cfg, false), |
|
|
|
|
findDataFile("dnn/" + weights, false)); |
|
|
|
|
net.setPreferableTarget(targetId); |
|
|
|
|
net.setInput(inp); |
|
|
|
|
std::vector<Mat> outs; |
|
|
|
|
net.forward(outs, outNames); |
|
|
|
|
|
|
|
|
|
std::vector<int> classIds; |
|
|
|
|
std::vector<float> confidences; |
|
|
|
|
std::vector<Rect2f> boxes; |
|
|
|
|
for (int i = 0; i < outs.size(); ++i) |
|
|
|
|
{ |
|
|
|
|
const string cfg = findDataFile("dnn/tiny-yolo-voc.cfg", false); |
|
|
|
|
const string model = findDataFile("dnn/tiny-yolo-voc.weights", false); |
|
|
|
|
net = readNetFromDarknet(cfg, model); |
|
|
|
|
ASSERT_FALSE(net.empty()); |
|
|
|
|
Mat& out = outs[i]; |
|
|
|
|
for (int j = 0; j < out.rows; ++j) |
|
|
|
|
{ |
|
|
|
|
Mat scores = out.row(j).colRange(5, out.cols); |
|
|
|
|
double confidence; |
|
|
|
|
Point maxLoc; |
|
|
|
|
minMaxLoc(scores, 0, &confidence, 0, &maxLoc); |
|
|
|
|
if (confidence > confThreshold) |
|
|
|
|
{ |
|
|
|
|
float* detection = out.ptr<float>(j); |
|
|
|
|
float centerX = detection[0]; |
|
|
|
|
float centerY = detection[1]; |
|
|
|
|
float width = detection[2]; |
|
|
|
|
float height = detection[3]; |
|
|
|
|
boxes.push_back(Rect2f(centerX - 0.5 * width, centerY - 0.5 * height, |
|
|
|
|
width, height)); |
|
|
|
|
confidences.push_back(confidence); |
|
|
|
|
classIds.push_back(maxLoc.x); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT); |
|
|
|
|
net.setPreferableTarget(DNN_TARGET_OPENCL); |
|
|
|
|
|
|
|
|
|
// dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format
|
|
|
|
|
Mat sample = imread(_tf("dog416.png")); |
|
|
|
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
|
|
|
|
|
|
Size inputSize(416, 416); |
|
|
|
|
|
|
|
|
|
if (sample.size() != inputSize) |
|
|
|
|
resize(sample, sample, inputSize); |
|
|
|
|
|
|
|
|
|
net.setInput(blobFromImage(sample, 1 / 255.F), "data"); |
|
|
|
|
Mat out = net.forward("detection_out"); |
|
|
|
|
|
|
|
|
|
Mat detection; |
|
|
|
|
const float confidenceThreshold = 0.24; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < out.rows; i++) { |
|
|
|
|
const int probability_index = 5; |
|
|
|
|
const int probability_size = out.cols - probability_index; |
|
|
|
|
float *prob_array_ptr = &out.at<float>(i, probability_index); |
|
|
|
|
size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
|
|
|
float confidence = out.at<float>(i, (int)objectClass + probability_index); |
|
|
|
|
|
|
|
|
|
if (confidence > confidenceThreshold) |
|
|
|
|
detection.push_back(out.row(i)); |
|
|
|
|
ASSERT_EQ(classIds.size(), refClassIds.size()); |
|
|
|
|
ASSERT_EQ(confidences.size(), refConfidences.size()); |
|
|
|
|
ASSERT_EQ(boxes.size(), refBoxes.size()); |
|
|
|
|
for (int i = 0; i < boxes.size(); ++i) |
|
|
|
|
{ |
|
|
|
|
ASSERT_EQ(classIds[i], refClassIds[i]); |
|
|
|
|
ASSERT_LE(std::abs(confidences[i] - refConfidences[i]), 1e-4); |
|
|
|
|
float iou = (boxes[i] & refBoxes[i]).area() / (boxes[i] | refBoxes[i]).area(); |
|
|
|
|
ASSERT_LE(std::abs(iou - 1.0f), 1e-4); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// obtained by: ./darknet detector test ./cfg/voc.data ./cfg/tiny-yolo-voc.cfg ./tiny-yolo-voc.weights -thresh 0.24 ./dog416.png
|
|
|
|
|
// There are 2 objects (6-car, 11-dog) with 25 values for each:
|
|
|
|
|
// { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] }
|
|
|
|
|
float ref_array[] = { |
|
|
|
|
0.736762F, 0.239551F, 0.315440F, 0.160779F, 0.761977F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.761967F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
|
|
|
|
|
