refactored and extended ocl::LUT

pull/1503/head
Ilya Lavrenov 11 years ago
parent 311a7233c2
commit b20bd470fe
  1. 117
      modules/ocl/src/arithm.cpp
  2. 155
      modules/ocl/src/opencl/arithm_LUT.cl

@ -793,100 +793,45 @@ void cv::ocl::flip(const oclMat &src, oclMat &dst, int flipCode)
//////////////////////////////////////////////////////////////////////////////
////////////////////////////////// LUT //////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
static void arithmetic_lut_run(const oclMat &src1, const oclMat &src2, oclMat &dst, string kernelName)
static void arithmetic_lut_run(const oclMat &src, const oclMat &lut, oclMat &dst, string kernelName)
{
Context *clCxt = src1.clCxt;
int channels = src1.oclchannels();
int rows = src1.rows;
int cols = src1.cols;
//int step = src1.step;
int src_step = src1.step / src1.elemSize();
int dst_step = dst.step / dst.elemSize();
int whole_rows = src1.wholerows;
int whole_cols = src1.wholecols;
int src_offset = src1.offset / src1.elemSize();
int dst_offset = dst.offset / dst.elemSize();
int lut_offset = src2.offset / src2.elemSize();
int left_col = 0, right_col = 0;
size_t localSize[] = {16, 16, 1};
//cl_kernel kernel = openCLGetKernelFromSource(clCxt,&arithm_LUT,kernelName);
size_t globalSize[] = {(cols + localSize[0] - 1) / localSize[0] *localSize[0], (rows + localSize[1] - 1) / localSize[1] *localSize[1], 1};
if(channels == 1 && cols > 6)
{
left_col = 4 - (dst_offset & 3);
left_col &= 3;
dst_offset += left_col;
src_offset += left_col;
cols -= left_col;
right_col = cols & 3;
cols -= right_col;
globalSize[0] = (cols / 4 + localSize[0] - 1) / localSize[0] * localSize[0];
}
else if(channels == 1)
{
left_col = cols;
right_col = 0;
cols = 0;
globalSize[0] = 0;
}
CV_Assert(clCxt == dst.clCxt);
CV_Assert(src1.cols == dst.cols);
CV_Assert(src1.rows == dst.rows);
CV_Assert(src1.oclchannels() == dst.oclchannels());
// CV_Assert(src1.step == dst.step);
vector<pair<size_t , const void *> > args;
Context *clCxt = src.clCxt;
int sdepth = src.depth();
int src_step1 = src.step1(), dst_step1 = dst.step1();
int src_offset1 = src.offset / src.elemSize1(), dst_offset1 = dst.offset / dst.elemSize1();
int lut_offset1 = lut.offset / lut.elemSize1() + (sdepth == CV_8U ? 0 : 128) * lut.channels();
int cols1 = src.cols * src.oclchannels();
if(globalSize[0] != 0)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&channels ));
args.push_back( make_pair( sizeof(cl_int), (void *)&whole_rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&whole_cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&lut_offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step ));
openCLExecuteKernel(clCxt, &arithm_LUT, kernelName, globalSize, localSize, args, src1.oclchannels(), src1.depth());
}
if(channels == 1 && (left_col != 0 || right_col != 0))
{
src_offset = src1.offset;
dst_offset = dst.offset;
localSize[0] = 1;
localSize[1] = 256;
globalSize[0] = left_col + right_col;
globalSize[1] = (rows + localSize[1] - 1) / localSize[1] * localSize[1];
//kernel = openCLGetKernelFromSource(clCxt,&arithm_LUT,"LUT2");
args.clear();
size_t localSize[] = { 16, 16, 1 };
size_t globalSize[] = { lut.channels() == 1 ? cols1 : src.cols, src.rows, 1 };
const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" };
std::string buildOptions = format("-D srcT=%s -D dstT=%s", typeMap[sdepth], typeMap[dst.depth()]);
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&lut.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&left_col ));
args.push_back( make_pair( sizeof(cl_int), (void *)&channels ));
args.push_back( make_pair( sizeof(cl_int), (void *)&whole_rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&lut_offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step ));
openCLExecuteKernel(clCxt, &arithm_LUT, "LUT2", globalSize, localSize, args, src1.oclchannels(), src1.depth());
}
args.push_back( make_pair( sizeof(cl_int), (void *)&cols1));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset1 ));
args.push_back( make_pair( sizeof(cl_int), (void *)&lut_offset1 ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset1 ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step1 ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
openCLExecuteKernel(clCxt, &arithm_LUT, kernelName, globalSize, localSize,
args, lut.oclchannels(), -1, buildOptions.c_str());
}
void cv::ocl::LUT(const oclMat &src, const oclMat &lut, oclMat &dst)
{
int cn = src.channels();
CV_Assert(src.depth() == CV_8U);
CV_Assert((lut.oclchannels() == 1 || lut.oclchannels() == cn) && lut.rows == 1 && lut.cols == 256);
int cn = src.channels(), depth = src.depth();
CV_Assert(depth == CV_8U || depth == CV_8S);
CV_Assert(lut.channels() == 1 || lut.channels() == src.channels());
CV_Assert(lut.rows == 1 && lut.cols == 256);
dst.create(src.size(), CV_MAKETYPE(lut.depth(), cn));
//oclMat _lut(lut);
string kernelName = "LUT";
arithmetic_lut_run(src, lut, dst, kernelName);
}

