Cleanup core module API

* Drop some low level API
* Remove outdated overloads
* Utilize Input/OutputArray
pull/791/head
Andrey Kamaev 12 years ago
parent f4ae0cf19c
commit b0e6606b98
  1. 61
      modules/core/include/opencv2/core.hpp
  2. 11
      modules/core/src/arithm.cpp
  3. 29
      modules/core/src/convert.cpp
  4. 20
      modules/core/src/lapack.cpp
  5. 5
      modules/core/src/matmul.cpp
  6. 7
      modules/core/src/matrix.cpp
  7. 8
      modules/core/src/precomp.hpp
  8. 5
      modules/core/src/rand.cpp
  9. 6
      modules/core/test/test_eigen.cpp
  10. 14
      modules/java/android_test/src/org/opencv/test/core/CoreTest.java
  11. 5
      modules/java/generator/gen_java.py
  12. 14
      modules/python/src2/gen2.py
  13. 8
      modules/video/src/bgfg_gaussmix2.cpp

@ -109,15 +109,6 @@ public:
CV_EXPORTS void error( const Exception& exc );
typedef void (*BinaryFunc)(const uchar* src1, size_t step1,
const uchar* src2, size_t step2,
uchar* dst, size_t step, Size sz,
void*);
CV_EXPORTS BinaryFunc getConvertFunc(int sdepth, int ddepth);
CV_EXPORTS BinaryFunc getConvertScaleFunc(int sdepth, int ddepth);
CV_EXPORTS BinaryFunc getCopyMaskFunc(size_t esz);
//! swaps two matrices
CV_EXPORTS void swap(Mat& a, Mat& b);
@ -153,8 +144,7 @@ CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
double alpha = 1, double beta = 0);
//! transforms array of numbers using a lookup table: dst(i)=lut(src(i))
CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst,
int interpolation = 0);
CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
//! computes sum of array elements
CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src);
@ -227,11 +217,11 @@ CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
const int* fromTo, size_t npairs);
CV_EXPORTS void mixChannels(const std::vector<Mat>& src, std::vector<Mat>& dst,
const int* fromTo, size_t npairs); //TODO: use arrays
CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
const int* fromTo, size_t npairs);
CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputArrayOfArrays dst,
const std::vector<int>& fromTo); //TODO: InputOutputArrayOfArrays
CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
const std::vector<int>& fromTo);
//! extracts a single channel from src (coi is 0-based index)
CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
@ -291,15 +281,12 @@ CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
//! computes per-element maximum of two arrays (dst = max(src1, src2))
CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst);
//TODO: can we drop these versions?
// the following overloads are needed to avoid conflicts with
// const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
//! computes per-element minimum of two arrays (dst = min(src1, src2))
CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst);
//! computes per-element minimum of array and scalar (dst = min(src1, src2))
CV_EXPORTS void min(const Mat& src1, double src2, Mat& dst);
//! computes per-element maximum of two arrays (dst = max(src1, src2))
CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst);
//! computes per-element maximum of array and scalar (dst = max(src1, src2))
CV_EXPORTS void max(const Mat& src1, double src2, Mat& dst);
//! computes square root of each matrix element (dst = src**0.5)
CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
@ -393,17 +380,9 @@ CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
//! finds real and complex roots of a polynomial
CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300);
//! finds eigenvalues of a symmetric matrix
CV_EXPORTS bool eigen(InputArray src, OutputArray eigenvalues, int lowindex = -1,
int highindex = -1);
//! finds eigenvalues and eigenvectors of a symmetric matrix
CV_EXPORTS bool eigen(InputArray src, OutputArray eigenvalues,
OutputArray eigenvectors,
int lowindex = -1, int highindex = -1);
CV_EXPORTS_W bool eigen(InputArray src, bool computeEigenvectors,
OutputArray eigenvalues, OutputArray eigenvectors);
CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
OutputArray eigenvectors = noArray());
enum
{
@ -417,10 +396,10 @@ enum
//! computes covariation matrix of a set of samples
CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean,
int flags, int ctype = CV_64F); //TODO: output arrays or drop
int flags, int ctype = CV_64F); //TODO: InputArrayOfArrays
//! computes covariation matrix of a set of samples
CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar, //TODO: InputArrayOfArrays
CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
OutputArray mean, int flags, int ctype = CV_64F);
CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
@ -445,9 +424,6 @@ CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
//! computes Mahalanobis distance between two vectors: sqrt((v1-v2)'*icovar*(v1-v2)), where icovar is the inverse covariation matrix
CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar);
//! a synonym for Mahalanobis
CV_EXPORTS double Mahalonobis(InputArray v1, InputArray v2, InputArray icovar); //TODO: check if we can drop it or move to legacy
//! performs forward or inverse 1D or 2D Discrete Fourier Transformation
CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
@ -492,9 +468,7 @@ CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev);
//! shuffles the input array elements
CV_EXPORTS void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
CV_EXPORTS_AS(randShuffle) void randShuffle_(InputOutputArray dst, double iterFactor = 1.);
CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
enum { FILLED = -1,
LINE_4 = 4,
@ -601,17 +575,6 @@ CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
double fontScale, int thickness,
CV_OUT int* baseLine);
typedef void (*ConvertData)(const void* from, void* to, int cn);
typedef void (*ConvertScaleData)(const void* from, void* to, int cn, double alpha, double beta);
//! returns the function for converting pixels from one data type to another
CV_EXPORTS ConvertData getConvertElem(int fromType, int toType);
//! returns the function for converting pixels from one data type to another with the optional scaling
CV_EXPORTS ConvertScaleData getConvertScaleElem(int fromType, int toType);
/*!
Principal Component Analysis

