Merge pull request #15422 from mipsopen-fwu:msa-dev

* Added MSA implementations for mips platforms. Intrinsics for MSA and build scripts for MIPS platforms are added.

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* Removed some unused code in mips.toolchain.cmake.

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* Added comments for mips toolchain configuration and disabled compiling warnings for libpng.

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* Fixed the build error of unsupported opcode 'pause' when mips isa_rev is less than 2.

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* 1. Removed FP16 related item in MSA option defines in OpenCVCompilerOptimizations.cmake.
2. Use CV_CPU_COMPILE_MSA instead of __mips_msa for MSA feature check in cv_cpu_dispatch.h.
3. Removed hasSIMD128() in intrin_msa.hpp.
4. Define CPU_MSA as 150.
Signed-off-by: Fei Wu <fwu@wavecomp.com>

* 1. Removed unnecessary CV_SIMD128_64F guarding in intrin_msa.hpp.
2. Removed unnecessary CV_MSA related code block in dotProd_8u().

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* 1. Defined CPU_MSA_FLAGS_ON as "-mmsa".
2. Removed CV_SIMD128_64F guardings in intrin_msa.hpp.

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* Removed unused msa_mlal_u16() and msa_mlal_s16 from msa_macros.h.

Signed-off-by: Fei Wu <fwu@wavecomp.com>
pull/15554/head
mipsopen-fwu 5 years ago committed by Alexander Alekhin
parent 33e9fe9312
commit b1ea91d8bd
  1. 9
      3rdparty/libpng/CMakeLists.txt
  2. 808
      3rdparty/libpng/mips/filter_msa_intrinsics.c
  3. 127
      3rdparty/libpng/mips/mips_init.c
  4. 4
      3rdparty/libwebp/src/dsp/msa_macro.h
  5. 6
      cmake/OpenCVCompilerOptimizations.cmake
  6. 2
      cmake/OpenCVDetectCXXCompiler.cmake
  7. 23
      cmake/checks/cpu_msa.cpp
  8. 9
      modules/core/include/opencv2/core/cv_cpu_dispatch.h
  9. 21
      modules/core/include/opencv2/core/cv_cpu_helper.h
  10. 4
      modules/core/include/opencv2/core/cvdef.h
  11. 7
      modules/core/include/opencv2/core/hal/intrin.hpp
  12. 1669
      modules/core/include/opencv2/core/hal/intrin_msa.hpp
  13. 1558
      modules/core/include/opencv2/core/hal/msa_macros.h
  14. 4
      modules/core/src/arithm.simd.hpp
  15. 39
      modules/core/src/matmul.simd.hpp
  16. 2
      modules/core/src/parallel_impl.cpp
  17. 5
      modules/core/src/system.cpp
  18. 80
      platforms/linux/mips.toolchain.cmake
  19. 14
      platforms/linux/mips32r5el-gnu.toolchain.cmake
  20. 14
      platforms/linux/mips64r6el-gnu.toolchain.cmake

@ -46,6 +46,15 @@ if(";${CPU_BASELINE_FINAL};" MATCHES "SSE2"
add_definitions(-DPNG_INTEL_SSE)
endif()
# set definitions and sources for MIPS
if(";${CPU_BASELINE_FINAL};" MATCHES "MSA")
list(APPEND lib_srcs mips/mips_init.c mips/filter_msa_intrinsics.c)
add_definitions(-DPNG_MIPS_MSA_OPT=2)
ocv_warnings_disable(CMAKE_C_FLAGS -Wshadow)
else()
add_definitions(-DPNG_MIPS_MSA_OPT=0)
endif()
if(PPC64LE OR PPC64)
# VSX3 features are backwards compatible
if(";${CPU_BASELINE_FINAL};" MATCHES "VSX.*"

