pull/13383/head
parent
3def843652
commit
b156e2f7ed
8 changed files with 900 additions and 5 deletions
@ -0,0 +1,628 @@ |
||||
// freak.cpp
|
||||
//
|
||||
// Copyright (C) 2011-2012 Signal processing laboratory 2, EPFL,
|
||||
// Kirell Benzi (kirell.benzi@epfl.ch),
|
||||
// Raphael Ortiz (raphael.ortiz@a3.epfl.ch)
|
||||
// Alexandre Alahi (alexandre.alahi@epfl.ch)
|
||||
// and Pierre Vandergheynst (pierre.vandergheynst@epfl.ch)
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
|
||||
#include "precomp.hpp" |
||||
#include <fstream> |
||||
#include <stdlib.h> |
||||
#include <algorithm> |
||||
#include <iostream> |
||||
#include <bitset> |
||||
#include <sstream> |
||||
#include <algorithm> |
||||
#include <iomanip> |
||||
#include <string.h> |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
static const double FREAK_SQRT2 = 1.4142135623731; |
||||
static const double FREAK_INV_SQRT2 = 1.0 / FREAK_SQRT2; |
||||
static const double FREAK_LOG2 = 0.693147180559945; |
||||
static const int FREAK_NB_ORIENTATION = 256; |
||||
static const int FREAK_NB_POINTS = 43; |
||||
static const int FREAK_SMALLEST_KP_SIZE = 7; // smallest size of keypoints
|
||||
static const int FREAK_NB_SCALES = FREAK::NB_SCALES; |
||||
static const int FREAK_NB_PAIRS = FREAK::NB_PAIRS; |
||||
static const int FREAK_NB_ORIENPAIRS = FREAK::NB_ORIENPAIRS; |
||||
|
||||
static const int FREAK_DEF_PAIRS[FREAK::NB_PAIRS] = |
||||
{ // default pairs
|
||||
404,431,818,511,181,52,311,874,774,543,719,230,417,205,11, |
||||
560,149,265,39,306,165,857,250,8,61,15,55,717,44,412, |
||||
592,134,761,695,660,782,625,487,549,516,271,665,762,392,178, |
||||
796,773,31,672,845,548,794,677,654,241,831,225,238,849,83, |
||||
691,484,826,707,122,517,583,731,328,339,571,475,394,472,580, |
||||
381,137,93,380,327,619,729,808,218,213,459,141,806,341,95, |
||||
382,568,124,750,193,749,706,843,79,199,317,329,768,198,100, |
||||
466,613,78,562,783,689,136,838,94,142,164,679,219,419,366, |
||||
418,423,77,89,523,259,683,312,555,20,470,684,123,458,453,833, |
||||
72,113,253,108,313,25,153,648,411,607,618,128,305,232,301,84, |
||||
56,264,371,46,407,360,38,99,176,710,114,578,66,372,653, |
||||
129,359,424,159,821,10,323,393,5,340,891,9,790,47,0,175,346, |
||||
236,26,172,147,574,561,32,294,429,724,755,398,787,288,299, |
||||
769,565,767,722,757,224,465,723,498,467,235,127,802,446,233, |
||||
544,482,800,318,16,532,801,441,554,173,60,530,713,469,30, |
||||
212,630,899,170,266,799,88,49,512,399,23,500,107,524,90, |
||||
194,143,135,192,206,345,148,71,119,101,563,870,158,254,214, |
||||
276,464,332,725,188,385,24,476,40,231,620,171,258,67,109, |
||||
844,244,187,388,701,690,50,7,850,479,48,522,22,154,12,659, |
||||
736,655,577,737,830,811,174,21,237,335,353,234,53,270,62, |
||||
182,45,177,245,812,673,355,556,612,166,204,54,248,365,226, |
||||
242,452,700,685,573,14,842,481,468,781,564,416,179,405,35, |
||||
819,608,624,367,98,643,448,2,460,676,440,240,130,146,184, |
||||
185,430,65,807,377,82,121,708,239,310,138,596,730,575,477, |
||||
851,797,247,27,85,586,307,779,326,494,856,324,827,96,748, |
||||
13,397,125,688,702,92,293,716,277,140,112,4,80,855,839,1, |
||||
413,347,584,493,289,696,19,751,379,76,73,115,6,590,183,734, |
||||
197,483,217,344,330,400,186,243,587,220,780,200,793,246,824, |
||||
41,735,579,81,703,322,760,720,139,480,490,91,814,813,163, |
||||
152,488,763,263,425,410,576,120,319,668,150,160,302,491,515, |
||||
260,145,428,97,251,395,272,252,18,106,358,854,485,144,550, |
||||
131,133,378,68,102,104,58,361,275,209,697,582,338,742,589, |
||||
325,408,229,28,304,191,189,110,126,486,211,547,533,70,215, |
||||
670,249,36,581,389,605,331,518,442,822 |
||||
}; |
||||
|
||||
struct PairStat |
||||
{ // used to sort pairs during pairs selection
|
||||
double mean; |
||||
int idx; |
||||
}; |
||||
|
||||
struct sortMean |
||||
{ |
||||
bool operator()( const PairStat& a, const PairStat& b ) const { |
