Added implementation and test for the GPU version of warpAffine, warpPerspective, rotate, based on NPP.

Renamed copyConstBorder to copyMakeBorder.
Fixed warnings when HAVE_CUDA is not defined.
pull/13383/head
Vladislav Vinogradov 14 years ago
parent b8753db512
commit b181d78ca5
  1. 17
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 229
      modules/gpu/src/arithm.cpp
  3. 4
      modules/gpu/src/imgproc_gpu.cpp
  4. 91
      tests/gpu/src/npp_image_arithm.cpp

@ -385,7 +385,7 @@ namespace cv
//! resizes the image
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_LANCZOS4
CV_EXPORTS void resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR);
CV_EXPORTS void resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR);
//! computes sum of array elements
CV_EXPORTS Scalar sum(const GpuMat& m);
@ -394,9 +394,22 @@ namespace cv
CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal = 0);
//! copies 2D array to a larger destination array and pads borders with user-specifiable constant
CV_EXPORTS void copyConstBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, const Scalar& value = Scalar());
CV_EXPORTS void copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, const Scalar& value = Scalar());
//! warps the image using affine transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR);
//! warps the image using perspective transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR);
//! rotate 8bit single or four channel image
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift = 0, double yShift = 0, int interpolation = INTER_LINEAR);
////////////////////////////// Image processing //////////////////////////////
// DST[x,y] = SRC[xmap[x,y],ymap[x,y]] with bilinear interpolation.
// xymap.type() == xymap.type() == CV_32FC1
CV_EXPORTS void remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap);

@ -48,38 +48,57 @@ using namespace std;
#if !defined (HAVE_CUDA)
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
void cv::gpu::add(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::subtract(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::multiply(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::divide(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::transpose(const GpuMat& src1, GpuMat& dst) { throw_nogpu(); }
void cv::gpu::transpose(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { throw_nogpu(); }
void cv::gpu::absdiff(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int thresholdType) { throw_nogpu(); return 0.0; }
double cv::gpu::threshold(const GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); return 0.0; }
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop) { throw_nogpu(); }
void cv::gpu::compare(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); }
void cv::gpu::meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev) { throw_nogpu(); }
void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); }
double cv::gpu::norm(const GpuMat& src1, int normType) { throw_nogpu(); return 0.0; }
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType) { throw_nogpu(); return 0.0; }
double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; }
double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; }
void cv::gpu::flip(const GpuMat& a, GpuMat& b, int flipCode) { throw_nogpu(); }
void cv::gpu::flip(const GpuMat&, GpuMat&, int) { throw_nogpu(); }
void cv::gpu::resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx, double fy, int interpolation) { throw_nogpu(); }
void cv::gpu::resize(const GpuMat&, GpuMat&, Size, double, double, int) { throw_nogpu(); }
Scalar cv::gpu::sum(const GpuMat& m) { throw_nogpu(); return Scalar(); }
Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); }
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal) { throw_nogpu(); }