@ -0,0 +1,808 @@
/* filter_msa_intrinsics.c - MSA optimised filter functions
*
* Copyright (c) 2018 Cosmin Truta
* Copyright (c) 2016 Glenn Randers-Pehrson
* Written by Mandar Sahastrabuddhe, August 2016.
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
#include <stdio.h>
#include <stdint.h>
#include "../pngpriv.h"
#ifdef PNG_READ_SUPPORTED
/* This code requires -mfpu=msa on the command line: */
#if PNG_MIPS_MSA_IMPLEMENTATION == 1 /* intrinsics code from pngpriv.h */
#include <msa.h>
/* libpng row pointers are not necessarily aligned to any particular boundary,
* however this code will only work with appropriate alignment. mips/mips_init.c
* checks for this (and will not compile unless it is done). This code uses
* variants of png_aligncast to avoid compiler warnings.
*/
#define png_ptr(type,pointer) png_aligncast(type *,pointer)
#define png_ptrc(type,pointer) png_aligncastconst(const type *,pointer)
/* The following relies on a variable 'temp_pointer' being declared with type
* 'type'. This is written this way just to hide the GCC strict aliasing
* warning; note that the code is safe because there never is an alias between
* the input and output pointers.
*/
#define png_ldr(type,pointer)\
(temp_pointer = png_ptr(type,pointer), *temp_pointer)
#if PNG_MIPS_MSA_OPT > 0
#ifdef CLANG_BUILD
#define MSA_SRLI_B(a, b) __msa_srli_b((v16i8) a, b)
#define LW(psrc) \
( { \
uint8_t *psrc_lw_m = (uint8_t *) (psrc); \
uint32_t val_m; \
\
asm volatile ( \
"lw %[val_m], %[psrc_lw_m] \n\t" \
\
: [val_m] "=r" (val_m) \
: [psrc_lw_m] "m" (*psrc_lw_m) \
); \
\
val_m; \
} )
#define SH(val, pdst) \
{ \
uint8_t *pdst_sh_m = (uint8_t *) (pdst); \
uint16_t val_m = (val); \
\
asm volatile ( \
"sh %[val_m], %[pdst_sh_m] \n\t" \
\
: [pdst_sh_m] "=m" (*pdst_sh_m) \
: [val_m] "r" (val_m) \
); \
}
#define SW(val, pdst) \
{ \
uint8_t *pdst_sw_m = (uint8_t *) (pdst); \
uint32_t val_m = (val); \
\
asm volatile ( \
"sw %[val_m], %[pdst_sw_m] \n\t" \
\
: [pdst_sw_m] "=m" (*pdst_sw_m) \
: [val_m] "r" (val_m) \
); \
}
#if (__mips == 64)
#define SD(val, pdst) \
{ \
uint8_t *pdst_sd_m = (uint8_t *) (pdst); \
uint64_t val_m = (val); \
\
asm volatile ( \
"sd %[val_m], %[pdst_sd_m] \n\t" \
\
: [pdst_sd_m] "=m" (*pdst_sd_m) \
: [val_m] "r" (val_m) \
); \
}
#else
#define SD(val, pdst) \
{ \
uint8_t *pdst_sd_m = (uint8_t *) (pdst); \
uint32_t val0_m, val1_m; \
\
val0_m = (uint32_t) ((val) & 0x00000000FFFFFFFF); \
val1_m = (uint32_t) (((val) >> 32) & 0x00000000FFFFFFFF); \
\
SW(val0_m, pdst_sd_m); \
SW(val1_m, pdst_sd_m + 4); \
}
#endif
#else
#define MSA_SRLI_B(a, b) (a >> b)
#if (__mips_isa_rev >= 6)
#define LW(psrc) \
( { \
uint8_t *psrc_lw_m = (uint8_t *) (psrc); \
uint32_t val_m; \
\
asm volatile ( \
"lw %[val_m], %[psrc_lw_m] \n\t" \
\
: [val_m] "=r" (val_m) \
: [psrc_lw_m] "m" (*psrc_lw_m) \
); \
\
val_m; \
} )
#define SH(val, pdst) \
{ \
uint8_t *pdst_sh_m = (uint8_t *) (pdst); \
uint16_t val_m = (val); \
\
asm volatile ( \
"sh %[val_m], %[pdst_sh_m] \n\t" \
\
: [pdst_sh_m] "=m" (*pdst_sh_m) \
: [val_m] "r" (val_m) \
); \
}
#define SW(val, pdst) \
{ \
uint8_t *pdst_sw_m = (uint8_t *) (pdst); \
uint32_t val_m = (val); \
\
asm volatile ( \
"sw %[val_m], %[pdst_sw_m] \n\t" \
\
: [pdst_sw_m] "=m" (*pdst_sw_m) \
: [val_m] "r" (val_m) \
); \
}
#if (__mips == 64)
#define SD(val, pdst) \
{ \
uint8_t *pdst_sd_m = (uint8_t *) (pdst); \
uint64_t val_m = (val); \
\
asm volatile ( \
"sd %[val_m], %[pdst_sd_m] \n\t" \
\
: [pdst_sd_m] "=m" (*pdst_sd_m) \
: [val_m] "r" (val_m) \
); \
}
#else
#define SD(val, pdst) \
{ \
uint8_t *pdst_sd_m = (uint8_t *) (pdst); \
uint32_t val0_m, val1_m; \
\
val0_m = (uint32_t) ((val) & 0x00000000FFFFFFFF); \
val1_m = (uint32_t) (((val) >> 32) & 0x00000000FFFFFFFF); \
\
SW(val0_m, pdst_sd_m); \
SW(val1_m, pdst_sd_m + 4); \
}
#endif
#else // !(__mips_isa_rev >= 6)
#define LW(psrc) \
( { \
uint8_t *psrc_lw_m = (uint8_t *) (psrc); \
uint32_t val_m; \
\
asm volatile ( \
"ulw %[val_m], %[psrc_lw_m] \n\t" \
\
: [val_m] "=r" (val_m) \
: [psrc_lw_m] "m" (*psrc_lw_m) \
); \
\
val_m; \
} )
#define SH(val, pdst) \
{ \
uint8_t *pdst_sh_m = (uint8_t *) (pdst); \
uint16_t val_m = (val); \
\
asm volatile ( \
"ush %[val_m], %[pdst_sh_m] \n\t" \
\
: [pdst_sh_m] "=m" (*pdst_sh_m) \
: [val_m] "r" (val_m) \
); \
}
#define SW(val, pdst) \
{ \
uint8_t *pdst_sw_m = (uint8_t *) (pdst); \
uint32_t val_m = (val); \
\
asm volatile ( \
"usw %[val_m], %[pdst_sw_m] \n\t" \
\
: [pdst_sw_m] "=m" (*pdst_sw_m) \
: [val_m] "r" (val_m) \
); \
}
#define SD(val, pdst) \
{ \
uint8_t *pdst_sd_m = (uint8_t *) (pdst); \
uint32_t val0_m, val1_m; \
\
val0_m = (uint32_t) ((val) & 0x00000000FFFFFFFF); \
val1_m = (uint32_t) (((val) >> 32) & 0x00000000FFFFFFFF); \
\
SW(val0_m, pdst_sd_m); \
SW(val1_m, pdst_sd_m + 4); \
}
#define SW_ZERO(pdst) \
{ \
uint8_t *pdst_m = (uint8_t *) (pdst); \
\
asm volatile ( \
"usw $0, %[pdst_m] \n\t" \
\
: [pdst_m] "=m" (*pdst_m) \
: \
); \
}
#endif // (__mips_isa_rev >= 6)
#endif
#define LD_B(RTYPE, psrc) *((RTYPE *) (psrc))
#define LD_UB(...) LD_B(v16u8, __VA_ARGS__)
#define LD_B2(RTYPE, psrc, stride, out0, out1) \
{ \
out0 = LD_B(RTYPE, (psrc)); \
out1 = LD_B(RTYPE, (psrc) + stride); \
}
#define LD_UB2(...) LD_B2(v16u8, __VA_ARGS__)
#define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3) \
{ \
LD_B2(RTYPE, (psrc), stride, out0, out1); \
LD_B2(RTYPE, (psrc) + 2 * stride , stride, out2, out3); \
}
#define LD_UB4(...) LD_B4(v16u8, __VA_ARGS__)
#define ST_B(RTYPE, in, pdst) *((RTYPE *) (pdst)) = (in)
#define ST_UB(...) ST_B(v16u8, __VA_ARGS__)
#define ST_B2(RTYPE, in0, in1, pdst, stride) \
{ \
ST_B(RTYPE, in0, (pdst)); \
ST_B(RTYPE, in1, (pdst) + stride); \
}
#define ST_UB2(...) ST_B2(v16u8, __VA_ARGS__)
#define ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride) \
{ \
ST_B2(RTYPE, in0, in1, (pdst), stride); \
ST_B2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \
}
#define ST_UB4(...) ST_B4(v16u8, __VA_ARGS__)
#define ADD2(in0, in1, in2, in3, out0, out1) \
{ \
out0 = in0 + in1; \
out1 = in2 + in3; \
}
#define ADD3(in0, in1, in2, in3, in4, in5, \
out0, out1, out2) \
{ \
ADD2(in0, in1, in2, in3, out0, out1); \
out2 = in4 + in5; \
}
#define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, \
out0, out1, out2, out3) \
{ \
ADD2(in0, in1, in2, in3, out0, out1); \
ADD2(in4, in5, in6, in7, out2, out3); \
}
#define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvr_b((v16i8) in0, (v16i8) in1); \
out1 = (RTYPE) __msa_ilvr_b((v16i8) in2, (v16i8) in3); \
}
#define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__)
#define HSUB_UB2(RTYPE, in0, in1, out0, out1) \
{ \
out0 = (RTYPE) __msa_hsub_u_h((v16u8) in0, (v16u8) in0); \
out1 = (RTYPE) __msa_hsub_u_h((v16u8) in1, (v16u8) in1); \
}
#define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__)
#define SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val) \
{ \
v16i8 zero_m = { 0 }; \
out0 = (RTYPE) __msa_sldi_b((v16i8) zero_m, (v16i8) in0, slide_val); \
out1 = (RTYPE) __msa_sldi_b((v16i8) zero_m, (v16i8) in1, slide_val); \
}
#define SLDI_B2_0_UB(...) SLDI_B2_0(v16u8, __VA_ARGS__)
#define SLDI_B3_0(RTYPE, in0, in1, in2, out0, out1, out2, slide_val) \
{ \
v16i8 zero_m = { 0 }; \
SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val); \
out2 = (RTYPE) __msa_sldi_b((v16i8) zero_m, (v16i8) in2, slide_val); \
}
#define SLDI_B3_0_UB(...) SLDI_B3_0(v16u8, __VA_ARGS__)
#define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) \
{ \
out0 = (RTYPE) __msa_ilvev_w((v4i32) in1, (v4i32) in0); \
out1 = (RTYPE) __msa_ilvev_w((v4i32) in3, (v4i32) in2); \
}
#define ILVEV_W2_UB(...) ILVEV_W2(v16u8, __VA_ARGS__)
#define ADD_ABS_H3(RTYPE, in0, in1, in2, out0, out1, out2) \
{ \
RTYPE zero = {0}; \
\
out0 = __msa_add_a_h((v8i16) zero, in0); \
out1 = __msa_add_a_h((v8i16) zero, in1); \
out2 = __msa_add_a_h((v8i16) zero, in2); \
}
#define ADD_ABS_H3_SH(...) ADD_ABS_H3(v8i16, __VA_ARGS__)
#define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \
{ \
out0 = (RTYPE) __msa_vshf_b((v16i8) mask0, (v16i8) in1, (v16i8) in0); \
out1 = (RTYPE) __msa_vshf_b((v16i8) mask1, (v16i8) in3, (v16i8) in2); \
}
#define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__)
#define CMP_AND_SELECT(inp0, inp1, inp2, inp3, inp4, inp5, out0) \
{ \
v8i16 _sel_h0, _sel_h1; \
v16u8 _sel_b0, _sel_b1; \
_sel_h0 = (v8i16) __msa_clt_u_h((v8u16) inp1, (v8u16) inp0); \
_sel_b0 = (v16u8) __msa_pckev_b((v16i8) _sel_h0, (v16i8) _sel_h0); \
inp0 = (v8i16) __msa_bmnz_v((v16u8) inp0, (v16u8) inp1, (v16u8) _sel_h0); \
inp4 = (v16u8) __msa_bmnz_v(inp3, inp4, _sel_b0); \
_sel_h1 = (v8i16) __msa_clt_u_h((v8u16) inp2, (v8u16) inp0); \
_sel_b1 = (v16u8) __msa_pckev_b((v16i8) _sel_h1, (v16i8) _sel_h1); \
inp4 = (v16u8) __msa_bmnz_v(inp4, inp5, _sel_b1); \
out0 += inp4; \
}
void png_read_filter_row_up_msa(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
size_t i, cnt, cnt16, cnt32;
size_t istop = row_info->rowbytes;
png_bytep rp = row;
png_const_bytep pp = prev_row;
v16u8 src0, src1, src2, src3, src4, src5, src6, src7;
for (i = 0; i < (istop >> 6); i++)
{
LD_UB4(rp, 16, src0, src1, src2, src3);
LD_UB4(pp, 16, src4, src5, src6, src7);
pp += 64;
ADD4(src0, src4, src1, src5, src2, src6, src3, src7,
src0, src1, src2, src3);
ST_UB4(src0, src1, src2, src3, rp, 16);
rp += 64;
}
if (istop & 0x3F)
{
cnt32 = istop & 0x20;
cnt16 = istop & 0x10;
cnt = istop & 0xF;
if(cnt32)
{
if (cnt16 && cnt)
{
LD_UB4(rp, 16, src0, src1, src2, src3);
LD_UB4(pp, 16, src4, src5, src6, src7);
ADD4(src0, src4, src1, src5, src2, src6, src3, src7,
src0, src1, src2, src3);
ST_UB4(src0, src1, src2, src3, rp, 16);
rp += 64;
}
else if (cnt16 || cnt)
{
LD_UB2(rp, 16, src0, src1);
LD_UB2(pp, 16, src4, src5);
pp += 32;