0.287486F, 0.653731F, 0.315579F, 0.534527F, 0.782737F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.780595F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
const int number_of_objects = 2; |
|
|
|
|
Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); |
|
|
|
|
typedef testing::TestWithParam<DNNTarget> Test_Darknet_nets; |
|
|
|
|
|
|
|
|
|
normAssert(ref, detection); |
|
|
|
|
TEST_P(Test_Darknet_nets, YoloVoc) |
|
|
|
|
{ |
|
|
|
|
int targetId = GetParam(); |
|
|
|
|
std::vector<cv::String> outNames(1, "detection_out"); |
|
|
|
|
|
|
|
|
|
std::vector<int> classIds(3); |
|
|
|
|
std::vector<float> confidences(3); |
|
|
|
|
std::vector<Rect2f> boxes(3); |
|
|
|
|
classIds[0] = 6; confidences[0] = 0.750469f; boxes[0] = Rect2f(0.577374, 0.127391, 0.325575, 0.173418); // a car
|
|
|
|
|
classIds[1] = 1; confidences[1] = 0.780879f; boxes[1] = Rect2f(0.270762, 0.264102, 0.461713, 0.48131); // a bycicle
|
|
|
|
|
classIds[2] = 11; confidences[2] = 0.901615f; boxes[2] = Rect2f(0.1386, 0.338509, 0.282737, 0.60028); // a dog
|
|
|
|
|
testDarknetModel("yolo-voc.cfg", "yolo-voc.weights", outNames, |
|
|
|
|
classIds, confidences, boxes, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST(Reproducibility_TinyYoloVoc, Accuracy) |
|
|
|
|
TEST_P(Test_Darknet_nets, TinyYoloVoc) |
|
|
|
|
{ |
|
|
|
|
Net net; |
|
|
|
|
{ |
|
|
|
|
const string cfg = findDataFile("dnn/tiny-yolo-voc.cfg", false); |
|
|
|
|
const string model = findDataFile("dnn/tiny-yolo-voc.weights", false); |
|
|
|
|
net = readNetFromDarknet(cfg, model); |
|
|
|
|
ASSERT_FALSE(net.empty()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format
|
|
|
|
|
Mat sample = imread(_tf("dog416.png")); |
|
|
|
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
|
|
|
|
|
|
Size inputSize(416, 416); |
|
|
|
|
|
|
|
|
|
if (sample.size() != inputSize) |
|
|
|
|
resize(sample, sample, inputSize); |
|
|
|
|
|
|
|
|
|
net.setInput(blobFromImage(sample, 1 / 255.F), "data"); |
|
|
|
|
Mat out = net.forward("detection_out"); |
|
|
|
|
|
|
|
|
|
Mat detection; |
|
|
|
|
const float confidenceThreshold = 0.24; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < out.rows; i++) { |
|
|
|
|
const int probability_index = 5; |
|
|
|
|
const int probability_size = out.cols - probability_index; |
|
|
|
|
float *prob_array_ptr = &out.at<float>(i, probability_index); |
|
|
|
|
size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
|
|
|
float confidence = out.at<float>(i, (int)objectClass + probability_index); |
|
|
|
|
|
|
|
|
|
if (confidence > confidenceThreshold) |
|
|
|
|
detection.push_back(out.row(i)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// obtained by: ./darknet detector test ./cfg/voc.data ./cfg/tiny-yolo-voc.cfg ./tiny-yolo-voc.weights -thresh 0.24 ./dog416.png
|
|
|
|
|
// There are 2 objects (6-car, 11-dog) with 25 values for each:
|
|
|
|
|
// { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] }
|
|
|
|
|
float ref_array[] = { |
|
|
|
|
0.736762F, 0.239551F, 0.315440F, 0.160779F, 0.761977F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.761967F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
|
|
|
|
|
0.287486F, 0.653731F, 0.315579F, 0.534527F, 0.782737F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.780595F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
const int number_of_objects = 2; |
|
|
|
|
Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); |
|
|
|
|
|
|
|
|
|
normAssert(ref, detection); |
|
|
|
|
int targetId = GetParam(); |
|
|
|
|
std::vector<cv::String> outNames(1, "detection_out"); |
|
|
|
|
std::vector<int> classIds(2); |
|
|
|
|
std::vector<float> confidences(2); |
|
|
|
|
std::vector<Rect2f> boxes(2); |