||||
return a.mean < b.mean; |
||||
} |
||||
}; |
||||
|
||||
void FREAK::buildPattern() |
||||
{ |
||||
if( patternScale == patternScale0 && nOctaves == nOctaves0 && !patternLookup.empty() ) |
||||
return; |
||||
|
||||
nOctaves0 = nOctaves; |
||||
patternScale0 = patternScale; |
||||
|
||||
patternLookup.resize(FREAK_NB_SCALES*FREAK_NB_ORIENTATION*FREAK_NB_POINTS); |
||||
double scaleStep = pow(2.0, (double)(nOctaves)/FREAK_NB_SCALES ); // 2 ^ ( (nOctaves-1) /nbScales)
|
||||
double scalingFactor, alpha, beta, theta = 0; |
||||
|
||||
// pattern definition, radius normalized to 1.0 (outer point position+sigma=1.0)
|
||||
const int n[8] = {6,6,6,6,6,6,6,1}; // number of points on each concentric circle (from outer to inner)
|
||||
const double bigR(2.0/3.0); // bigger radius
|
||||
const double smallR(2.0/24.0); // smaller radius
|
||||
const double unitSpace( (bigR-smallR)/21.0 ); // define spaces between concentric circles (from center to outer: 1,2,3,4,5,6)
|
||||
// radii of the concentric cirles (from outer to inner)
|
||||
const double radius[8] = {bigR, bigR-6*unitSpace, bigR-11*unitSpace, bigR-15*unitSpace, bigR-18*unitSpace, bigR-20*unitSpace, smallR, 0.0}; |
||||
// sigma of pattern points (each group of 6 points on a concentric cirle has the same sigma)
|
||||
const double sigma[8] = {radius[0]/2.0, radius[1]/2.0, radius[2]/2.0, |
||||
radius[3]/2.0, radius[4]/2.0, radius[5]/2.0, |
||||
radius[6]/2.0, radius[6]/2.0 |
||||
}; |
||||
// fill the lookup table
|
||||
for( int scaleIdx=0; scaleIdx < FREAK_NB_SCALES; ++scaleIdx ) { |
||||
patternSizes[scaleIdx] = 0; // proper initialization
|
||||
scalingFactor = pow(scaleStep,scaleIdx); //scale of the pattern, scaleStep ^ scaleIdx
|
||||
|
||||
for( int orientationIdx = 0; orientationIdx < FREAK_NB_ORIENTATION; ++orientationIdx ) { |
||||
theta = double(orientationIdx)* 2*CV_PI/double(FREAK_NB_ORIENTATION); // orientation of the pattern
|
||||
int pointIdx = 0; |
||||
|
||||
PatternPoint* patternLookupPtr = &patternLookup[0]; |
||||
for( size_t i = 0; i < 8; ++i ) { |
||||
for( int k = 0 ; k < n[i]; ++k ) { |
||||
beta = CV_PI/n[i] * (i%2); // orientation offset so that groups of points on each circles are staggered
|
||||
alpha = double(k)* 2*CV_PI/double(n[i])+beta+theta; |
||||
|
||||
// add the point to the look-up table
|
||||
PatternPoint& point = patternLookupPtr[ scaleIdx*FREAK_NB_ORIENTATION*FREAK_NB_POINTS+orientationIdx*FREAK_NB_POINTS+pointIdx ]; |
||||
point.x = static_cast<float>(radius[i] * cos(alpha) * scalingFactor * patternScale); |
||||
point.y = static_cast<float>(radius[i] * sin(alpha) * scalingFactor * patternScale); |
||||
point.sigma = static_cast<float>(sigma[i] * scalingFactor * patternScale); |
||||
|
||||
// adapt the sizeList if necessary
|
||||
const int sizeMax = static_cast<int>(ceil((radius[i]+sigma[i])*scalingFactor*patternScale)) + 1; |
||||
if( patternSizes[scaleIdx] < sizeMax ) |
||||
patternSizes[scaleIdx] = sizeMax; |
||||
|
||||
++pointIdx; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
// build the list of orientation pairs
|
||||
orientationPairs[0].i=0; orientationPairs[0].j=3; orientationPairs[1].i=1; orientationPairs[1].j=4; orientationPairs[2].i=2; orientationPairs[2].j=5; |
||||
orientationPairs[3].i=0; orientationPairs[3].j=2; orientationPairs[4].i=1; orientationPairs[4].j=3; orientationPairs[5].i=2; orientationPairs[5].j=4; |
||||
orientationPairs[6].i=3; orientationPairs[6].j=5; orientationPairs[7].i=4; orientationPairs[7].j=0; orientationPairs[8].i=5; orientationPairs[8].j=1; |
||||
|
||||
orientationPairs[9].i=6; orientationPairs[9].j=9; orientationPairs[10].i=7; orientationPairs[10].j=10; orientationPairs[11].i=8; orientationPairs[11].j=11; |
||||
orientationPairs[12].i=6; orientationPairs[12].j=8; orientationPairs[13].i=7; orientationPairs[13].j=9; orientationPairs[14].i=8; orientationPairs[14].j=10; |