src2 = LD_UB(rp + 32);
src6 = LD_UB(pp);
ADD3(src0, src4, src1, src5, src2, src6, src0, src1, src2);
ST_UB2(src0, src1, rp, 16);
rp += 32;
ST_UB(src2, rp);
rp += 16;
}
else
{
LD_UB2(rp, 16, src0, src1);
LD_UB2(pp, 16, src4, src5);
ADD2(src0, src4, src1, src5, src0, src1);
ST_UB2(src0, src1, rp, 16);
rp += 32;
}
}
else if (cnt16 && cnt)
{
LD_UB2(rp, 16, src0, src1);
LD_UB2(pp, 16, src4, src5);
ADD2(src0, src4, src1, src5, src0, src1);
ST_UB2(src0, src1, rp, 16);
rp += 32;
}
else if (cnt16 || cnt)
{
src0 = LD_UB(rp);
src4 = LD_UB(pp);
pp += 16;
src0 += src4;
ST_UB(src0, rp);
rp += 16;
}
}
}
void png_read_filter_row_sub4_msa(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
size_t count;
size_t istop = row_info->rowbytes;
png_bytep src = row;
png_bytep nxt = row + 4;
int32_t inp0;
v16u8 src0, src1, src2, src3, src4;
v16u8 dst0, dst1;
v16u8 zero = { 0 };
istop -= 4;
inp0 = LW(src);
src += 4;
src0 = (v16u8) __msa_insert_w((v4i32) zero, 0, inp0);
for (count = 0; count < istop; count += 16)
{
src1 = LD_UB(src);
src += 16;
src2 = (v16u8) __msa_sldi_b((v16i8) zero, (v16i8) src1, 4);
src3 = (v16u8) __msa_sldi_b((v16i8) zero, (v16i8) src1, 8);
src4 = (v16u8) __msa_sldi_b((v16i8) zero, (v16i8) src1, 12);
src1 += src0;
src2 += src1;
src3 += src2;
src4 += src3;
src0 = src4;
ILVEV_W2_UB(src1, src2, src3, src4, dst0, dst1);
dst0 = (v16u8) __msa_pckev_d((v2i64) dst1, (v2i64) dst0);
ST_UB(dst0, nxt);
nxt += 16;
}
}
void png_read_filter_row_sub3_msa(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
size_t count;
size_t istop = row_info->rowbytes;
png_bytep src = row;
png_bytep nxt = row + 3;
int64_t out0;
int32_t inp0, out1;
v16u8 src0, src1, src2, src3, src4, dst0, dst1;
v16u8 zero = { 0 };
v16i8 mask0 = { 0, 1, 2, 16, 17, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
v16i8 mask1 = { 0, 1, 2, 3, 4, 5, 16, 17, 18, 19, 20, 21, 0, 0, 0, 0 };
istop -= 3;
inp0 = LW(src);
src += 3;
src0 = (v16u8) __msa_insert_w((v4i32) zero, 0, inp0);
for (count = 0; count < istop; count += 12)
{
src1 = LD_UB(src);
src += 12;
src2 = (v16u8) __msa_sldi_b((v16i8) zero, (v16i8) src1, 3);
src3 = (v16u8) __msa_sldi_b((v16i8) zero, (v16i8) src1, 6);
src4 = (v16u8) __msa_sldi_b((v16i8) zero, (v16i8) src1, 9);
src1 += src0;
src2 += src1;
src3 += src2;
src4 += src3;
src0 = src4;
VSHF_B2_UB(src1, src2, src3, src4, mask0, mask0, dst0, dst1);
dst0 = (v16u8) __msa_vshf_b(mask1, (v16i8) dst1, (v16i8) dst0);
out0 = __msa_copy_s_d((v2i64) dst0, 0);
out1 = __msa_copy_s_w((v4i32) dst0, 2);
SD(out0, nxt);
nxt += 8;
SW(out1, nxt);
nxt += 4;
}
}
void png_read_filter_row_avg4_msa(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
size_t i;
png_bytep src = row;
png_bytep nxt = row;
png_const_bytep pp = prev_row;
size_t istop = row_info->rowbytes - 4;
int32_t inp0, inp1, out0;
v16u8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, dst0, dst1;
v16u8 zero = { 0 };
inp0 = LW(pp);
pp += 4;
inp1 = LW(src);
src += 4;
src0 = (v16u8) __msa_insert_w((v4i32) zero, 0, inp0);
src1 = (v16u8) __msa_insert_w((v4i32) zero, 0, inp1);
src0 = (v16u8) MSA_SRLI_B(src0, 1);
src1 += src0;
out0 = __msa_copy_s_w((v4i32) src1, 0);
SW(out0, nxt);
nxt += 4;
for (i = 0; i < istop; i += 16)
{
src2 = LD_UB(pp);
pp += 16;
src6 = LD_UB(src);
src += 16;
SLDI_B2_0_UB(src2, src6, src3, src7, 4);
SLDI_B2_0_UB(src2, src6, src4, src8, 8);
SLDI_B2_0_UB(src2, src6, src5, src9, 12);
src2 = __msa_ave_u_b(src2, src1);
src6 += src2;
src3 = __msa_ave_u_b(src3, src6);
src7 += src3;
src4 = __msa_ave_u_b(src4, src7);
src8 += src4;
src5 = __msa_ave_u_b(src5, src8);
src9 += src5;
src1 = src9;
ILVEV_W2_UB(src6, src7, src8, src9, dst0, dst1);
dst0 = (v16u8) __msa_pckev_d((v2i64) dst1, (v2i64) dst0);
ST_UB(dst0, nxt);
nxt += 16;
}
}
void png_read_filter_row_avg3_msa(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
size_t i;
png_bytep src = row;
png_bytep nxt = row;
png_const_bytep pp = prev_row;
size_t istop = row_info->rowbytes - 3;
int64_t out0;
int32_t inp0, inp1, out1;
int16_t out2;
v16u8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, dst0, dst1;
v16u8 zero = { 0 };
v16i8 mask0 = { 0, 1, 2, 16, 17, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
v16i8 mask1 = { 0, 1, 2, 3, 4, 5, 16, 17, 18, 19, 20, 21, 0, 0, 0, 0 };
inp0 = LW(pp);
pp += 3;
inp1 = LW(src);
src += 3;
src0 = (v16u8) __msa_insert_w((v4i32) zero, 0, inp0);
src1 = (v16u8) __msa_insert_w((v4i32) zero, 0, inp1);
src0 = (v16u8) MSA_SRLI_B(src0, 1);
src1 += src0;
out2 = __msa_copy_s_h((v8i16) src1, 0);
SH(out2, nxt);
nxt += 2;
nxt[0] = src1[2];
nxt++;
for (i = 0; i < istop; i += 12)
{
src2 = LD_UB(pp);
pp += 12;
src6 = LD_UB(src);
src += 12;
SLDI_B2_0_UB(src2, src6, src3, src7, 3);
SLDI_B2_0_UB(src2, src6, src4, src8, 6);
SLDI_B2_0_UB(src2, src6, src5, src9, 9);
src2 = __msa_ave_u_b(src2, src1);
src6 += src2;
src3 = __msa_ave_u_b(src3, src6);
src7 += src3;
src4 = __msa_ave_u_b(src4, src7);
src8 += src4;
src5 = __msa_ave_u_b(src5, src8);
src9 += src5;
src1 = src9;
VSHF_B2_UB(src6, src7, src8, src9, mask0, mask0, dst0, dst1);
dst0 = (v16u8) __msa_vshf_b(mask1, (v16i8) dst1, (v16i8) dst0);
out0 = __msa_copy_s_d((v2i64) dst0, 0);
out1 = __msa_copy_s_w((v4i32) dst0, 2);
SD(out0, nxt);
nxt += 8;
SW(out1, nxt);
nxt += 4;
}
}
void png_read_filter_row_paeth4_msa(png_row_infop row_info,
png_bytep row,
png_const_bytep prev_row)
{
int32_t count, rp_end;
png_bytep nxt;
png_const_bytep prev_nxt;
int32_t inp0, inp1, res0;
v16u8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9;
v16u8 src10, src11, src12, src13, dst0, dst1;
v8i16 vec0, vec1, vec2;
v16u8 zero = { 0 };
nxt = row;
prev_nxt = prev_row;
inp0 = LW(nxt);
inp1 = LW(prev_nxt);
prev_nxt += 4;
src0 = (v16u8) __msa_insert_w((v4i32) zero, 0, inp0);
src1 = (v16u8) __msa_insert_w((v4i32) zero, 0, inp1);
src1 += src0;
res0 = __msa_copy_s_w((v4i32) src1, 0);
SW(res0, nxt);
nxt += 4;
/* Remainder */
rp_end = row_info->rowbytes - 4;
for (count = 0; count < rp_end; count += 16)
{
src2 = LD_UB(prev_nxt);
prev_nxt += 16;
src6 = LD_UB(prev_row);
prev_row += 16;
src10 = LD_UB(nxt);
SLDI_B3_0_UB(src2, src6, src10, src3, src7, src11, 4);
SLDI_B3_0_UB(src2, src6, src10, src4, src8, src12, 8);
SLDI_B3_0_UB(src2, src6, src10, src5, src9, src13, 12);
ILVR_B2_SH(src2, src6, src1, src6, vec0, vec1);
HSUB_UB2_SH(vec0, vec1, vec0, vec1);
vec2 = vec0 + vec1;
ADD_ABS_H3_SH(vec0, vec1, vec2, vec0, vec1, vec2);
CMP_AND_SELECT(vec0, vec1, vec2, src1, src2, src6, src10);
ILVR_B2_SH(src3, src7, src10, src7, vec0, vec1);
HSUB_UB2_SH(vec0, vec1, vec0, vec1);
vec2 = vec0 + vec1;
ADD_ABS_H3_SH(vec0, vec1, vec2, vec0, vec1, vec2);
CMP_AND_SELECT(vec0, vec1, vec2, src10, src3, src7, src11);
ILVR_B2_SH(src4, src8, src11, src8, vec0, vec1);
HSUB_UB2_SH(vec0, vec1, vec0, vec1);
vec2 = vec0 + vec1;
ADD_ABS_H3_SH(vec0, vec1, vec2, vec0, vec1, vec2);
CMP_AND_SELECT(vec0, vec1, vec2, src11, src4, src8, src12);
ILVR_B2_SH(src5, src9, src12, src9, vec0, vec1);
HSUB_UB2_SH(vec0, vec1, vec0, vec1);
vec2 = vec0 + vec1;
ADD_ABS_H3_SH(vec0, vec1, vec2, vec0, vec1, vec2);
CMP_AND_SELECT(vec0, vec1, vec2, src12, src5, src9, src13);
src1 = src13;
ILVEV_W2_UB(src10, src11, src12, src1, dst0, dst1);
dst0 = (v16u8) __msa_pckev_d((v2i64) dst1, (v2i64) dst0);
ST_UB(dst0, nxt);
nxt += 16;
}
}
void png_read_filter_row_paeth3_msa(png_row_infop row_info,
png_bytep row,
png_const_bytep prev_row)
{
int32_t count, rp_end;
png_bytep nxt;
png_const_bytep prev_nxt;
int64_t out0;
int32_t inp0, inp1, out1;
int16_t out2;
v16u8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, dst0, dst1;
v16u8 src10, src11, src12, src13;
v8i16 vec0, vec1, vec2;
v16u8 zero = { 0 };
v16i8 mask0 = { 0, 1, 2, 16, 17, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
v16i8 mask1 = { 0, 1, 2, 3, 4, 5, 16, 17, 18, 19, 20, 21, 0, 0, 0, 0 };
nxt = row;
prev_nxt = prev_row;
inp0 = LW(nxt);
inp1 = LW(prev_nxt);
prev_nxt += 3;
src0 = (v16u8) __msa_insert_w((v4i32) zero, 0, inp0);
src1 = (v16u8) __msa_insert_w((v4i32) zero, 0, inp1);
src1 += src0;
out2 = __msa_copy_s_h((v8i16) src1, 0);
SH(out2, nxt);
nxt += 2;
nxt[0] = src1[2];
nxt++;
/* Remainder */
rp_end = row_info->rowbytes - 3;
for (count = 0; count < rp_end; count += 12)
{
src2 = LD_UB(prev_nxt);
prev_nxt += 12;
src6 = LD_UB(prev_row);
prev_row += 12;
src10 = LD_UB(nxt);
SLDI_B3_0_UB(src2, src6, src10, src3, src7, src11, 3);
SLDI_B3_0_UB(src2, src6, src10, src4, src8, src12, 6);
SLDI_B3_0_UB(src2, src6, src10, src5, src9, src13, 9);
ILVR_B2_SH(src2, src6, src1, src6, vec0, vec1);
HSUB_UB2_SH(vec0, vec1, vec0, vec1);
vec2 = vec0 + vec1;
ADD_ABS_H3_SH(vec0, vec1, vec2, vec0, vec1, vec2);
CMP_AND_SELECT(vec0, vec1, vec2, src1, src2, src6, src10);
ILVR_B2_SH(src3, src7, src10, src7, vec0, vec1);
HSUB_UB2_SH(vec0, vec1, vec0, vec1);
vec2 = vec0 + vec1;
ADD_ABS_H3_SH(vec0, vec1, vec2, vec0, vec1, vec2);
CMP_AND_SELECT(vec0, vec1, vec2, src10, src3, src7, src11);
ILVR_B2_SH(src4, src8, src11, src8, vec0, vec1);
HSUB_UB2_SH(vec0, vec1, vec0, vec1);
vec2 = vec0 + vec1;
ADD_ABS_H3_SH(vec0, vec1, vec2, vec0, vec1, vec2);
CMP_AND_SELECT(vec0, vec1, vec2, src11, src4, src8, src12);
ILVR_B2_SH(src5, src9, src12, src9, vec0, vec1);
HSUB_UB2_SH(vec0, vec1, vec0, vec1);
vec2 = vec0 + vec1;
ADD_ABS_H3_SH(vec0, vec1, vec2, vec0, vec1, vec2);
CMP_AND_SELECT(vec0, vec1, vec2, src12, src5, src9, src13);
src1 = src13;
VSHF_B2_UB(src10, src11, src12, src13, mask0, mask0, dst0, dst1);
dst0 = (v16u8) __msa_vshf_b(mask1, (v16i8) dst1, (v16i8) dst0);
out0 = __msa_copy_s_d((v2i64) dst0, 0);
out1 = __msa_copy_s_w((v4i32) dst0, 2);
SD(out0, nxt);
nxt += 8;
SW(out1, nxt);
nxt += 4;
}
}
#endif /* PNG_MIPS_MSA_OPT > 0 */
#endif /* PNG_MIPS_MSA_IMPLEMENTATION == 1 (intrinsics) */
#endif /* READ */