@ -38,125 +38,66 @@
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
__kernel
void LUT_C1_D0( __global uchar *dst,
__global const uchar *src,
__constant uchar *table,
int rows,
int cols,
int channels,
int whole_rows,
int whole_cols,
int src_offset,
int dst_offset,
int lut_offset,
int src_step,
int dst_step)
__kernel void LUT_C1( __global const srcT * src, __global const dstT *lut,
__global dstT *dst,
int cols1, int rows,
int src_offset1,
int lut_offset1,
int dst_offset1,
int src_step1, int dst_step1)
{
int gidx = get_global_id(0)<<2;
int gidy = get_global_id(1);
int lidx = get_local_id(0);
int lidy = get_local_id(1);
int x1 = get_global_id(0);
int y = get_global_id(1);
__local uchar l[256];
l[(lidy<<4)+lidx] = table[(lidy<<4)+lidx+lut_offset];
//mem_fence(CLK_LOCAL_MEM_FENCE);
//clamp(gidx,mask,cols-1);
gidx = gidx >= cols-4?cols-4:gidx;
gidy = gidy >= rows?rows-1:gidy;
int src_index = src_offset + mad24(gidy,src_step,gidx);
int dst_index = dst_offset + mad24(gidy,dst_step,gidx);
uchar4 p,q;
barrier(CLK_LOCAL_MEM_FENCE);
p.x = src[src_index];
p.y = src[src_index+1];
p.z = src[src_index+2];
p.w = src[src_index+3];
if (x1 < cols1 && y < rows)
{
int src_index = mad24(y, src_step1, src_offset1 + x1);
int dst_index = mad24(y, dst_step1, dst_offset1 + x1);
q.x = l[p.x];
q.y = l[p.y];
q.z = l[p.z];
q.w = l[p.w];
*(__global uchar4*)(dst + dst_index) = q;
dst[dst_index] = lut[lut_offset1 + src[src_index]];
}
}
__kernel
void LUT2_C1_D0( __global uchar *dst,
__global const uchar *src,
__constant uchar *table,
int rows,
int precols,
int channels,
int whole_rows,
int cols,
int src_offset,
int dst_offset,
int lut_offset,
int src_step,
int dst_step)
__kernel void LUT_C2( __global const srcT * src, __global const dstT *lut,
__global dstT *dst,
int cols1, int rows,
int src_offset1,
int lut_offset1,
int dst_offset1,
int src_step1, int dst_step1)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
//int lidx = get_local_id(0);
int lidy = get_local_id(1);
__local uchar l[256];
l[lidy] = table[lidy+lut_offset];
//mem_fence(CLK_LOCAL_MEM_FENCE);
int x1 = get_global_id(0) << 1;
int y = get_global_id(1);
if (x1 < cols1 && y < rows)
{
int src_index = mad24(y, src_step1, src_offset1 + x1);
int dst_index = mad24(y, dst_step1, dst_offset1 + x1);
//clamp(gidx,mask,cols-1);
gidx = gidx >= precols ? cols+gidx : gidx;
gidy = gidy >= rows?rows-1:gidy;
int src_index = src_offset + mad24(gidy,src_step,gidx);
int dst_index = dst_offset + mad24(gidy,dst_step,gidx);
//uchar4 p,q;
barrier(CLK_LOCAL_MEM_FENCE);
uchar p = src[src_index];
uchar q = l[p];
dst[dst_index] = q;
dst[dst_index ] = lut[lut_offset1 + (src[src_index ] << 1) ];
dst[dst_index + 1] = x1 + 1 < cols1 ? lut[lut_offset1 + (src[src_index + 1] << 1) + 1] : dst[dst_index + 1];
}
}
__kernel
void LUT_C4_D0( __global uchar4 *dst,
__global uchar4 *src,
__constant uchar *table,
int rows,
int cols,
int channels,
int whole_rows,
int whole_cols,
int src_offset,
int dst_offset,
int lut_offset,
int src_step,
int dst_step)
__kernel void LUT_C4( __global const srcT * src, __global const dstT *lut,
__global dstT *dst,
int cols1, int rows,
int src_offset1,
int lut_offset1,
int dst_offset1,
int src_step1, int dst_step1)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int x1 = get_global_id(0) << 2;
int y = get_global_id(1);
int lidx = get_local_id(0);
int lidy = get_local_id(1);
int src_index = mad24(gidy,src_step,gidx+src_offset);
int dst_index = mad24(gidy,dst_step,gidx+dst_offset);
__local uchar l[256];
l[lidy*16+lidx] = table[lidy*16+lidx+lut_offset];
//mem_fence(CLK_LOCAL_MEM_FENCE);
barrier(CLK_LOCAL_MEM_FENCE);
if(gidx<cols && gidy<rows)
if (x1 < cols1 && y < rows)
{
uchar4 p = src[src_index];
uchar4 q;
q.x = l[p.x];
q.y = l[p.y];
q.z = l[p.z];
q.w = l[p.w];
dst[dst_index] = q;
int src_index = mad24(y, src_step1, src_offset1 + x1);
int dst_index = mad24(y, dst_step1, dst_offset1 + x1);
dst[dst_index ] = lut[lut_offset1 + (src[src_index ] << 2) ];
dst[dst_index + 1] = x1 + 1 < cols1 ? lut[lut_offset1 + (src[src_index + 1] << 2) + 1] : dst[dst_index + 1];
dst[dst_index + 2] = x1 + 2 < cols1 ? lut[lut_offset1 + (src[src_index + 2] << 2) + 2] : dst[dst_index + 2];
dst[dst_index + 3] = x1 + 3 < cols1 ? lut[lut_offset1 + (src[src_index + 3] << 2) + 3] : dst[dst_index + 3];
}
}

Loading…
Cancel
Save