@ -1197,17 +1197,6 @@ void cv::min(const Mat& src1, const Mat& src2, Mat& dst)
binary_op(src1, src2, _dst, noArray(), minTab, false );
}
void cv::max(const Mat& src1, double src2, Mat& dst)
{
OutputArray _dst(dst);
binary_op(src1, src2, _dst, noArray(), maxTab, false );
}
void cv::min(const Mat& src1, double src2, Mat& dst)
{
OutputArray _dst(dst);
binary_op(src1, src2, _dst, noArray(), minTab, false );
}
/****************************************************************************************\
* add/subtract *

@ -505,14 +505,30 @@ void cv::mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, cons
}
void cv::mixChannels(const std::vector<Mat>& src, std::vector<Mat>& dst,
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
const int* fromTo, size_t npairs)
{
mixChannels(!src.empty() ? &src[0] : 0, src.size(),
!dst.empty() ? &dst[0] : 0, dst.size(), fromTo, npairs);
if(npairs == 0)
return;
bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT &&
src.kind() != _InputArray::STD_VECTOR_VECTOR;
bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT &&
dst.kind() != _InputArray::STD_VECTOR_VECTOR;
int i;
int nsrc = src_is_mat ? 1 : (int)src.total();
int ndst = dst_is_mat ? 1 : (int)dst.total();
CV_Assert(nsrc > 0 && ndst > 0);
cv::AutoBuffer<Mat> _buf(nsrc + ndst);
Mat* buf = _buf;
for( i = 0; i < nsrc; i++ )
buf[i] = src.getMat(src_is_mat ? -1 : i);
for( i = 0; i < ndst; i++ )
buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i);
mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, fromTo, npairs);
}
void cv::mixChannels(InputArrayOfArrays src, InputArrayOfArrays dst,
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
const std::vector<int>& fromTo)
{
if(fromTo.empty())
@ -1027,7 +1043,7 @@ BinaryFunc getConvertFunc(int sdepth, int ddepth)
return cvtTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)];
}
BinaryFunc getConvertScaleFunc(int sdepth, int ddepth)
static BinaryFunc getConvertScaleFunc(int sdepth, int ddepth)
{
return cvtScaleTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)];
}
@ -1173,10 +1189,9 @@ static LUTFunc lutTab[] =
}
void cv::LUT( InputArray _src, InputArray _lut, OutputArray _dst, int interpolation )
void cv::LUT( InputArray _src, InputArray _lut, OutputArray _dst )
{
Mat src = _src.getMat(), lut = _lut.getMat();
CV_Assert( interpolation == 0 );
int cn = src.channels();
int lutcn = lut.channels();