@ -0,0 +1,127 @@
/* mips_init.c - MSA optimised filter functions
*
* Copyright (c) 2018 Cosmin Truta
* Copyright (c) 2016 Glenn Randers-Pehrson
* Written by Mandar Sahastrabuddhe, 2016.
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
/* Below, after checking __linux__, various non-C90 POSIX 1003.1 functions are
* called.
*/
#define _POSIX_SOURCE 1
#include <stdio.h>
#include "../pngpriv.h"
#ifdef PNG_READ_SUPPORTED
#if PNG_MIPS_MSA_OPT > 0
#ifdef PNG_MIPS_MSA_CHECK_SUPPORTED /* Do run-time checks */
/* WARNING: it is strongly recommended that you do not build libpng with
* run-time checks for CPU features if at all possible. In the case of the MIPS
* MSA instructions there is no processor-specific way of detecting the
* presence of the required support, therefore run-time detection is extremely
* OS specific.
*
* You may set the macro PNG_MIPS_MSA_FILE to the file name of file containing
* a fragment of C source code which defines the png_have_msa function. There
* are a number of implementations in contrib/mips-msa, but the only one that
* has partial support is contrib/mips-msa/linux.c - a generic Linux
* implementation which reads /proc/cpufino.
*/
#ifndef PNG_MIPS_MSA_FILE
# ifdef __linux__
# define PNG_MIPS_MSA_FILE "contrib/mips-msa/linux.c"
# endif
#endif
#ifdef PNG_MIPS_MSA_FILE
#include <signal.h> /* for sig_atomic_t */
static int png_have_msa(png_structp png_ptr);
#include PNG_MIPS_MSA_FILE
#else /* PNG_MIPS_MSA_FILE */
# error "PNG_MIPS_MSA_FILE undefined: no support for run-time MIPS MSA checks"
#endif /* PNG_MIPS_MSA_FILE */
#endif /* PNG_MIPS_MSA_CHECK_SUPPORTED */
#ifndef PNG_ALIGNED_MEMORY_SUPPORTED
# error "ALIGNED_MEMORY is required; set: -DPNG_ALIGNED_MEMORY_SUPPORTED"
#endif
void
png_init_filter_functions_msa(png_structp pp, unsigned int bpp)
{
/* The switch statement is compiled in for MIPS_MSA_API, the call to
* png_have_msa is compiled in for MIPS_MSA_CHECK. If both are defined
* the check is only performed if the API has not set the MSA option on
* or off explicitly. In this case the check controls what happens.
*/
#ifdef PNG_MIPS_MSA_API_SUPPORTED
switch ((pp->options >> PNG_MIPS_MSA) & 3)
{
case PNG_OPTION_UNSET:
/* Allow the run-time check to execute if it has been enabled -
* thus both API and CHECK can be turned on. If it isn't supported
* this case will fall through to the 'default' below, which just
* returns.
*/
#ifdef PNG_MIPS_MSA_CHECK_SUPPORTED
{
static volatile sig_atomic_t no_msa = -1; /* not checked */
if (no_msa < 0)
no_msa = !png_have_msa(pp);
if (no_msa)
return;
}
#endif /* PNG_MIPS_MSA_CHECK_SUPPORTED */
break;
default: /* OFF or INVALID */
return;
case PNG_OPTION_ON:
/* Option turned on */
break;
}
/* IMPORTANT: any new external functions used here must be declared using
* PNG_INTERNAL_FUNCTION in ../pngpriv.h. This is required so that the
* 'prefix' option to configure works:
*
* ./configure --with-libpng-prefix=foobar_
*
* Verify you have got this right by running the above command, doing a build
* and examining pngprefix.h; it must contain a #define for every external
* function you add. (Notice that this happens automatically for the
* initialization function.)
*/
pp->read_filter[PNG_FILTER_VALUE_UP-1] = png_read_filter_row_up_msa;
if (bpp == 3)
{
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub3_msa;
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg3_msa;
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] = png_read_filter_row_paeth3_msa;
}
else if (bpp == 4)
{
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub4_msa;
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg4_msa;
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] = png_read_filter_row_paeth4_msa;
}
#else
(void)pp;
(void)bpp;
#endif /* PNG_MIPS_MSA_API_SUPPORTED */
}
#endif /* PNG_MIPS_MSA_OPT > 0 */
#endif /* READ */