||||
orientationPairs[15].i=9; orientationPairs[15].j=11; orientationPairs[16].i=10; orientationPairs[16].j=6; orientationPairs[17].i=11; orientationPairs[17].j=7; |
||||
|
||||
orientationPairs[18].i=12; orientationPairs[18].j=15; orientationPairs[19].i=13; orientationPairs[19].j=16; orientationPairs[20].i=14; orientationPairs[20].j=17; |
||||
orientationPairs[21].i=12; orientationPairs[21].j=14; orientationPairs[22].i=13; orientationPairs[22].j=15; orientationPairs[23].i=14; orientationPairs[23].j=16; |
||||
orientationPairs[24].i=15; orientationPairs[24].j=17; orientationPairs[25].i=16; orientationPairs[25].j=12; orientationPairs[26].i=17; orientationPairs[26].j=13; |
||||
|
||||
orientationPairs[27].i=18; orientationPairs[27].j=21; orientationPairs[28].i=19; orientationPairs[28].j=22; orientationPairs[29].i=20; orientationPairs[29].j=23; |
||||
orientationPairs[30].i=18; orientationPairs[30].j=20; orientationPairs[31].i=19; orientationPairs[31].j=21; orientationPairs[32].i=20; orientationPairs[32].j=22; |
||||
orientationPairs[33].i=21; orientationPairs[33].j=23; orientationPairs[34].i=22; orientationPairs[34].j=18; orientationPairs[35].i=23; orientationPairs[35].j=19; |
||||
|
||||
orientationPairs[36].i=24; orientationPairs[36].j=27; orientationPairs[37].i=25; orientationPairs[37].j=28; orientationPairs[38].i=26; orientationPairs[38].j=29; |
||||
orientationPairs[39].i=30; orientationPairs[39].j=33; orientationPairs[40].i=31; orientationPairs[40].j=34; orientationPairs[41].i=32; orientationPairs[41].j=35; |
||||
orientationPairs[42].i=36; orientationPairs[42].j=39; orientationPairs[43].i=37; orientationPairs[43].j=40; orientationPairs[44].i=38; orientationPairs[44].j=41; |
||||
|
||||
for( unsigned m = FREAK_NB_ORIENPAIRS; m--; ) { |
||||
const float dx = patternLookup[orientationPairs[m].i].x-patternLookup[orientationPairs[m].j].x; |
||||
const float dy = patternLookup[orientationPairs[m].i].y-patternLookup[orientationPairs[m].j].y; |
||||
const float norm_sq = (dx*dx+dy*dy); |
||||
orientationPairs[m].weight_dx = int((dx/(norm_sq))*4096.0+0.5); |
||||
orientationPairs[m].weight_dy = int((dy/(norm_sq))*4096.0+0.5); |
||||
} |
||||
|
||||
// build the list of description pairs
|
||||
std::vector<DescriptionPair> allPairs; |
||||
for( unsigned int i = 1; i < (unsigned int)FREAK_NB_POINTS; ++i ) { |
||||
// (generate all the pairs)
|
||||
for( unsigned int j = 0; (unsigned int)j < i; ++j ) { |
||||
DescriptionPair pair = {(uchar)i,(uchar)j}; |
||||
allPairs.push_back(pair); |
||||
} |
||||
} |
||||
// Input vector provided
|
||||
if( !selectedPairs0.empty() ) { |
||||
if( (int)selectedPairs0.size() == FREAK_NB_PAIRS ) { |
||||
for( int i = 0; i < FREAK_NB_PAIRS; ++i ) |
||||
descriptionPairs[i] = allPairs[selectedPairs0.at(i)]; |
||||
} |
||||
else { |
||||
CV_Error(CV_StsVecLengthErr, "Input vector does not match the required size"); |
||||
} |
||||
} |
||||
else { // default selected pairs
|
||||
for( int i = 0; i < FREAK_NB_PAIRS; ++i ) |
||||
descriptionPairs[i] = allPairs[FREAK_DEF_PAIRS[i]]; |
||||
} |
||||
} |
||||
|
||||
void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const { |
||||
|
||||
if( image.empty() ) |
||||
return; |
||||
if( keypoints.empty() ) |
||||
return; |
||||
|
||||
((FREAK*)this)->buildPattern(); |
||||
|
||||
Mat imgIntegral; |
||||
integral(image, imgIntegral); |
||||
std::vector<int> kpScaleIdx(keypoints.size()); // used to save pattern scale index corresponding to each keypoints
|
||||
const std::vector<int>::iterator ScaleIdxBegin = kpScaleIdx.begin(); // used in std::vector erase function
|
||||
const std::vector<cv::KeyPoint>::iterator kpBegin = keypoints.begin(); // used in std::vector erase function
|
||||
const float sizeCst = static_cast<float>(FREAK_NB_SCALES/(FREAK_LOG2* nOctaves)); |
||||
uchar pointsValue[FREAK_NB_POINTS]; |
||||
int thetaIdx = 0; |
||||