@ -1464,7 +1464,7 @@ bool cv::solve( InputArray _src, InputArray _src2arg, OutputArray _dst, int meth
/////////////////// finding eigenvalues and eigenvectors of a symmetric matrix ///////////////
bool cv::eigen( InputArray _src, bool computeEvects, OutputArray _evals, OutputArray _evects )
bool cv::eigen( InputArray _src, OutputArray _evals, OutputArray _evects )
{
Mat src = _src.getMat();
int type = src.type();
@ -1474,7 +1474,7 @@ bool cv::eigen( InputArray _src, bool computeEvects, OutputArray _evals, OutputA
CV_Assert (type == CV_32F || type == CV_64F);
Mat v;
if( computeEvects )
if( _evects.needed() )
{
_evects.create(n, n, type);
v = _evects.getMat();
@ -1494,16 +1494,6 @@ bool cv::eigen( InputArray _src, bool computeEvects, OutputArray _evals, OutputA
return ok;
}
bool cv::eigen( InputArray src, OutputArray evals, int, int )
{
return eigen(src, false, evals, noArray());
}
bool cv::eigen( InputArray src, OutputArray evals, OutputArray evects, int, int)
{
return eigen(src, true, evals, evects);
}
namespace cv
{
@ -1705,13 +1695,13 @@ cvSolve( const CvArr* Aarr, const CvArr* barr, CvArr* xarr, int method )
CV_IMPL void
cvEigenVV( CvArr* srcarr, CvArr* evectsarr, CvArr* evalsarr, double,
int lowindex, int highindex)
int, int )
{
cv::Mat src = cv::cvarrToMat(srcarr), evals0 = cv::cvarrToMat(evalsarr), evals = evals0;
if( evectsarr )
{
cv::Mat evects0 = cv::cvarrToMat(evectsarr), evects = evects0;
eigen(src, evals, evects, lowindex, highindex);
eigen(src, evals, evects);
if( evects0.data != evects.data )
{
uchar* p = evects0.data;
@ -1720,7 +1710,7 @@ cvEigenVV( CvArr* srcarr, CvArr* evectsarr, CvArr* evalsarr, double,
}
}
else
eigen(src, evals, lowindex, highindex);
eigen(src, evals);
if( evals0.data != evals.data )
{
uchar* p = evals0.data;

@ -2308,11 +2308,6 @@ double cv::Mahalanobis( InputArray _v1, InputArray _v2, InputArray _icovar )
return std::sqrt(result);
}
double cv::Mahalonobis( InputArray _v1, InputArray _v2, InputArray _icovar )
{
return Mahalanobis(_v1, _v2, _icovar);
}
/****************************************************************************************\
* MulTransposed *
\****************************************************************************************/

@ -3448,7 +3448,10 @@ convertScaleData_(const void* _from, void* _to, int cn, double alpha, double bet
to[i] = saturate_cast<T2>(from[i]*alpha + beta);
}
ConvertData getConvertElem(int fromType, int toType)
typedef void (*ConvertData)(const void* from, void* to, int cn);
typedef void (*ConvertScaleData)(const void* from, void* to, int cn, double alpha, double beta);
static ConvertData getConvertElem(int fromType, int toType)
{
static ConvertData tab[][8] =
{{ convertData_<uchar, uchar>, convertData_<uchar, schar>,
@ -3493,7 +3496,7 @@ ConvertData getConvertElem(int fromType, int toType)
return func;
}
ConvertScaleData getConvertScaleElem(int fromType, int toType)
static ConvertScaleData getConvertScaleElem(int fromType, int toType)
{
static ConvertScaleData tab[][8] =
{{ convertScaleData_<uchar, uchar>, convertScaleData_<uchar, schar>,

@ -69,6 +69,14 @@
namespace cv
{
typedef void (*BinaryFunc)(const uchar* src1, size_t step1,
const uchar* src2, size_t step2,
uchar* dst, size_t step, Size sz,
void*);
BinaryFunc getConvertFunc(int sdepth, int ddepth);
BinaryFunc getCopyMaskFunc(size_t esz);
/* default memory block for sparse array elements */
#define CV_SPARSE_MAT_BLOCK (1<<12)

@ -861,11 +861,6 @@ void cv::randShuffle( InputOutputArray _dst, double iterFactor, RNG* _rng )
func( dst, rng, iterFactor );
}
void cv::randShuffle_( InputOutputArray _dst, double iterFactor )
{
randShuffle(_dst, iterFactor);
}
CV_IMPL void
cvRandArr( CvRNG* _rng, CvArr* arr, int disttype, CvScalar param1, CvScalar param2 )
{