@ -73,7 +73,7 @@
static inline TYPE FUNC_NAME(const void* const psrc) { \
const uint8_t* const psrc_m = (const uint8_t*)psrc; \
TYPE val_m; \
asm volatile ( \
__asm__ volatile ( \
"" #INSTR " %[val_m], %[psrc_m] \n\t" \
: [val_m] "=r" (val_m) \
: [psrc_m] "m" (*psrc_m)); \
@ -86,7 +86,7 @@
static inline void FUNC_NAME(TYPE val, void* const pdst) { \
uint8_t* const pdst_m = (uint8_t*)pdst; \
TYPE val_m = val; \
asm volatile ( \
__asm__ volatile ( \
" " #INSTR " %[val_m], %[pdst_m] \n\t" \
: [pdst_m] "=m" (*pdst_m) \
: [val_m] "r" (val_m)); \

@ -45,6 +45,7 @@
set(CPU_ALL_OPTIMIZATIONS "SSE;SSE2;SSE3;SSSE3;SSE4_1;SSE4_2;POPCNT;AVX;FP16;AVX2;FMA3;AVX_512F")
list(APPEND CPU_ALL_OPTIMIZATIONS "AVX512_COMMON;AVX512_KNL;AVX512_KNM;AVX512_SKX;AVX512_CNL;AVX512_CEL;AVX512_ICL")
list(APPEND CPU_ALL_OPTIMIZATIONS NEON VFPV3 FP16)
list(APPEND CPU_ALL_OPTIMIZATIONS MSA)
list(APPEND CPU_ALL_OPTIMIZATIONS VSX VSX3)
list(REMOVE_DUPLICATES CPU_ALL_OPTIMIZATIONS)
@ -339,6 +340,11 @@ elseif(ARM OR AARCH64)
ocv_update(CPU_FP16_IMPLIES "NEON")
set(CPU_BASELINE "NEON;FP16" CACHE STRING "${HELP_CPU_BASELINE}")
endif()
elseif(MIPS)
ocv_update(CPU_MSA_TEST_FILE "${OpenCV_SOURCE_DIR}/cmake/checks/cpu_msa.cpp")
ocv_update(CPU_KNOWN_OPTIMIZATIONS "MSA")
ocv_update(CPU_MSA_FLAGS_ON "-mmsa")
set(CPU_BASELINE "MSA" CACHE STRING "${HELP_CPU_BASELINE}")
elseif(PPC64LE)
ocv_update(CPU_KNOWN_OPTIMIZATIONS "VSX;VSX3")
ocv_update(CPU_VSX_TEST_FILE "${OpenCV_SOURCE_DIR}/cmake/checks/cpu_vsx.cpp")