|
|
|
|
classIds[0] = 6; confidences[0] = 0.761967f; boxes[0] = Rect2f(0.579042, 0.159161, 0.31544, 0.160779); // a car
|
|
|
|
|
classIds[1] = 11; confidences[1] = 0.780595f; boxes[1] = Rect2f(0.129696, 0.386467, 0.315579, 0.534527); // a dog
|
|
|
|
|
testDarknetModel("tiny-yolo-voc.cfg", "tiny-yolo-voc.weights", outNames, |
|
|
|
|
classIds, confidences, boxes, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
OCL_TEST(Reproducibility_YoloVoc, Accuracy) |
|
|
|
|
TEST_P(Test_Darknet_nets, YOLOv3) |
|
|
|
|
{ |
|
|
|
|
Net net; |
|
|
|
|
{ |
|
|
|
|
const string cfg = findDataFile("dnn/yolo-voc.cfg", false); |
|
|
|
|
const string model = findDataFile("dnn/yolo-voc.weights", false); |
|
|
|
|
net = readNetFromDarknet(cfg, model); |
|
|
|
|
ASSERT_FALSE(net.empty()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT); |
|
|
|
|
net.setPreferableTarget(DNN_TARGET_OPENCL); |
|
|
|
|
|
|
|
|
|
// dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format
|
|
|
|
|
Mat sample = imread(_tf("dog416.png")); |
|
|
|
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
|
|
|
|
|
|
Size inputSize(416, 416); |
|
|
|
|
|
|
|
|
|
if (sample.size() != inputSize) |
|
|
|
|
resize(sample, sample, inputSize); |
|
|
|
|
|
|
|
|
|
net.setInput(blobFromImage(sample, 1 / 255.F), "data"); |
|
|
|
|
Mat out = net.forward("detection_out"); |
|
|
|
|
|
|
|
|
|
Mat detection; |
|
|
|
|
const float confidenceThreshold = 0.24; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < out.rows; i++) { |
|
|
|
|
const int probability_index = 5; |
|
|
|
|
const int probability_size = out.cols - probability_index; |
|
|
|
|
float *prob_array_ptr = &out.at<float>(i, probability_index); |
|
|
|
|
size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
|
|
|
float confidence = out.at<float>(i, (int)objectClass + probability_index); |
|
|
|
|
|
|
|
|
|
if (confidence > confidenceThreshold) |
|
|
|
|
detection.push_back(out.row(i)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// obtained by: ./darknet detector test ./cfg/voc.data ./cfg/yolo-voc.cfg ./yolo-voc.weights -thresh 0.24 ./dog416.png
|
|
|
|
|
// There are 3 objects (6-car, 1-bicycle, 11-dog) with 25 values for each:
|
|
|
|
|
// { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] }
|
|
|
|
|
float ref_array[] = { |
|
|
|
|
0.740161F, 0.214100F, 0.325575F, 0.173418F, 0.750769F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.750469F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
|
|
|
|
|
0.501618F, 0.504757F, 0.461713F, 0.481310F, 0.783550F, 0.000000F, 0.780879F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
|
|
|
|
|
0.279968F, 0.638651F, 0.282737F, 0.600284F, 0.901864F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.901615F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F |
|
|
|
|
}; |
|
|
|
|
int targetId = GetParam(); |
|
|
|
|
std::vector<cv::String> outNames(3); |
|
|
|
|
outNames[0] = "yolo_82"; |
|
|
|
|
outNames[1] = "yolo_94"; |
|
|
|
|
outNames[2] = "yolo_106"; |
|
|
|
|
|
|
|
|
|
std::vector<int> classIds(3); |
|
|
|
|
std::vector<float> confidences(3); |
|
|
|
|
std::vector<Rect2f> boxes(3); |
|
|
|
|
classIds[0] = 7; confidences[0] = 0.952983f; boxes[0] = Rect2f(0.614622, 0.150257, 0.286747, 0.138994); // a truck
|
|
|
|
|
classIds[1] = 1; confidences[1] = 0.987908f; boxes[1] = Rect2f(0.150913, 0.221933, 0.591342, 0.524327); // a bycicle
|
|
|
|
|
classIds[2] = 16; confidences[2] = 0.998836f; boxes[2] = Rect2f(0.160024, 0.389964, 0.257861, 0.553752); // a dog (COCO)
|
|
|
|
|
testDarknetModel("yolov3.cfg", "yolov3.weights", outNames, |
|
|
|
|