int direction0; |
||||
int direction1; |
||||
|
||||
// compute the scale index corresponding to the keypoint size and remove keypoints close to the border
|
||||
if( scaleNormalized ) { |
||||
for( size_t k = keypoints.size(); k--; ) { |
||||
//Is k non-zero? If so, decrement it and continue"
|
||||
kpScaleIdx[k] = max( (int)(log(keypoints[k].size/FREAK_SMALLEST_KP_SIZE)*sizeCst+0.5) ,0); |
||||
if( kpScaleIdx[k] >= FREAK_NB_SCALES ) |
||||
kpScaleIdx[k] = FREAK_NB_SCALES-1; |
||||
|
||||
if( keypoints[k].pt.x <= patternSizes[kpScaleIdx[k]] || //check if the description at this specific position and scale fits inside the image
|
||||
keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] || |
||||
keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] || |
||||
keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]] |
||||
) { |
||||
keypoints.erase(kpBegin+k); |
||||
kpScaleIdx.erase(ScaleIdxBegin+k); |
||||
} |
||||
} |
||||
} |
||||
else { |
||||
const int scIdx = max( (int)(1.0986122886681*sizeCst+0.5) ,0); |
||||
for( size_t k = keypoints.size(); k--; ) { |
||||
kpScaleIdx[k] = scIdx; // equivalent to the formule when the scale is normalized with a constant size of keypoints[k].size=3*SMALLEST_KP_SIZE
|
||||
if( kpScaleIdx[k] >= FREAK_NB_SCALES ) { |
||||
kpScaleIdx[k] = FREAK_NB_SCALES-1; |
||||
} |
||||
if( keypoints[k].pt.x <= patternSizes[kpScaleIdx[k]] || |
||||
keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] || |
||||
keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] || |
||||
keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]] |
||||
) { |
||||
keypoints.erase(kpBegin+k); |
||||
kpScaleIdx.erase(ScaleIdxBegin+k); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// allocate descriptor memory, estimate orientations, extract descriptors
|
||||
if( !extAll ) { |
||||
// extract the best comparisons only
|
||||
descriptors = cv::Mat::zeros(keypoints.size(), FREAK_NB_PAIRS/8, CV_8U); |
||||
#if CV_SSE2 |
||||
__m128i* ptr= (__m128i*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]); |
||||
// binary: 10000000 => char: 128 or hex: 0x80
|
||||
const __m128i binMask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, |
||||
0x80, 0x80, 0x80, 0x80, |
||||
0x80, 0x80, 0x80, 0x80, |
||||
0x80, 0x80, 0x80, 0x80); |
||||
#else |
||||
std::bitset<FREAK_NB_PAIRS>* ptr = (std::bitset<FREAK_NB_PAIRS>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]); |
||||
#endif |
||||
for( size_t k = keypoints.size(); k--; ) { |
||||
// estimate orientation (gradient)
|
||||
if( !orientationNormalized ) { |
||||
thetaIdx = 0; // assign 0° to all keypoints
|
||||
keypoints[k].angle = 0.0; |
||||
} |
||||
else { |
||||
// get the points intensity value in the un-rotated pattern
|
||||
for( int i = FREAK_NB_POINTS; i--; ) { |
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i); |
||||
} |
||||
direction0 = 0; |
||||
direction1 = 0; |
||||
for( int m = 45; m--; ) { |
||||
//iterate through the orientation pairs
|
||||
const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]); |
||||
direction0 += delta*(orientationPairs[m].weight_dx)/2048; |
||||
direction1 += delta*(orientationPairs[m].weight_dy)/2048; |
||||
} |
||||
|
||||
keypoints[k].angle = static_cast<float>(atan2((float)direction1,(float)direction0)*(180.0/CV_PI));//estimate orientation
|
||||
thetaIdx = int(FREAK_NB_ORIENTATION*keypoints[k].angle*(1/360.0)+0.5); |
||||
if( thetaIdx < 0 ) |
||||
thetaIdx += FREAK_NB_ORIENTATION; |
||||
|
||||
if( thetaIdx >= FREAK_NB_ORIENTATION ) |
||||
thetaIdx -= FREAK_NB_ORIENTATION; |
||||
} |
||||
// extract descriptor at the computed orientation
|
||||
for( int i = FREAK_NB_POINTS; i--; ) { |
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i); |
||||
} |
||||
#if CV_SSE2 |
||||
// note that comparisons order is modified in each block (but first 128 comparisons remain globally the same-->does not affect the 128,384 bits segmanted matching strategy)