@ -100,6 +100,8 @@ elseif(CMAKE_SYSTEM_PROCESSOR MATCHES "^(powerpc|ppc)64le")
set(PPC64LE 1)
elseif(CMAKE_SYSTEM_PROCESSOR MATCHES "^(powerpc|ppc)64")
set(PPC64 1)
elseif(CMAKE_SYSTEM_PROCESSOR MATCHES "^(mips.*|MIPS.*)")
set(MIPS 1)
endif()
# Workaround for 32-bit operating systems on x86_64/aarch64 processor

@ -0,0 +1,23 @@
#include <stdio.h>
#if defined(__mips_msa)
# include <msa.h>
# define CV_MSA 1
#endif
#if defined CV_MSA
int test()
{
const float src[] = { 0.0f, 0.0f, 0.0f, 0.0f };
v4f32 val = (v4f32)__msa_ld_w((const float*)(src), 0);
return __msa_copy_s_w(__builtin_msa_ftint_s_w (val), 0);
}
#else
#error "MSA is not supported"
#endif
int main()
{
printf("%d\n", test());
return 0;
}

@ -152,6 +152,11 @@
# define CV_VSX3 1
#endif
#ifdef CV_CPU_COMPILE_MSA
# include "hal/msa_macros.h"
# define CV_MSA 1
#endif
#endif // CV_ENABLE_INTRINSICS && !CV_DISABLE_OPTIMIZATION && !__CUDACC__
#if defined CV_CPU_COMPILE_AVX && !defined CV_CPU_BASELINE_COMPILE_AVX
@ -319,3 +324,7 @@ struct VZeroUpperGuard {
#ifndef CV_VSX3
# define CV_VSX3 0
#endif
#ifndef CV_MSA
# define CV_MSA 0
#endif

@ -420,6 +420,27 @@
#endif
#define __CV_CPU_DISPATCH_CHAIN_NEON(fn, args, mode, ...) CV_CPU_CALL_NEON(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_MSA
# define CV_TRY_MSA 1
# define CV_CPU_FORCE_MSA 1
# define CV_CPU_HAS_SUPPORT_MSA 1
# define CV_CPU_CALL_MSA(fn, args) return (cpu_baseline::fn args)
# define CV_CPU_CALL_MSA_(fn, args) return (opt_MSA::fn args)
#elif !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_DISPATCH_COMPILE_MSA
# define CV_TRY_MSA 1
# define CV_CPU_FORCE_MSA 0
# define CV_CPU_HAS_SUPPORT_MSA (cv::checkHardwareSupport(CV_CPU_MSA))
# define CV_CPU_CALL_MSA(fn, args) if (CV_CPU_HAS_SUPPORT_MSA) return (opt_MSA::fn args)
# define CV_CPU_CALL_MSA_(fn, args) if (CV_CPU_HAS_SUPPORT_MSA) return (opt_MSA::fn args)
#else
# define CV_TRY_MSA 0
# define CV_CPU_FORCE_MSA 0
# define CV_CPU_HAS_SUPPORT_MSA 0
# define CV_CPU_CALL_MSA(fn, args)
# define CV_CPU_CALL_MSA_(fn, args)
#endif
#define __CV_CPU_DISPATCH_CHAIN_MSA(fn, args, mode, ...) CV_CPU_CALL_MSA(fn, args); __CV_EXPAND(__CV_CPU_DISPATCH_CHAIN_ ## mode(fn, args, __VA_ARGS__))
#if !defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS && defined CV_CPU_COMPILE_VSX
# define CV_TRY_VSX 1
# define CV_CPU_FORCE_VSX 1