classIds, confidences, boxes, targetId); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const int number_of_objects = 3; |
|
|
|
|
Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); |
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets, availableDnnTargets()); |
|
|
|
|
|
|
|
|
|
normAssert(ref, detection); |
|
|
|
|
static void testDarknetLayer(const std::string& name, bool hasWeights = false) |
|
|
|
|
{ |
|
|
|
|
std::string cfg = findDataFile("dnn/darknet/" + name + ".cfg", false); |
|
|
|
|
std::string model = ""; |
|
|
|
|
if (hasWeights) |
|
|
|
|
model = findDataFile("dnn/darknet/" + name + ".weights", false); |
|
|
|
|
Mat inp = blobFromNPY(findDataFile("dnn/darknet/" + name + "_in.npy", false)); |
|
|
|
|
Mat ref = blobFromNPY(findDataFile("dnn/darknet/" + name + "_out.npy", false)); |
|
|
|
|
|
|
|
|
|
Net net = readNet(cfg, model); |
|
|
|
|
net.setInput(inp); |
|
|
|
|
Mat out = net.forward(); |
|
|
|
|
normAssert(out, ref); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST(Reproducibility_YoloVoc, Accuracy) |
|
|
|
|
TEST(Test_Darknet, shortcut) |
|
|
|
|
{ |
|
|
|
|
Net net; |
|
|
|
|
{ |
|
|
|
|
const string cfg = findDataFile("dnn/yolo-voc.cfg", false); |
|
|
|
|
const string model = findDataFile("dnn/yolo-voc.weights", false); |
|
|
|
|
net = readNetFromDarknet(cfg, model); |
|
|
|
|
ASSERT_FALSE(net.empty()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format
|
|
|
|
|
Mat sample = imread(_tf("dog416.png")); |
|
|
|
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
|
|
|
|
|
|
Size inputSize(416, 416); |
|
|
|
|
|
|
|
|
|
if (sample.size() != inputSize) |
|
|
|
|
resize(sample, sample, inputSize); |
|
|
|
|
|
|
|
|
|
net.setInput(blobFromImage(sample, 1 / 255.F), "data"); |
|
|
|
|
Mat out = net.forward("detection_out"); |
|
|
|
|
|
|
|
|
|
Mat detection; |
|
|
|
|
const float confidenceThreshold = 0.24; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < out.rows; i++) { |
|
|
|
|
const int probability_index = 5; |
|
|
|
|
const int probability_size = out.cols - probability_index; |
|
|
|
|
float *prob_array_ptr = &out.at<float>(i, probability_index); |
|
|
|
|
size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
|
|
|
float confidence = out.at<float>(i, (int)objectClass + probability_index); |
|
|
|
|
|
|
|
|
|
if (confidence > confidenceThreshold) |
|
|
|
|
detection.push_back(out.row(i)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// obtained by: ./darknet detector test ./cfg/voc.data ./cfg/yolo-voc.cfg ./yolo-voc.weights -thresh 0.24 ./dog416.png
|
|
|
|
|
// There are 3 objects (6-car, 1-bicycle, 11-dog) with 25 values for each:
|
|
|
|
|
// { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] }
|
|
|
|
|
float ref_array[] = { |
|
|
|
|
0.740161F, 0.214100F, 0.325575F, 0.173418F, 0.750769F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.750469F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
|
|
|
|
|
0.501618F, 0.504757F, 0.461713F, 0.481310F, 0.783550F, 0.000000F, 0.780879F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
|
|
|
|
|
0.279968F, 0.638651F, 0.282737F, 0.600284F, 0.901864F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.901615F, |
|
|
|
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
const int number_of_objects = 3; |
|
|
|
|
Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); |
|
|
|
|
testDarknetLayer("shortcut"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
normAssert(ref, detection); |
|
|
|
|
TEST(Test_Darknet, upsample) |
|
|
|
|
{ |
|
|
|
|
testDarknetLayer("upsample"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
}} // namespace
|
|
|
|
|