|
||||
int cnt = 0; |
||||
for( int n = FREAK_NB_PAIRS/128; n-- ; ) |
||||
{ |
||||
__m128i result128 = _mm_setzero_si128(); |
||||
for( int m = 128/16; m--; cnt += 16 ) |
||||
{ |
||||
__m128i operand1 = _mm_set_epi8( |
||||
pointsValue[descriptionPairs[cnt+0].i], |
||||
pointsValue[descriptionPairs[cnt+1].i], |
||||
pointsValue[descriptionPairs[cnt+2].i], |
||||
pointsValue[descriptionPairs[cnt+3].i], |
||||
pointsValue[descriptionPairs[cnt+4].i], |
||||
pointsValue[descriptionPairs[cnt+5].i], |
||||
pointsValue[descriptionPairs[cnt+6].i], |
||||
pointsValue[descriptionPairs[cnt+7].i], |
||||
pointsValue[descriptionPairs[cnt+8].i], |
||||
pointsValue[descriptionPairs[cnt+9].i], |
||||
pointsValue[descriptionPairs[cnt+10].i], |
||||
pointsValue[descriptionPairs[cnt+11].i], |
||||
pointsValue[descriptionPairs[cnt+12].i], |
||||
pointsValue[descriptionPairs[cnt+13].i], |
||||
pointsValue[descriptionPairs[cnt+14].i], |
||||
pointsValue[descriptionPairs[cnt+15].i]); |
||||
|
||||
__m128i operand2 = _mm_set_epi8( |
||||
pointsValue[descriptionPairs[cnt+0].j], |
||||
pointsValue[descriptionPairs[cnt+1].j], |
||||
pointsValue[descriptionPairs[cnt+2].j], |
||||
pointsValue[descriptionPairs[cnt+3].j], |
||||
pointsValue[descriptionPairs[cnt+4].j], |
||||
pointsValue[descriptionPairs[cnt+5].j], |
||||
pointsValue[descriptionPairs[cnt+6].j], |
||||
pointsValue[descriptionPairs[cnt+7].j], |
||||
pointsValue[descriptionPairs[cnt+8].j], |
||||
pointsValue[descriptionPairs[cnt+9].j], |
||||
pointsValue[descriptionPairs[cnt+10].j], |
||||
pointsValue[descriptionPairs[cnt+11].j], |
||||
pointsValue[descriptionPairs[cnt+12].j], |
||||
pointsValue[descriptionPairs[cnt+13].j], |
||||
pointsValue[descriptionPairs[cnt+14].j], |
||||
pointsValue[descriptionPairs[cnt+15].j]); |
||||
|
||||
__m128i workReg = _mm_min_epu8(operand1, operand2); // emulated "not less than" for 8-bit UNSIGNED integers
|
||||
workReg = _mm_cmpeq_epi8(workReg, operand2); // emulated "not less than" for 8-bit UNSIGNED integers
|
||||
|
||||
workReg = _mm_and_si128(_mm_srli_epi16(binMask, m), workReg); // merge the last 16 bits with the 128bits std::vector until full
|
||||
result128 = _mm_or_si128(result128, workReg); |
||||
} |
||||
(*ptr) = result128; |
||||
++ptr; |
||||
} |
||||
ptr -= 8; |
||||
#else |
||||
// extracting descriptor preserving the order of SSE version
|
||||
int cnt = 0; |
||||
for( int n = 7; n < FREAK_NB_PAIRS; n += 128) |
||||
{ |
||||
for( int m = 8; m--; ) |
||||
{ |
||||
int nm = n-m; |
||||
for(int kk = nm+15*8; kk >= nm; kk-=8, ++cnt) |
||||
{ |
||||
ptr->set(kk, pointsValue[descriptionPairs[cnt].i] >= pointsValue[descriptionPairs[cnt].j]); |
||||
} |
||||
} |
||||
} |
||||
--ptr; |
||||
#endif |
||||
} |
||||
} |
||||
else { // extract all possible comparisons for selection
|
||||
descriptors = cv::Mat::zeros(keypoints.size(), 128, CV_8U); |
||||
std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]); |
||||
|
||||
for( size_t k = keypoints.size(); k--; ) { |
||||
//estimate orientation (gradient)
|
||||
if( !orientationNormalized ) { |
||||
thetaIdx = 0;//assign 0° to all keypoints
|
||||
keypoints[k].angle = 0.0; |
||||
} |
||||
else { |
||||
//get the points intensity value in the un-rotated pattern
|
||||
for( int i = FREAK_NB_POINTS;i--; ) |
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i); |
||||
|
||||
direction0 = 0; |
||||
direction1 = 0; |
||||
for( int m = 45; m--; ) { |
||||
//iterate through the orientation pairs
|
||||
const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]); |
||||
direction0 += delta*(orientationPairs[m].weight_dx)/2048; |
||||
direction1 += delta*(orientationPairs[m].weight_dy)/2048; |
||||
} |
||||
|
||||
keypoints[k].angle = static_cast<float>(atan2((float)direction1,(float)direction0)*(180.0/CV_PI)); //estimate orientation
|
||||