@ -258,6 +258,8 @@ namespace cv { namespace debug_build_guard { } using namespace debug_build_guard
#define CV_CPU_NEON 100
#define CV_CPU_MSA 150
#define CV_CPU_VSX 200
#define CV_CPU_VSX3 201
@ -308,6 +310,8 @@ enum CpuFeatures {
CPU_NEON = 100,
CPU_MSA = 150,
CPU_VSX = 200,
CPU_VSX3 = 201,

@ -165,9 +165,10 @@ using namespace CV_CPU_OPTIMIZATION_HAL_NAMESPACE;
# undef CV_NEON
# undef CV_VSX
# undef CV_FP16
# undef CV_MSA
#endif
#if CV_SSE2 || CV_NEON || CV_VSX
#if CV_SSE2 || CV_NEON || CV_VSX || CV_MSA
#define CV__SIMD_FORWARD 128
#include "opencv2/core/hal/intrin_forward.hpp"
#endif
@ -185,6 +186,10 @@ using namespace CV_CPU_OPTIMIZATION_HAL_NAMESPACE;
#include "opencv2/core/hal/intrin_vsx.hpp"
#elif CV_MSA
#include "opencv2/core/hal/intrin_msa.hpp"
#else
#define CV_SIMD128_CPP 1

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -409,13 +409,13 @@ static void bin_loop(const T1* src1, size_t step1, const T1* src2, size_t step2,
int x = 0;
#if CV_SIMD
#if !CV_NEON
#if !CV_NEON && !CV_MSA
if (is_aligned(src1, src2, dst))
{
for (; x <= width - wide_step_l; x += wide_step_l)
{
ldr::la(src1 + x, src2 + x, dst + x);
#if !CV_NEON && CV_SIMD_WIDTH == 16
#if CV_SIMD_WIDTH == 16
ldr::la(src1 + x + wide_step, src2 + x + wide_step, dst + x + wide_step);
#endif
}

@ -2476,6 +2476,45 @@ double dotProd_8s(const schar* src1, const schar* src2, int len)
i += blockSize;
}
}
#elif CV_MSA
int len0 = len & -8, blockSize0 = (1 << 14), blockSize;
v4i32 v_zero = msa_dupq_n_s32(0);
CV_DECL_ALIGNED(16) int buf[4];
while( i < len0 )
{
blockSize = std::min(len0 - i, blockSize0);
v4i32 v_sum = v_zero;
int j = 0;
for( ; j <= blockSize - 16; j += 16 )
{
v16i8 v_src1 = msa_ld1q_s8(src1 + j), v_src2 = msa_ld1q_s8(src2 + j);
v8i16 v_src10 = msa_movl_s8(msa_get_low_s8(v_src1)), v_src20 = msa_movl_s8(msa_get_low_s8(v_src2));
v_sum = msa_mlal_s16(v_sum, msa_get_low_s16(v_src10), msa_get_low_s16(v_src20));
v_sum = msa_mlal_s16(v_sum, msa_get_high_s16(v_src10), msa_get_high_s16(v_src20));
v_src10 = msa_movl_s8(msa_get_high_s8(v_src1));
v_src20 = msa_movl_s8(msa_get_high_s8(v_src2));
v_sum = msa_mlal_s16(v_sum, msa_get_low_s16(v_src10), msa_get_low_s16(v_src20));
v_sum = msa_mlal_s16(v_sum, msa_get_high_s16(v_src10), msa_get_high_s16(v_src20));
}
for( ; j <= blockSize - 8; j += 8 )
{
v8i16 v_src1 = msa_movl_s8(msa_ld1_s8(src1 + j)), v_src2 = msa_movl_s8(msa_ld1_s8(src2 + j));
v_sum = msa_mlal_s16(v_sum, msa_get_low_s16(v_src1), msa_get_low_s16(v_src2));
v_sum = msa_mlal_s16(v_sum, msa_get_high_s16(v_src1), msa_get_high_s16(v_src2));
}
msa_st1q_s32(buf, v_sum);
r += buf[0] + buf[1] + buf[2] + buf[3];
src1 += blockSize;
src2 += blockSize;
i += blockSize;
}
#endif
return r + dotProd_(src1, src2, len - i);

@ -59,6 +59,8 @@ DECLARE_CV_PAUSE
# define CV_PAUSE(v) do { for (int __delay = (v); __delay > 0; --__delay) { asm volatile("yield" ::: "memory"); } } while (0)
# elif defined __GNUC__ && defined __arm__
# define CV_PAUSE(v) do { for (int __delay = (v); __delay > 0; --__delay) { asm volatile("" ::: "memory"); } } while (0)
# elif defined __GNUC__ && defined __mips__ && __mips_isa_rev >= 2
# define CV_PAUSE(v) do { for (int __delay = (v); __delay > 0; --__delay) { asm volatile("pause" ::: "memory"); } } while (0)
# elif defined __GNUC__ && defined __PPC64__
# define CV_PAUSE(v) do { for (int __delay = (v); __delay > 0; --__delay) { asm volatile("or 27,27,27" ::: "memory"); } } while (0)
# else

@ -368,6 +368,8 @@ struct HWFeatures
g_hwFeatureNames[CPU_VSX] = "VSX";
g_hwFeatureNames[CPU_VSX3] = "VSX3";
g_hwFeatureNames[CPU_MSA] = "CPU_MSA";
g_hwFeatureNames[CPU_AVX512_SKX] = "AVX512-SKX";
g_hwFeatureNames[CPU_AVX512_KNL] = "AVX512-KNL";
g_hwFeatureNames[CPU_AVX512_KNM] = "AVX512-KNM";
@ -557,6 +559,9 @@ struct HWFeatures
#if defined _ARM_ && (defined(_WIN32_WCE) && _WIN32_WCE >= 0x800)
have[CV_CPU_NEON] = true;
#endif
#ifdef __mips_msa
have[CV_CPU_MSA] = true;
#endif
// there's no need to check VSX availability in runtime since it's always available on ppc64le CPUs
have[CV_CPU_VSX] = (CV_VSX);
// TODO: Check VSX3 availability in runtime for other platforms