void cv::gpu::minMax(const GpuMat&, double*, double*) { throw_nogpu(); }
void cv::gpu::copyConstBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, const Scalar& value) { throw_nogpu(); }
void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, const Scalar&) { throw_nogpu(); }
void cv::gpu::warpAffine(const GpuMat&, GpuMat&, const Mat&, Size, int) { throw_nogpu(); }
void cv::gpu::warpPerspective(const GpuMat&, GpuMat&, const Mat&, Size, int) { throw_nogpu(); }
void cv::gpu::rotate(const GpuMat&, GpuMat&, Size, double, double, double, int) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace
{
{
typedef NppStatus (*npp_warp_8u_t)(const Npp8u* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp8u* pDst,
int dstStep, NppiRect dstRoi, const double coeffs[][3],
int interpolation);
typedef NppStatus (*npp_warp_16u_t)(const Npp16u* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp16u* pDst,
int dstStep, NppiRect dstRoi, const double coeffs[][3],
int interpolation);
typedef NppStatus (*npp_warp_32s_t)(const Npp32s* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp32s* pDst,
int dstStep, NppiRect dstRoi, const double coeffs[][3],
int interpolation);
typedef NppStatus (*npp_warp_32f_t)(const Npp32f* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp32f* pDst,
int dstStep, NppiRect dstRoi, const double coeffs[][3],
int interpolation);
typedef NppStatus (*npp_binary_func_8u_scale_t)(const Npp8u* pSrc1, int nSrc1Step, const Npp8u* pSrc2, int nSrc2Step, Npp8u* pDst, int nDstStep,
NppiSize oSizeROI, int nScaleFactor);
typedef NppStatus (*npp_binary_func_32f_t)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pSrc2, int nSrc2Step, Npp32f* pDst,
@ -374,7 +393,7 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal)
*maxVal = max_res;
}
void cv::gpu::copyConstBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, const Scalar& value)
void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, const Scalar& value)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1);
@ -410,4 +429,178 @@ void cv::gpu::copyConstBorder(const GpuMat& src, GpuMat& dst, int top, int botto
}
}
namespace
{
void nppWarpCaller(const GpuMat& src, GpuMat& dst, double coeffs[][3], const Size& dsize, int flags,
npp_warp_8u_t npp_warp_8u[][2], npp_warp_16u_t npp_warp_16u[][2],
npp_warp_32s_t npp_warp_32s[][2], npp_warp_32f_t npp_warp_32f[][2])
{
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};
int interpolation = flags & INTER_MAX;
CV_Assert((src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32S || src.depth() == CV_32F) && src.channels() != 2);
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
dst.create(dsize, src.type());
NppiSize srcsz;
srcsz.height = src.rows;
srcsz.width = src.cols;
NppiRect srcroi;
srcroi.x = srcroi.y = 0;
srcroi.height = src.rows;
srcroi.width = src.cols;
NppiRect dstroi;
dstroi.x = dstroi.y = 0;
dstroi.height = dst.rows;
dstroi.width = dst.cols;
int warpInd = (flags & WARP_INVERSE_MAP) >> 4;
switch (src.depth())
{
case CV_8U:
npp_warp_8u[src.channels()][warpInd]((const Npp8u*)src.ptr<char>(), srcsz, src.step, srcroi,
(Npp8u*)dst.ptr<char>(), dst.step, dstroi, coeffs, npp_inter[interpolation]);
break;
case CV_16U:
npp_warp_16u[src.channels()][warpInd]((const Npp16u*)src.ptr<char>(), srcsz, src.step, srcroi,
(Npp16u*)dst.ptr<char>(), dst.step, dstroi, coeffs, npp_inter[interpolation]);
break;
case CV_32SC1:
npp_warp_32s[src.channels()][warpInd]((const Npp32s*)src.ptr<char>(), srcsz, src.step, srcroi,
(Npp32s*)dst.ptr<char>(), dst.step, dstroi, coeffs, npp_inter[interpolation]);
break;
case CV_32FC1:
npp_warp_32f[src.channels()][warpInd]((const Npp32f*)src.ptr<char>(), srcsz, src.step, srcroi,
(Npp32f*)dst.ptr<char>(), dst.step, dstroi, coeffs, npp_inter[interpolation]);
break;
default:
CV_Assert(!"Unsupported source type");
}
}
}