thetaIdx = int(FREAK_NB_ORIENTATION*keypoints[k].angle*(1/360.0)+0.5); |
||||
|
||||
if( thetaIdx < 0 ) |
||||
thetaIdx += FREAK_NB_ORIENTATION; |
||||
|
||||
if( thetaIdx >= FREAK_NB_ORIENTATION ) |
||||
thetaIdx -= FREAK_NB_ORIENTATION; |
||||
} |
||||
// get the points intensity value in the rotated pattern
|
||||
for( int i = FREAK_NB_POINTS; i--; ) { |
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x, |
||||
keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i); |
||||
} |
||||
|
||||
int cnt(0); |
||||
for( int i = 1; i < FREAK_NB_POINTS; ++i ) { |
||||
//(generate all the pairs)
|
||||
for( int j = 0; j < i; ++j ) { |
||||
ptr->set(cnt, pointsValue[i] >= pointsValue[j] ); |
||||
++cnt; |
||||
} |
||||
} |
||||
--ptr; |
||||
} |
||||
} |
||||
} |
||||
|
||||
// simply take average on a square patch, not even gaussian approx
|
||||
uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral, |
||||
const float kp_x, |
||||
const float kp_y, |
||||
const unsigned int scale, |
||||
const unsigned int rot, |
||||
const unsigned int point) const { |
||||
// get point position in image
|
||||
const PatternPoint& FreakPoint = patternLookup[scale*FREAK_NB_ORIENTATION*FREAK_NB_POINTS + rot*FREAK_NB_POINTS + point]; |
||||
const float xf = FreakPoint.x+kp_x; |
||||
const float yf = FreakPoint.y+kp_y; |
||||
const int x = int(xf); |
||||
const int y = int(yf); |
||||
const int& imagecols = image.cols; |
||||
|
||||
// get the sigma:
|
||||
const float radius = FreakPoint.sigma; |
||||
|
||||
// calculate output:
|
||||
int ret_val; |
||||
if( radius < 0.5 ) { |
||||
// interpolation multipliers:
|
||||
const int r_x = static_cast<int>((xf-x)*1024); |
||||
const int r_y = static_cast<int>((yf-y)*1024); |
||||
const int r_x_1 = (1024-r_x); |
||||
const int r_y_1 = (1024-r_y); |
||||
uchar* ptr = image.data+x+y*imagecols; |
||||
// linear interpolation:
|
||||
ret_val = (r_x_1*r_y_1*int(*ptr)); |
||||
ptr++; |
||||
ret_val += (r_x*r_y_1*int(*ptr)); |
||||
ptr += imagecols; |
||||
ret_val += (r_x*r_y*int(*ptr)); |
||||
ptr--; |
||||
ret_val += (r_x_1*r_y*int(*ptr)); |
||||
return static_cast<uchar>((ret_val+512)/1024); |
||||
} |
||||
|
||||
// expected case:
|
||||
|
||||
// calculate borders
|
||||
const int x_left = int(xf-radius+0.5); |
||||
const int y_top = int(yf-radius+0.5); |
||||
const int x_right = int(xf+radius+1.5);//integral image is 1px wider
|
||||
const int y_bottom = int(yf+radius+1.5);//integral image is 1px higher
|
||||
|
||||
ret_val = integral.at<int>(y_bottom,x_right);//bottom right corner
|
||||
ret_val -= integral.at<int>(y_bottom,x_left); |
||||
ret_val += integral.at<int>(y_top,x_left); |
||||
ret_val -= integral.at<int>(y_top,x_right); |
||||
ret_val = ret_val/( (x_right-x_left)* (y_bottom-y_top) ); |
||||
//~ std::cout<<integral.step[1]<<std::endl;
|
||||
return static_cast<uchar>(ret_val); |
||||
} |
||||
|
||||
// pair selection algorithm from a set of training images and corresponding keypoints
|
||||
vector<int> FREAK::selectPairs(const std::vector<Mat>& images |
||||
, std::vector<std::vector<KeyPoint> >& keypoints |
||||
, const double corrTresh |
||||
, bool verbose ) |
||||
{ |
||||
extAll = true; |
||||
// compute descriptors with all pairs
|
||||
Mat descriptors; |
||||
|
||||
if( verbose ) |
||||
std::cout << "Number of images: " << images.size() << std::endl; |
||||
|
||||
for( size_t i = 0;i < images.size(); ++i ) { |
||||
Mat descriptorsTmp; |
||||
computeImpl(images[i],keypoints[i],descriptorsTmp); |
||||
descriptors.push_back(descriptorsTmp); |
||||
} |
||||
|
||||
if( verbose ) |
||||
std::cout << "number of keypoints: " << descriptors.rows << std::endl; |
||||
|
||||
//descriptor in floating point format (each bit is a float)
|
||||
Mat descriptorsFloat = Mat::zeros(descriptors.rows, 903, CV_32F); |
||||
|
||||
std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(descriptors.rows-1)*descriptors.step[0]); |