@ -0,0 +1,80 @@
# ----------------------------------------------------------------------------------------------
# MIPS ToolChanin can be downloaded from https://www.mips.com/develop/tools/codescape-mips-sdk/ .
# Toolchains with 'mti' in the name (and install directory) are for MIPS R2-R5 instruction sets.
# Toolchains with 'img' in the name are for MIPS R6 instruction sets.
# It is recommended to use cmake-gui application for build scripts configuration and generation:
# 1. Run cmake-gui
# 2. Specifiy toolchain file for cross-compiling, mips32r5el-gnu.toolchian.cmake or mips64r6el-gnu.toolchain.cmake
# can be selected.
# 3. Configure and Generate makefiles.
# 4. make -j4 & make install
# ----------------------------------------------------------------------------------------------
if(COMMAND toolchain_save_config)
return() # prevent recursive call
endif()
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_VERSION 1)
if(NOT DEFINED CMAKE_SYSTEM_PROCESSOR)
set(CMAKE_SYSTEM_PROCESSOR mips)
endif()
include("${CMAKE_CURRENT_LIST_DIR}/gnu.toolchain.cmake")
if(CMAKE_SYSTEM_PROCESSOR STREQUAL mips AND NOT MIPS_IGNORE_FP)
set(FLOAT_ABI_SUFFIX "")
endif()
if(NOT "x${GCC_COMPILER_VERSION}" STREQUAL "x")
set(__GCC_VER_SUFFIX "-${GCC_COMPILER_VERSION}")
endif()
if(NOT DEFINED CMAKE_C_COMPILER)
find_program(CMAKE_C_COMPILER NAMES ${GNU_MACHINE}${FLOAT_ABI_SUFFIX}-gcc${__GCC_VER_SUFFIX})
endif()
if(NOT DEFINED CMAKE_CXX_COMPILER)
find_program(CMAKE_CXX_COMPILER NAMES ${GNU_MACHINE}${FLOAT_ABI_SUFFIX}-g++${__GCC_VER_SUFFIX})
endif()
if(NOT DEFINED CMAKE_LINKER)
find_program(CMAKE_LINKER NAMES ${GNU_MACHINE}${FLOAT_ABI_SUFFIX}-ld${__GCC_VER_SUFFIX} ${GNU_MACHINE}${FLOAT_ABI_SUFFIX}-ld)
endif()
if(NOT DEFINED CMAKE_AR)
find_program(CMAKE_AR NAMES ${GNU_MACHINE}${FLOAT_ABI_SUFFIX}-ar${__GCC_VER_SUFFIX} ${GNU_MACHINE}${FLOAT_ABI_SUFFIX}-ar)
endif()
if(NOT DEFINED MIPS_LINUX_SYSROOT AND DEFINED GNU_MACHINE)
set(MIPS_LINUX_SYSROOT /usr/bin)
endif()
if(NOT DEFINED CMAKE_CXX_FLAGS)
if(CMAKE_SYSTEM_PROCESSOR MATCHES "mips32r5el")
set(CMAKE_C_FLAGS "-march=mips32r5 -EL -mmsa -mhard-float -mfp64 -mnan=2008 -mabs=2008 -O3 -ffp-contract=off -mtune=p5600" CACHE INTERNAL "")
set(CMAKE_SHARED_LINKER_FLAGS "" CACHE INTERNAL "")
set(CMAKE_CXX_FLAGS "-march=mips32r5 -EL -mmsa -mhard-float -mfp64 -mnan=2008 -mabs=2008 -O3 -ffp-contract=off -mtune=p5600" CACHE INTERNAL "")
set(CMAKE_MODULE_LINKER_FLAGS "" CACHE INTERNAL "")
set(CMAKE_EXE_LINKER_FLAGS "-lpthread -lrt -ldl -latomic" CACHE INTERNAL "Added for mips cross build error")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fdata-sections -Wa,--noexecstack -fsigned-char -Wno-psabi")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fdata-sections -Wa,--noexecstack -fsigned-char -Wno-psabi")
elseif(CMAKE_SYSTEM_PROCESSOR MATCHES "mips64r6el")
set(CMAKE_C_FLAGS "-O3 -march=i6500 -EL -mmsa -mabi=64 -mhard-float -mfp64 -mnan=2008" CACHE INTERNAL "")
set(CMAKE_SHARED_LINKER_FLAGS "" CACHE INTERNAL "")
set(CMAKE_CXX_FLAGS "-O3 -march=i6500 -EL -mmsa -mabi=64 -mhard-float -mfp64 -mnan=2008" CACHE INTERNAL "")
set(CMAKE_MODULE_LINKER_FLAGS "" CACHE INTERNAL "")
set(CMAKE_EXE_LINKER_FLAGS "-lpthread -lrt -ldl" CACHE INTERNAL "Added for mips cross build error")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fdata-sections -Wa,--noexecstack -fsigned-char -Wno-psabi")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fdata-sections -Wa,--noexecstack -fsigned-char -Wno-psabi")
endif()
set(CMAKE_SHARED_LINKER_FLAGS "${MIPS_LINKER_FLAGS} ${CMAKE_SHARED_LINKER_FLAGS}")
set(CMAKE_MODULE_LINKER_FLAGS "${MIPS_LINKER_FLAGS} ${CMAKE_MODULE_LINKER_FLAGS}")
set(CMAKE_EXE_LINKER_FLAGS "${MIPS_LINKER_FLAGS} ${CMAKE_EXE_LINKER_FLAGS}")
endif()
set(CMAKE_FIND_ROOT_PATH ${CMAKE_FIND_ROOT_PATH} ${MIPS_LINUX_SYSROOT})
set(TOOLCHAIN_CONFIG_VARS ${TOOLCHAIN_CONFIG_VARS}
MIPS_LINUX_SYSROOT
)
toolchain_save_config()

@ -0,0 +1,14 @@
# ----------------------------------------------------------------------------------------------
# MIPS ToolChanin can be downloaded from https://www.mips.com/develop/tools/codescape-mips-sdk/ .
# Toolchains with 'mti' in the name (and install directory) are for MIPS R2-R5 instruction sets.
# Toolchains with 'img' in the name are for MIPS R6 instruction sets.
# It is recommended to use cmake-gui for build scripts configuration and generation:
# 1. Run cmake-gui
# 2. Specifiy toolchain file mips32r5el-gnu.toolchian.cmake for cross-compiling.
# 3. Configure and Generate makefiles.
# 4. make -j4 & make install
# ----------------------------------------------------------------------------------------------
set(CMAKE_SYSTEM_PROCESSOR mips32r5el)
set(GCC_COMPILER_VERSION "" CACHE STRING "GCC Compiler version")
set(GNU_MACHINE "mips-mti-linux-gnu" CACHE STRING "GNU compiler triple")
include("${CMAKE_CURRENT_LIST_DIR}/mips.toolchain.cmake")

@ -0,0 +1,14 @@
# ----------------------------------------------------------------------------------------------
# MIPS ToolChanin can be downloaded from https://www.mips.com/develop/tools/codescape-mips-sdk/ .
# Toolchains with 'mti' in the name (and install directory) are for MIPS R2-R5 instruction sets.
# Toolchains with 'img' in the name are for MIPS R6 instruction sets.
# It is recommended to use cmake-gui for build scripts configuration and generation:
# 1. Run cmake-gui
# 2. Specifiy toolchain file mips64r6el-gnu.toolchain.cmake for cross-compiling.
# 3. Configure and Generate makefiles.
# 4. make -j4 & make install
# ----------------------------------------------------------------------------------------------
set(CMAKE_SYSTEM_PROCESSOR mips64r6el)
set(GCC_COMPILER_VERSION "" CACHE STRING "GCC Compiler version")
set(GNU_MACHINE "mips-img-linux-gnu" CACHE STRING "GNU compiler triple")
include("${CMAKE_CURRENT_LIST_DIR}/mips.toolchain.cmake")
Loading…
Cancel
Save