void cv::gpu::warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags)
{
static npp_warp_8u_t npp_warpAffine_8u[][2] =
{
{0, 0},
{nppiWarpAffine_8u_C1R, nppiWarpAffineBack_8u_C1R},
{0, 0},
{nppiWarpAffine_8u_C3R, nppiWarpAffineBack_8u_C3R},
{nppiWarpAffine_8u_C4R, nppiWarpAffineBack_8u_C4R}
};
static npp_warp_16u_t npp_warpAffine_16u[][2] =
{
{0, 0},
{nppiWarpAffine_16u_C1R, nppiWarpAffineBack_16u_C1R},
{0, 0},
{nppiWarpAffine_16u_C3R, nppiWarpAffineBack_16u_C3R},
{nppiWarpAffine_16u_C4R, nppiWarpAffineBack_16u_C4R}
};
static npp_warp_32s_t npp_warpAffine_32s[][2] =
{
{0, 0},
{nppiWarpAffine_32s_C1R, nppiWarpAffineBack_32s_C1R},
{0, 0},
{nppiWarpAffine_32s_C3R, nppiWarpAffineBack_32s_C3R},
{nppiWarpAffine_32s_C4R, nppiWarpAffineBack_32s_C4R}
};
static npp_warp_32f_t npp_warpAffine_32f[][2] =
{
{0, 0},
{nppiWarpAffine_32f_C1R, nppiWarpAffineBack_32f_C1R},
{0, 0},
{nppiWarpAffine_32f_C3R, nppiWarpAffineBack_32f_C3R},
{nppiWarpAffine_32f_C4R, nppiWarpAffineBack_32f_C4R}
};
CV_Assert(M.rows == 2 && M.cols == 3);
double coeffs[2][3];
Mat coeffsMat(2, 3, CV_64F, (void*)coeffs);
M.convertTo(coeffsMat, coeffsMat.type());
nppWarpCaller(src, dst, coeffs, dsize, flags, npp_warpAffine_8u, npp_warpAffine_16u, npp_warpAffine_32s, npp_warpAffine_32f);
}
void cv::gpu::warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags)
{
static npp_warp_8u_t npp_warpPerspective_8u[][2] =
{
{0, 0},
{nppiWarpPerspective_8u_C1R, nppiWarpPerspectiveBack_8u_C1R},
{0, 0},
{nppiWarpPerspective_8u_C3R, nppiWarpPerspectiveBack_8u_C3R},
{nppiWarpPerspective_8u_C4R, nppiWarpPerspectiveBack_8u_C4R}
};
static npp_warp_16u_t npp_warpPerspective_16u[][2] =
{
{0, 0},
{nppiWarpPerspective_16u_C1R, nppiWarpPerspectiveBack_16u_C1R},
{0, 0},
{nppiWarpPerspective_16u_C3R, nppiWarpPerspectiveBack_16u_C3R},
{nppiWarpPerspective_16u_C4R, nppiWarpPerspectiveBack_16u_C4R}
};
static npp_warp_32s_t npp_warpPerspective_32s[][2] =
{
{0, 0},
{nppiWarpPerspective_32s_C1R, nppiWarpPerspectiveBack_32s_C1R},
{0, 0},
{nppiWarpPerspective_32s_C3R, nppiWarpPerspectiveBack_32s_C3R},
{nppiWarpPerspective_32s_C4R, nppiWarpPerspectiveBack_32s_C4R}
};
static npp_warp_32f_t npp_warpPerspective_32f[][2] =
{
{0, 0},
{nppiWarpPerspective_32f_C1R, nppiWarpPerspectiveBack_32f_C1R},
{0, 0},
{nppiWarpPerspective_32f_C3R, nppiWarpPerspectiveBack_32f_C3R},
{nppiWarpPerspective_32f_C4R, nppiWarpPerspectiveBack_32f_C4R}
};
CV_Assert(M.rows == 3 && M.cols == 3);
double coeffs[3][3];
Mat coeffsMat(3, 3, CV_64F, (void*)coeffs);
M.convertTo(coeffsMat, coeffsMat.type());
nppWarpCaller(src, dst, coeffs, dsize, flags, npp_warpPerspective_8u, npp_warpPerspective_16u, npp_warpPerspective_32s, npp_warpPerspective_32f);
}
void cv::gpu::rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation)
{
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4);
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
dst.create(dsize, src.type());
NppiSize srcsz;
srcsz.height = src.rows;
srcsz.width = src.cols;
NppiRect srcroi;
srcroi.x = srcroi.y = 0;
srcroi.height = src.rows;
srcroi.width = src.cols;
NppiRect dstroi;
dstroi.x = dstroi.y = 0;
dstroi.height = dst.rows;
dstroi.width = dst.cols;
if (src.channels() == 1)
{
nppiRotate_8u_C1R((const Npp8u*)src.ptr<char>(), srcsz, src.step, srcroi,
(Npp8u*)dst.ptr<char>(), dst.step, dstroi, angle, xShift, yShift, npp_inter[interpolation]);
}
else
{
nppiRotate_8u_C4R((const Npp8u*)src.ptr<char>(), srcsz, src.step, srcroi,
(Npp8u*)dst.ptr<char>(), dst.step, dstroi, angle, xShift, yShift, npp_inter[interpolation]);
}
}
#endif /* !defined (HAVE_CUDA) */

@ -47,8 +47,8 @@ using namespace cv::gpu;
#if !defined (HAVE_CUDA)
void cv::gpu::remap( const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap ){ throw_nogpu(); }
void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria ) { throw_nogpu(); }
