Move resize implementation to separate file

pull/9522/head
Vitaly Tuzov 8 years ago
parent 5c572ffa1f
commit b1f46b6d69
  1. 201
      modules/imgproc/src/imgwarp.avx2.cpp
  2. 3518
      modules/imgproc/src/imgwarp.cpp
  3. 6
      modules/imgproc/src/imgwarp.hpp
  4. 173
      modules/imgproc/src/imgwarp.sse4_1.cpp
  5. 261
      modules/imgproc/src/resize.avx2.cpp
  6. 3336
      modules/imgproc/src/resize.cpp
  7. 75
      modules/imgproc/src/resize.hpp
  8. 233
      modules/imgproc/src/resize.sse4_1.cpp

@ -55,207 +55,6 @@ namespace cv
namespace opt_AVX2
{
class resizeNNInvokerAVX4 :
public ParallelLoopBody
{
public:
resizeNNInvokerAVX4(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=AVX
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
int avxWidth = width - (width & 0x7);
const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1);
if(((int64)(dst.data + dst.step) & 0x1f) == 0)
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 8)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1);
_mm256_maskstore_epi32((int*)D, mask, pixels);
D += 32;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
else
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 8)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1);
_mm256_storeu_si256((__m256i*)D, pixels);
D += 32;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
_mm256_zeroupper();
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerAVX4(const resizeNNInvokerAVX4&);
resizeNNInvokerAVX4& operator=(const resizeNNInvokerAVX4&);
};
class resizeNNInvokerAVX2 :
public ParallelLoopBody
{
public:
resizeNNInvokerAVX2(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=AVX
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
//int avxWidth = (width - 1) - ((width - 1) & 0x7);
int avxWidth = width - (width & 0xf);
const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1);
const __m256i CV_DECL_ALIGNED(64) shuffle_mask = _mm256_set_epi8(15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0,
15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0);
const __m256i CV_DECL_ALIGNED(64) permute_mask = _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0);
//const __m256i CV_DECL_ALIGNED(64) shift_shuffle_mask = _mm256_set_epi8(13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2,
// 13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2);
if(((int64)(dst.data + dst.step) & 0x1f) == 0)
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
const uchar* S2 = S - 2;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 16)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1);
const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8);
__m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2);
__m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1);
__m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa);
__m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask);
__m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask);
_mm256_maskstore_epi32((int*)D, mask, ints_permuted);
D += 32;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
else
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
const uchar* S2 = S - 2;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 16)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1);
const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8);
__m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2);
__m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1);
__m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa);
__m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask);
__m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask);
_mm256_storeu_si256((__m256i*)D, ints_permuted);
D += 32;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
_mm256_zeroupper();
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerAVX2(const resizeNNInvokerAVX2&);
resizeNNInvokerAVX2& operator=(const resizeNNInvokerAVX2&);
};
void resizeNN2_AVX2(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerAVX2 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
void resizeNN4_AVX2(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerAVX4 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
int warpAffineBlockline(int *adelta, int *bdelta, short* xy, short* alpha, int X0, int Y0, int bw)
{
const int AB_BITS = MAX(10, (int)INTER_BITS);

File diff suppressed because it is too large Load Diff

@ -56,8 +56,6 @@ namespace cv
namespace opt_AVX2
{
#if CV_TRY_AVX2
void resizeNN2_AVX2(const Range&, const Mat&, Mat&, int*, int, double);
void resizeNN4_AVX2(const Range&, const Mat&, Mat&, int*, int, double);
int warpAffineBlockline(int *adelta, int *bdelta, short* xy, short* alpha, int X0, int Y0, int bw);
#endif
}
@ -65,10 +63,6 @@ int warpAffineBlockline(int *adelta, int *bdelta, short* xy, short* alpha, int X
namespace opt_SSE4_1
{
#if CV_TRY_SSE4_1
void resizeNN2_SSE4_1(const Range&, const Mat&, Mat&, int*, int, double);
void resizeNN4_SSE4_1(const Range&, const Mat&, Mat&, int*, int, double);
int VResizeLanczos4Vec_32f16u_SSE41(const uchar** _src, uchar* _dst, const uchar* _beta, int width);
void convertMaps_nninterpolate32f1c16s_SSE41(const float* src1f, const float* src2f, short* dst1, int width);
void convertMaps_32f1c16s_SSE41(const float* src1f, const float* src2f, short* dst1, ushort* dst2, int width);
void convertMaps_32f2c16s_SSE41(const float* src1f, short* dst1, ushort* dst2, int width);