||||
for( size_t m = descriptors.rows; m--; ) { |
||||
for( size_t n = 903; n--; ) { |
||||
if( ptr->test(n) == true ) |
||||
descriptorsFloat.at<float>(m,n)=1.0; |
||||
} |
||||
--ptr; |
||||
} |
||||
|
||||
std::vector<PairStat> pairStat; |
||||
for( size_t n = 903; n--; ) { |
||||
// the higher the variance, the better --> mean = 0.5
|
||||
PairStat tmp = { fabs( mean(descriptorsFloat.col(n))[0]-0.5 ) ,n}; |
||||
pairStat.push_back(tmp); |
||||
} |
||||
|
||||
std::sort( pairStat.begin(),pairStat.end(), sortMean() ); |
||||
|
||||
std::vector<PairStat> bestPairs; |
||||
for( int m = 0; m < 903; ++m ) { |
||||
if( verbose ) |
||||
std::cout << m << ":" << bestPairs.size() << " " << std::flush; |
||||
double corrMax(0); |
||||
|
||||
for( size_t n = 0; n < bestPairs.size(); ++n ) { |
||||
int idxA = bestPairs[n].idx; |
||||
int idxB = pairStat[m].idx; |
||||
double corr(0); |
||||
// compute correlation between 2 pairs
|
||||
corr = fabs(compareHist(descriptorsFloat.col(idxA), descriptorsFloat.col(idxB), CV_COMP_CORREL)); |
||||
|
||||
if( corr > corrMax ) { |
||||
corrMax = corr; |
||||
if( corrMax >= corrTresh ) |
||||
break; |
||||
} |
||||
} |
||||
|
||||
if( corrMax < corrTresh/*0.7*/ ) |
||||
bestPairs.push_back(pairStat[m]); |
||||
|
||||
if( bestPairs.size() >= 512 ) { |
||||
if( verbose ) |
||||
std::cout << m << std::endl; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
std::vector<int> idxBestPairs; |
||||
if( (int)bestPairs.size() >= FREAK_NB_PAIRS ) { |
||||
for( int i = 0; i < FREAK_NB_PAIRS; ++i ) |
||||
idxBestPairs.push_back(bestPairs[i].idx); |
||||
} |
||||
else { |
||||
if( verbose ) |
||||
std::cout << "correlation threshold too small (restrictive)" << std::endl; |
||||
CV_Error(CV_StsError, "correlation threshold too small (restrictive)"); |
||||
} |
||||
extAll = false; |
||||
return idxBestPairs; |
||||
} |
||||
|
||||
|
||||
/*
|
||||
void FREAKImpl::drawPattern() |
||||
{ // create an image showing the brisk pattern
|
||||
Mat pattern = Mat::zeros(1000, 1000, CV_8UC3) + Scalar(255,255,255); |
||||
int sFac = 500 / patternScale; |
||||
for( int n = 0; n < kNB_POINTS; ++n ) { |
||||
PatternPoint& pt = patternLookup[n]; |
||||
circle(pattern, Point( pt.x*sFac,pt.y*sFac)+Point(500,500), pt.sigma*sFac, Scalar(0,0,255),2); |
||||
// rectangle(pattern, Point( (pt.x-pt.sigma)*sFac,(pt.y-pt.sigma)*sFac)+Point(500,500), Point( (pt.x+pt.sigma)*sFac,(pt.y+pt.sigma)*sFac)+Point(500,500), Scalar(0,0,255),2);
|
||||
|
||||
circle(pattern, Point( pt.x*sFac,pt.y*sFac)+Point(500,500), 1, Scalar(0,0,0),3); |
||||
std::ostringstream oss; |
||||
oss << n; |
||||
putText( pattern, oss.str(), Point( pt.x*sFac,pt.y*sFac)+Point(500,500), FONT_HERSHEY_SIMPLEX,0.5, Scalar(0,0,0), 1); |
||||
} |
||||
imshow( "FreakDescriptorExtractor pattern", pattern ); |
||||
waitKey(0); |
||||
} |
||||
*/ |
||||
|
||||
// -------------------------------------------------
|
||||
/* FREAK interface implementation */ |
||||
FREAK::FREAK( bool _orientationNormalized, bool _scaleNormalized |
||||
, float _patternScale, int _nOctaves, const std::vector<int>& _selectedPairs ) |
||||
: orientationNormalized(_orientationNormalized), scaleNormalized(_scaleNormalized), |
||||
patternScale(_patternScale), nOctaves(_nOctaves), extAll(false), nOctaves0(0), selectedPairs0(_selectedPairs) |
||||
{ |
||||
} |
||||
|
||||
FREAK::~FREAK() |
||||
{ |
||||
} |
||||
|
||||
int FREAK::descriptorSize() const { |
||||
return FREAK_NB_PAIRS / 8; // descriptor length in bytes
|
||||
} |
||||
|
||||
int FREAK::descriptorType() const { |
||||
return CV_8U; |
||||
} |
||||
|
||||
} // END NAMESPACE CV
|
@ -0,0 +1,128 @@ |
||||
// demo.cpp
|
||||
//
|
||||
// Here is an example on how to use the descriptor presented in the following paper:
|
||||
// A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. In IEEE Conference on Computer Vision and Pattern Recognition, 2012.