void cv::gpu::remap(const GpuMat&, GpuMat&, const GpuMat&, const GpuMat&){ throw_nogpu(); }
void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria) { throw_nogpu(); }
void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int) { throw_nogpu(); }
void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int, const Stream&) { throw_nogpu(); }
void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&) { throw_nogpu(); }

@ -687,20 +687,20 @@ CV_GpuNppImageMinNaxTest CV_GpuNppImageMinNax_test;
////////////////////////////////////////////////////////////////////////////////
// copyConstBorder
class CV_GpuNppImageCopyConstBorderTest : public CV_GpuNppImageArithmTest
class CV_GpuNppImageCopyMakeBorderTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageCopyConstBorderTest();
CV_GpuNppImageCopyMakeBorderTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageCopyConstBorderTest::CV_GpuNppImageCopyConstBorderTest(): CV_GpuNppImageArithmTest( "GPU-NppImageCopyConstBorder", "copyConstBorder" )
CV_GpuNppImageCopyMakeBorderTest::CV_GpuNppImageCopyMakeBorderTest(): CV_GpuNppImageArithmTest( "GPU-NppImageCopyMakeBorder", "copyMakeBorder" )
{
}
int CV_GpuNppImageCopyConstBorderTest::test( const Mat& cpu1, const Mat& )
int CV_GpuNppImageCopyMakeBorderTest::test( const Mat& cpu1, const Mat& )
{
if (cpu1.type() != CV_8UC1 && cpu1.type() != CV_8UC4 && cpu1.type() != CV_32SC1)
return CvTS::OK;
@ -710,9 +710,88 @@ int CV_GpuNppImageCopyConstBorderTest::test( const Mat& cpu1, const Mat& )
GpuMat gpu1(cpu1);
GpuMat gpudst;
cv::gpu::copyConstBorder(gpu1, gpudst, 5, 5, 5, 5);
cv::gpu::copyMakeBorder(gpu1, gpudst, 5, 5, 5, 5);
return CheckNorm(cpudst, gpudst);
}
CV_GpuNppImageCopyConstBorderTest CV_GpuNppImageCopyConstBorder_test;
CV_GpuNppImageCopyMakeBorderTest CV_GpuNppImageCopyMakeBorder_test;
////////////////////////////////////////////////////////////////////////////////
// warpAffine
class CV_GpuNppImageWarpAffineTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageWarpAffineTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageWarpAffineTest::CV_GpuNppImageWarpAffineTest(): CV_GpuNppImageArithmTest( "GPU-NppImageWarpAffine", "warpAffine" )
{
}
int CV_GpuNppImageWarpAffineTest::test( const Mat& cpu1, const Mat& )
{
static const double coeffs[2][3] =
{
{cos(3.14 / 6), -sin(3.14 / 6), 100.0},
{sin(3.14 / 6), cos(3.14 / 6), -100.0}
};
Mat M(2, 3, CV_64F, (void*)coeffs);
if (cpu1.type() == CV_32SC1)
return CvTS::OK;
Mat cpudst;
cv::warpAffine(cpu1, cpudst, M, cpu1.size(), INTER_CUBIC | WARP_INVERSE_MAP);
GpuMat gpu1(cpu1);
GpuMat gpudst;
cv::gpu::warpAffine(gpu1, gpudst, M, gpu1.size(), INTER_CUBIC | WARP_INVERSE_MAP);
return CheckNorm(cpudst, gpudst);
}
CV_GpuNppImageWarpAffineTest CV_GpuNppImageWarpAffine_test;
////////////////////////////////////////////////////////////////////////////////
// warpAffine
class CV_GpuNppImageWarpPerspectiveTest : public CV_GpuNppImageArithmTest
{
public:
CV_GpuNppImageWarpPerspectiveTest();
protected:
virtual int test(const Mat& cpu1, const Mat& cpu2);
};
CV_GpuNppImageWarpPerspectiveTest::CV_GpuNppImageWarpPerspectiveTest(): CV_GpuNppImageArithmTest( "GPU-NppImageWarpPerspective", "warpPerspective" )
{
}
int CV_GpuNppImageWarpPerspectiveTest::test( const Mat& cpu1, const Mat& )
{
static const double coeffs[3][3] =
{
{cos(3.14 / 6), -sin(3.14 / 6), 100.0},
{sin(3.14 / 6), cos(3.14 / 6), -100.0},
{0.0, 0.0, 1.0}
};
Mat M(3, 3, CV_64F, (void*)coeffs);
if (cpu1.type() == CV_32SC1)
return CvTS::OK;
Mat cpudst;
cv::warpPerspective(cpu1, cpudst, M, cpu1.size(), INTER_CUBIC | WARP_INVERSE_MAP);
GpuMat gpu1(cpu1);
GpuMat gpudst;
cv::gpu::warpPerspective(gpu1, gpudst, M, gpu1.size(), INTER_CUBIC | WARP_INVERSE_MAP);
return CheckNorm(cpudst, gpudst);
}
CV_GpuNppImageWarpPerspectiveTest CV_GpuNppImageWarpPerspective_test;
Loading…
Cancel
Save