@ -294,7 +294,7 @@ bool Core_EigenTest::test_pairs(const cv::Mat& src)
cv::Mat eigen_values, eigen_vectors;
cv::eigen(src, true, eigen_values, eigen_vectors);
cv::eigen(src, eigen_values, eigen_vectors);
if (!check_pair_count(src, eigen_values, eigen_vectors)) return false;
@ -362,8 +362,8 @@ bool Core_EigenTest::test_values(const cv::Mat& src)
if (!test_pairs(src)) return false;
cv::eigen(src, true, eigen_values_1, eigen_vectors);
cv::eigen(src, false, eigen_values_2, eigen_vectors);
cv::eigen(src, eigen_values_1, eigen_vectors);
cv::eigen(src, eigen_values_2);
if (!check_pair_count(src, eigen_values_2)) return false;

@ -460,7 +460,7 @@ public class CoreTest extends OpenCVTestCase {
Mat eigenVals = new Mat();
Mat eigenVecs = new Mat();
Core.eigen(src, true, eigenVals, eigenVecs);
Core.eigen(src, eigenVals, eigenVecs);
Mat expectedEigenVals = new Mat(3, 1, CvType.CV_32FC1) {
{
@ -1113,18 +1113,6 @@ public class CoreTest extends OpenCVTestCase {
assertMatEqual(gray255, dst);
}
public void testLUTMatMatMatInt() {
Mat lut = new Mat(1, 256, CvType.CV_8UC1);
// TODO: ban this overload
try
{
Core.LUT(grayRnd, lut, dst, 1);
fail("Last parameter for LUT was not supported");
} catch (CvException e) {
// expected
}
}
public void testMagnitude() {
Mat x = new Mat(1, 4, CvType.CV_32F);
Mat y = new Mat(1, 4, CvType.CV_32F);

@ -996,6 +996,11 @@ extern "C" {
return
for a in fi.args:
if a.ctype not in type_dict:
if not a.defval and a.ctype.endswith("*"):
a.defval = 0
if a.defval:
a.ctype = ''
continue
msg = "// Unknown type '%s' (%s), skipping the function\n\n" % (a.ctype, a.out or "I")
self.skipped_func_list.append(c_decl + "\n" + msg)
j_code.write( " "*4 + msg )

@ -3,6 +3,8 @@
import hdr_parser, sys, re, os, cStringIO
from string import Template
ignored_arg_types = ["RNG*"]
gen_template_check_self = Template(""" if(!PyObject_TypeCheck(self, &pyopencv_${name}_Type))
return failmsgp("Incorrect type of self (must be '${name}' or its derivative)");
$cname* _self_ = ${amp}((pyopencv_${name}_t*)self)->v;
@ -426,6 +428,8 @@ class FuncVariant(object):
argno += 1
if a.name in self.array_counters:
continue
if a.tp in ignored_arg_types:
continue
if a.returnarg:
outlist.append((a.name, argno))
if (not a.inputarg) and a.isbig():
@ -586,6 +590,16 @@ class FuncInfo(object):
# form the function/method call,
# for the list of type mappings
for a in v.args:
if a.tp in ignored_arg_types:
defval = a.defval
if not defval and a.tp.endswith("*"):
defval = 0
assert defval
if not code_fcall.endswith("("):
code_fcall += ", "
code_fcall += defval
all_cargs.append([[None, ""], ""])
continue
tp1 = tp = a.tp
amp = ""
defval0 = ""

@ -486,8 +486,6 @@ public:
tau = _tau;
detectShadows = _detectShadows;
shadowVal = _shadowVal;
cvtfunc = src->depth() != CV_32F ? getConvertFunc(src->depth(), CV_32F) : 0;
}
void operator()(const Range& range) const
@ -501,8 +499,8 @@ public:
for( int y = y0; y < y1; y++ )
{
const float* data = buf;
if( cvtfunc )
cvtfunc( src->ptr(y), src->step, 0, 0, (uchar*)data, 0, Size(ncols*nchannels, 1), 0);
if( src->depth() != CV_32F )
src->row(y).convertTo(Mat(1, ncols, CV_32FC(nchannels), (void*)data), CV_32F);
else
data = src->ptr<float>(y);
@ -685,8 +683,6 @@ public:
bool detectShadows;
uchar shadowVal;
BinaryFunc cvtfunc;
};
void BackgroundSubtractorMOG2Impl::apply(InputArray _image, OutputArray _fgmask, double learningRate)

Loading…
Cancel
Save