@ -55,179 +55,6 @@ namespace cv
namespace opt_SSE4_1
{
class resizeNNInvokerSSE2 :
public ParallelLoopBody
{
public:
resizeNNInvokerSSE2(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=SSE4.2
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
int sseWidth = width - (width & 0x7);
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
__m128i CV_DECL_ALIGNED(64) pixels = _mm_set1_epi16(0);
for(x = 0; x < sseWidth; x += 8)
{
ushort imm = *(ushort*)(S + x_ofs[x + 0]);
pixels = _mm_insert_epi16(pixels, imm, 0);
imm = *(ushort*)(S + x_ofs[x + 1]);
pixels = _mm_insert_epi16(pixels, imm, 1);
imm = *(ushort*)(S + x_ofs[x + 2]);
pixels = _mm_insert_epi16(pixels, imm, 2);
imm = *(ushort*)(S + x_ofs[x + 3]);
pixels = _mm_insert_epi16(pixels, imm, 3);
imm = *(ushort*)(S + x_ofs[x + 4]);
pixels = _mm_insert_epi16(pixels, imm, 4);
imm = *(ushort*)(S + x_ofs[x + 5]);
pixels = _mm_insert_epi16(pixels, imm, 5);
imm = *(ushort*)(S + x_ofs[x + 6]);
pixels = _mm_insert_epi16(pixels, imm, 6);
imm = *(ushort*)(S + x_ofs[x + 7]);
pixels = _mm_insert_epi16(pixels, imm, 7);
_mm_storeu_si128((__m128i*)D, pixels);
D += 16;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerSSE2(const resizeNNInvokerSSE2&);
resizeNNInvokerSSE2& operator=(const resizeNNInvokerSSE2&);
};
class resizeNNInvokerSSE4 :
public ParallelLoopBody
{
public:
resizeNNInvokerSSE4(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=SSE4.2
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
int sseWidth = width - (width & 0x3);
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
__m128i CV_DECL_ALIGNED(64) pixels = _mm_set1_epi16(0);
for(x = 0; x < sseWidth; x += 4)
{
int imm = *(int*)(S + x_ofs[x + 0]);
pixels = _mm_insert_epi32(pixels, imm, 0);
imm = *(int*)(S + x_ofs[x + 1]);
pixels = _mm_insert_epi32(pixels, imm, 1);
imm = *(int*)(S + x_ofs[x + 2]);
pixels = _mm_insert_epi32(pixels, imm, 2);
imm = *(int*)(S + x_ofs[x + 3]);
pixels = _mm_insert_epi32(pixels, imm, 3);
_mm_storeu_si128((__m128i*)D, pixels);
D += 16;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerSSE4(const resizeNNInvokerSSE4&);
resizeNNInvokerSSE4& operator=(const resizeNNInvokerSSE4&);
};
void resizeNN2_SSE4_1(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerSSE2 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
void resizeNN4_SSE4_1(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerSSE4 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
int VResizeLanczos4Vec_32f16u_SSE41(const uchar** _src, uchar* _dst, const uchar* _beta, int width)
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3],
*S4 = src[4], *S5 = src[5], *S6 = src[6], *S7 = src[7];
short * dst = (short*)_dst;
int x = 0;
__m128 v_b0 = _mm_set1_ps(beta[0]), v_b1 = _mm_set1_ps(beta[1]),
v_b2 = _mm_set1_ps(beta[2]), v_b3 = _mm_set1_ps(beta[3]),
v_b4 = _mm_set1_ps(beta[4]), v_b5 = _mm_set1_ps(beta[5]),
v_b6 = _mm_set1_ps(beta[6]), v_b7 = _mm_set1_ps(beta[7]);
for (; x <= width - 8; x += 8)
{
__m128 v_dst0 = _mm_mul_ps(v_b0, _mm_loadu_ps(S0 + x));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b1, _mm_loadu_ps(S1 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b2, _mm_loadu_ps(S2 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b3, _mm_loadu_ps(S3 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b4, _mm_loadu_ps(S4 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b5, _mm_loadu_ps(S5 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b6, _mm_loadu_ps(S6 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b7, _mm_loadu_ps(S7 + x)));
__m128 v_dst1 = _mm_mul_ps(v_b0, _mm_loadu_ps(S0 + x + 4));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b1, _mm_loadu_ps(S1 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b2, _mm_loadu_ps(S2 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b3, _mm_loadu_ps(S3 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b4, _mm_loadu_ps(S4 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b5, _mm_loadu_ps(S5 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b6, _mm_loadu_ps(S6 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b7, _mm_loadu_ps(S7 + x + 4)));
__m128i v_dsti0 = _mm_cvtps_epi32(v_dst0);
__m128i v_dsti1 = _mm_cvtps_epi32(v_dst1);
_mm_storeu_si128((__m128i *)(dst + x), _mm_packus_epi32(v_dsti0, v_dsti1));
}
return x;
}
void convertMaps_nninterpolate32f1c16s_SSE41(const float* src1f, const float* src2f, short* dst1, int width)
{
int x = 0;