|
||||
// CVPR 2012 Open Source Award winner
|
||||
//
|
||||
// Copyright (C) 2011-2012 Signal processing laboratory 2, EPFL,
|
||||
// Kirell Benzi (kirell.benzi@epfl.ch),
|
||||
// Raphael Ortiz (raphael.ortiz@a3.epfl.ch),
|
||||
// Alexandre Alahi (alexandre.alahi@epfl.ch)
|
||||
// and Pierre Vandergheynst (pierre.vandergheynst@epfl.ch)
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
|
||||
#include <iostream> |
||||
#include <string> |
||||
#include <vector> |
||||
|
||||
#include <opencv2/core/core.hpp> |
||||
#include <opencv2/highgui/highgui.hpp> |
||||
#include <opencv2/features2d/features2d.hpp> |
||||
#include <opencv2/nonfree/features2d.hpp> |
||||
#include <opencv2/legacy/legacy.hpp> |
||||
|
||||
using namespace cv; |
||||
|
||||
static void help( char** argv ) |
||||
{ |
||||
std::cout << "\nUsage: " << argv[0] << " [path/to/image1] [path/to/image2] \n" |
||||
<< "This is an example on how to use the keypoint descriptor presented in the following paper: \n" |
||||
<< "A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. \n" |
||||
<< "In IEEE Conference on Computer Vision and Pattern Recognition, 2012. CVPR 2012 Open Source Award winner \n" |
||||
<< std::endl; |
||||
} |
||||
|
||||
int main( int argc, char** argv ) { |
||||
// check http://opencv.itseez.com/doc/tutorials/features2d/table_of_content_features2d/table_of_content_features2d.html
|
||||
// for OpenCV general detection/matching framework details
|
||||
|
||||
if( argc != 3 ) { |
||||
help(argv); |
||||
return -1; |
||||
} |
||||
|
||||
// Load images
|
||||
Mat imgA = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE ); |
||||
if( !imgA.data ) { |
||||
std::cout<< " --(!) Error reading image " << argv[1] << std::endl; |
||||
return -1; |
||||
} |
||||
|
||||
Mat imgB = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE ); |
||||
if( !imgA.data ) { |
||||
std::cout << " --(!) Error reading image " << argv[2] << std::endl; |
||||
return -1; |
||||
} |
||||
|
||||
std::vector<KeyPoint> keypointsA, keypointsB; |
||||
Mat descriptorsA, descriptorsB; |
||||
std::vector<DMatch> matches; |
||||
|
||||
// DETECTION
|
||||
// Any openCV detector such as
|
||||
SurfFeatureDetector detector(2000,4); |
||||
|
||||
// DESCRIPTOR
|
||||
// Our proposed FREAK descriptor
|
||||
// (roation invariance, scale invariance, pattern radius corresponding to SMALLEST_KP_SIZE,
|
||||
// number of octaves, optional vector containing the selected pairs)
|
||||
// FREAK extractor(true, true, 22, 4, std::vector<int>());
|
||||
FREAK extractor; |
||||
|
||||
// MATCHER
|
||||
// The standard Hamming distance can be used such as
|
||||
// BruteForceMatcher<Hamming> matcher;
|
||||
// or the proposed cascade of hamming distance using SSSE3
|
||||
BruteForceMatcher<Hamming> matcher; |
||||
|
||||
// detect
|
||||
double t = (double)getTickCount(); |
||||
detector.detect( imgA, keypointsA ); |
||||
detector.detect( imgB, keypointsB ); |
||||
t = ((double)getTickCount() - t)/getTickFrequency(); |
||||
std::cout << "detection time [s]: " << t/1.0 << std::endl; |
||||
|
||||
// extract
|
||||
t = (double)getTickCount(); |
||||
extractor.compute( imgA, keypointsA, descriptorsA ); |
||||
extractor.compute( imgB, keypointsB, descriptorsB ); |
||||
t = ((double)getTickCount() - t)/getTickFrequency(); |
||||
std::cout << "extraction time [s]: " << t << std::endl; |
||||
|
||||
// match
|
||||
t = (double)getTickCount(); |
||||
matcher.match(descriptorsA, descriptorsB, matches); |
||||
t = ((double)getTickCount() - t)/getTickFrequency(); |
||||
std::cout << "matching time [s]: " << t << std::endl; |
||||
|
||||
// Draw matches
|
||||
Mat imgMatch; |
||||
drawMatches(imgA, keypointsA, imgB, keypointsB, matches, imgMatch); |
||||
|
||||
namedWindow("matches", CV_WINDOW_KEEPRATIO); |
||||
imshow("matches", imgMatch); |
||||
waitKey(0); |
||||
} |
Loading…
Reference in new issue