@ -0,0 +1,261 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Geometrical transforms on images and matrices: rotation, zoom etc.
//
// */
#include "precomp.hpp"
#include "resize.hpp"
namespace cv
{
namespace opt_AVX2
{
class resizeNNInvokerAVX4 :
public ParallelLoopBody
{
public:
resizeNNInvokerAVX4(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=AVX
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
int avxWidth = width - (width & 0x7);
const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1);
if(((int64)(dst.data + dst.step) & 0x1f) == 0)
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 8)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1);
_mm256_maskstore_epi32((int*)D, mask, pixels);
D += 32;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
else
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 8)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1);
_mm256_storeu_si256((__m256i*)D, pixels);
D += 32;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
_mm256_zeroupper();
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerAVX4(const resizeNNInvokerAVX4&);
resizeNNInvokerAVX4& operator=(const resizeNNInvokerAVX4&);
};
class resizeNNInvokerAVX2 :
public ParallelLoopBody
{
public:
resizeNNInvokerAVX2(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=AVX
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
//int avxWidth = (width - 1) - ((width - 1) & 0x7);
int avxWidth = width - (width & 0xf);
const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1);
const __m256i CV_DECL_ALIGNED(64) shuffle_mask = _mm256_set_epi8(15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0,
15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0);
const __m256i CV_DECL_ALIGNED(64) permute_mask = _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0);
//const __m256i CV_DECL_ALIGNED(64) shift_shuffle_mask = _mm256_set_epi8(13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2,
// 13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2);
if(((int64)(dst.data + dst.step) & 0x1f) == 0)
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
const uchar* S2 = S - 2;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 16)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1);
const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8);
__m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2);
__m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1);
__m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa);
__m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask);
__m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask);
_mm256_maskstore_epi32((int*)D, mask, ints_permuted);
D += 32;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
else
{
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
const uchar* S2 = S - 2;
#ifdef CV_ICC
#pragma unroll(4)
#endif
for(x = 0; x < avxWidth; x += 16)
{
const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
__m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
__m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1);
const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8);
__m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2);
__m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1);
__m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa);
__m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask);
__m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask);
_mm256_storeu_si256((__m256i*)D, ints_permuted);
D += 32;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
_mm256_zeroupper();
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerAVX2(const resizeNNInvokerAVX2&);
resizeNNInvokerAVX2& operator=(const resizeNNInvokerAVX2&);
};
void resizeNN2_AVX2(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerAVX2 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
void resizeNN4_AVX2(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerAVX4 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
}
}
/* End of file. */

File diff suppressed because it is too large Load Diff

@ -0,0 +1,75 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Geometrical transforms on images and matrices: rotation, zoom etc.
//
// */
#ifndef OPENCV_IMGPROC_RESIZE_HPP
#define OPENCV_IMGPROC_RESIZE_HPP
#include "precomp.hpp"
namespace cv
{
namespace opt_AVX2
{
#if CV_TRY_AVX2
void resizeNN2_AVX2(const Range&, const Mat&, Mat&, int*, int, double);
void resizeNN4_AVX2(const Range&, const Mat&, Mat&, int*, int, double);
#endif
}
namespace opt_SSE4_1
{
#if CV_TRY_SSE4_1
void resizeNN2_SSE4_1(const Range&, const Mat&, Mat&, int*, int, double);
void resizeNN4_SSE4_1(const Range&, const Mat&, Mat&, int*, int, double);
int VResizeLanczos4Vec_32f16u_SSE41(const uchar** _src, uchar* _dst, const uchar* _beta, int width);
#endif
}
}
#endif
/* End of file. */

@ -0,0 +1,233 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Geometrical transforms on images and matrices: rotation, zoom etc.
//
// */
#include "precomp.hpp"
#include "resize.hpp"
namespace cv
{
namespace opt_SSE4_1
{
class resizeNNInvokerSSE2 :
public ParallelLoopBody
{
public:
resizeNNInvokerSSE2(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=SSE4.2
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
int sseWidth = width - (width & 0x7);
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
__m128i CV_DECL_ALIGNED(64) pixels = _mm_set1_epi16(0);
for(x = 0; x < sseWidth; x += 8)
{
ushort imm = *(ushort*)(S + x_ofs[x + 0]);
pixels = _mm_insert_epi16(pixels, imm, 0);
imm = *(ushort*)(S + x_ofs[x + 1]);
pixels = _mm_insert_epi16(pixels, imm, 1);
imm = *(ushort*)(S + x_ofs[x + 2]);
pixels = _mm_insert_epi16(pixels, imm, 2);
imm = *(ushort*)(S + x_ofs[x + 3]);
pixels = _mm_insert_epi16(pixels, imm, 3);
imm = *(ushort*)(S + x_ofs[x + 4]);
pixels = _mm_insert_epi16(pixels, imm, 4);
imm = *(ushort*)(S + x_ofs[x + 5]);
pixels = _mm_insert_epi16(pixels, imm, 5);
imm = *(ushort*)(S + x_ofs[x + 6]);
pixels = _mm_insert_epi16(pixels, imm, 6);
imm = *(ushort*)(S + x_ofs[x + 7]);
pixels = _mm_insert_epi16(pixels, imm, 7);
_mm_storeu_si128((__m128i*)D, pixels);
D += 16;
}
for(; x < width; x++)
{
*(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerSSE2(const resizeNNInvokerSSE2&);
resizeNNInvokerSSE2& operator=(const resizeNNInvokerSSE2&);
};
class resizeNNInvokerSSE4 :
public ParallelLoopBody
{
public:
resizeNNInvokerSSE4(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
ify(_ify)
{
}
#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=SSE4.2
#endif
virtual void operator() (const Range& range) const
{
Size ssize = src.size(), dsize = dst.size();
int y, x;
int width = dsize.width;
int sseWidth = width - (width & 0x3);
for(y = range.start; y < range.end; y++)
{
uchar* D = dst.data + dst.step*y;
uchar* Dstart = D;
int sy = std::min(cvFloor(y*ify), ssize.height-1);
const uchar* S = src.data + sy*src.step;
__m128i CV_DECL_ALIGNED(64) pixels = _mm_set1_epi16(0);
for(x = 0; x < sseWidth; x += 4)
{
int imm = *(int*)(S + x_ofs[x + 0]);
pixels = _mm_insert_epi32(pixels, imm, 0);
imm = *(int*)(S + x_ofs[x + 1]);
pixels = _mm_insert_epi32(pixels, imm, 1);
imm = *(int*)(S + x_ofs[x + 2]);
pixels = _mm_insert_epi32(pixels, imm, 2);
imm = *(int*)(S + x_ofs[x + 3]);
pixels = _mm_insert_epi32(pixels, imm, 3);
_mm_storeu_si128((__m128i*)D, pixels);
D += 16;
}
for(; x < width; x++)
{
*(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
}
}
}
private:
const Mat src;
Mat dst;
int* x_ofs, pix_size4;
double ify;
resizeNNInvokerSSE4(const resizeNNInvokerSSE4&);
resizeNNInvokerSSE4& operator=(const resizeNNInvokerSSE4&);
};
void resizeNN2_SSE4_1(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerSSE2 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
void resizeNN4_SSE4_1(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
resizeNNInvokerSSE4 invoker(src, dst, x_ofs, pix_size4, ify);
parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}
int VResizeLanczos4Vec_32f16u_SSE41(const uchar** _src, uchar* _dst, const uchar* _beta, int width)
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3],
*S4 = src[4], *S5 = src[5], *S6 = src[6], *S7 = src[7];
short * dst = (short*)_dst;
int x = 0;
__m128 v_b0 = _mm_set1_ps(beta[0]), v_b1 = _mm_set1_ps(beta[1]),
v_b2 = _mm_set1_ps(beta[2]), v_b3 = _mm_set1_ps(beta[3]),
v_b4 = _mm_set1_ps(beta[4]), v_b5 = _mm_set1_ps(beta[5]),
v_b6 = _mm_set1_ps(beta[6]), v_b7 = _mm_set1_ps(beta[7]);
for (; x <= width - 8; x += 8)
{
__m128 v_dst0 = _mm_mul_ps(v_b0, _mm_loadu_ps(S0 + x));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b1, _mm_loadu_ps(S1 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b2, _mm_loadu_ps(S2 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b3, _mm_loadu_ps(S3 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b4, _mm_loadu_ps(S4 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b5, _mm_loadu_ps(S5 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b6, _mm_loadu_ps(S6 + x)));
v_dst0 = _mm_add_ps(v_dst0, _mm_mul_ps(v_b7, _mm_loadu_ps(S7 + x)));
__m128 v_dst1 = _mm_mul_ps(v_b0, _mm_loadu_ps(S0 + x + 4));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b1, _mm_loadu_ps(S1 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b2, _mm_loadu_ps(S2 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b3, _mm_loadu_ps(S3 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b4, _mm_loadu_ps(S4 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b5, _mm_loadu_ps(S5 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b6, _mm_loadu_ps(S6 + x + 4)));
v_dst1 = _mm_add_ps(v_dst1, _mm_mul_ps(v_b7, _mm_loadu_ps(S7 + x + 4)));
__m128i v_dsti0 = _mm_cvtps_epi32(v_dst0);
__m128i v_dsti1 = _mm_cvtps_epi32(v_dst1);
_mm_storeu_si128((__m128i *)(dst + x), _mm_packus_epi32(v_dsti0, v_dsti1));
}
return x;
}
}
}
/* End of file. */
Loading…
Cancel
Save