|
|
|
@ -59,13 +59,13 @@ typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode |
|
|
|
|
int right __attribute__((aligned(4))); |
|
|
|
|
} |
|
|
|
|
GpuHidHaarTreeNode; |
|
|
|
|
typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier |
|
|
|
|
{ |
|
|
|
|
int count __attribute__((aligned(4))); |
|
|
|
|
GpuHidHaarTreeNode *node __attribute__((aligned(8))); |
|
|
|
|
float *alpha __attribute__((aligned(8))); |
|
|
|
|
} |
|
|
|
|
GpuHidHaarClassifier; |
|
|
|
|
//typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier |
|
|
|
|
//{ |
|
|
|
|
// int count __attribute__((aligned(4))); |
|
|
|
|
// GpuHidHaarTreeNode *node __attribute__((aligned(8))); |
|
|
|
|
// float *alpha __attribute__((aligned(8))); |
|
|
|
|
//} |
|
|
|
|
//GpuHidHaarClassifier; |
|
|
|
|
typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier |
|
|
|
|
{ |
|
|
|
|
int count __attribute__((aligned(4))); |
|
|
|
@ -77,29 +77,29 @@ typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier |
|
|
|
|
int reserved3 __attribute__((aligned(8))); |
|
|
|
|
} |
|
|
|
|
GpuHidHaarStageClassifier; |
|
|
|
|
typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade |
|
|
|
|
{ |
|
|
|
|
int count __attribute__((aligned(4))); |
|
|
|
|
int is_stump_based __attribute__((aligned(4))); |
|
|
|
|
int has_tilted_features __attribute__((aligned(4))); |
|
|
|
|
int is_tree __attribute__((aligned(4))); |
|
|
|
|
int pq0 __attribute__((aligned(4))); |
|
|
|
|
int pq1 __attribute__((aligned(4))); |
|
|
|
|
int pq2 __attribute__((aligned(4))); |
|
|
|
|
int pq3 __attribute__((aligned(4))); |
|
|
|
|
int p0 __attribute__((aligned(4))); |
|
|
|
|
int p1 __attribute__((aligned(4))); |
|
|
|
|
int p2 __attribute__((aligned(4))); |
|
|
|
|
int p3 __attribute__((aligned(4))); |
|
|
|
|
float inv_window_area __attribute__((aligned(4))); |
|
|
|
|
} GpuHidHaarClassifierCascade; |
|
|
|
|
//typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade |
|
|
|
|
//{ |
|
|
|
|
// int count __attribute__((aligned(4))); |
|
|
|
|
// int is_stump_based __attribute__((aligned(4))); |
|
|
|
|
// int has_tilted_features __attribute__((aligned(4))); |
|
|
|
|
// int is_tree __attribute__((aligned(4))); |
|
|
|
|
// int pq0 __attribute__((aligned(4))); |
|
|
|
|
// int pq1 __attribute__((aligned(4))); |
|
|
|
|
// int pq2 __attribute__((aligned(4))); |
|
|
|
|
// int pq3 __attribute__((aligned(4))); |
|
|
|
|
// int p0 __attribute__((aligned(4))); |
|
|
|
|
// int p1 __attribute__((aligned(4))); |
|
|
|
|
// int p2 __attribute__((aligned(4))); |
|
|
|
|
// int p3 __attribute__((aligned(4))); |
|
|
|
|
// float inv_window_area __attribute__((aligned(4))); |
|
|
|
|
//} GpuHidHaarClassifierCascade; |
|
|
|
|
|
|
|
|
|
__kernel void gpuRunHaarClassifierCascade_scaled2( |
|
|
|
|
global GpuHidHaarStageClassifier *stagecascadeptr, |
|
|
|
|
global GpuHidHaarStageClassifier *stagecascadeptr_, |
|
|
|
|
global int4 *info, |
|
|
|
|
global GpuHidHaarTreeNode *nodeptr, |
|
|
|
|
global GpuHidHaarTreeNode *nodeptr_, |
|
|
|
|
global const int *restrict sum, |
|
|
|
|
global const float *restrict sqsum, |
|
|
|
|
global const float *restrict sqsum, |
|
|
|
|
global int4 *candidate, |
|
|
|
|
const int rows, |
|
|
|
|
const int cols, |
|
|
|
@ -132,8 +132,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( |
|
|
|
|
int max_idx = rows * cols - 1; |
|
|
|
|
for (int scalei = 0; scalei < loopcount; scalei++) |
|
|
|
|
{ |
|
|
|
|
int4 scaleinfo1; |
|
|
|
|
scaleinfo1 = info[scalei]; |
|
|
|
|
int4 scaleinfo1 = info[scalei]; |
|
|
|
|
int grpnumperline = (scaleinfo1.y & 0xffff0000) >> 16; |
|
|
|
|
int totalgrp = scaleinfo1.y & 0xffff; |
|
|
|
|
float factor = as_float(scaleinfo1.w); |
|
|
|
@ -174,15 +173,18 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( |
|
|
|
|
for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++) |
|
|
|
|
{ |
|
|
|
|
float stage_sum = 0.f; |
|
|
|
|
int stagecount = stagecascadeptr[stageloop].count; |
|
|
|
|
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*) |
|
|
|
|
(((__global uchar*)stagecascadeptr_)+stageloop*sizeof(GpuHidHaarStageClassifier)); |
|
|
|
|
int stagecount = stageinfo->count; |
|
|
|
|
for (int nodeloop = 0; nodeloop < stagecount;) |
|
|
|
|
{ |
|
|
|
|
__global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter); |
|
|
|
|
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*) |
|
|
|
|
(((__global uchar*)nodeptr_) + nodecounter * sizeof(GpuHidHaarTreeNode)); |
|
|
|
|
int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0])); |
|
|
|
|
int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0])); |
|
|
|
|
int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0])); |
|
|
|
|
float4 w = *(__global float4 *)(&(currentnodeptr->weight[0])); |
|
|
|
|
float3 alpha3 = *(__global float3 *)(&(currentnodeptr->alpha[0])); |
|
|
|
|
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0])); |
|
|
|
|
float nodethreshold = w.w * variance_norm_factor; |
|
|
|
|
|
|
|
|
|
info1.x += p_offset; |
|
|
|
@ -204,7 +206,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( |
|
|
|
|
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)] |
|
|
|
|
+ sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z; |
|
|
|
|
|
|
|
|
|
bool passThres = classsum >= nodethreshold; |
|
|
|
|
bool passThres = (classsum >= nodethreshold) ? 1 : 0; |
|
|
|
|
|
|
|
|
|
#if STUMP_BASED |
|
|
|
|
stage_sum += passThres ? alpha3.y : alpha3.x; |
|
|
|
@ -234,7 +236,8 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
result = (int)(stage_sum >= stagecascadeptr[stageloop].threshold); |
|
|
|
|
|
|
|
|
|
result = (stage_sum >= stageinfo->threshold) ? 1 : 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE); |
|
|
|
@ -281,11 +284,14 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, int nodenum) |
|
|
|
|
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, const int nodenum) |
|
|
|
|
{ |
|
|
|
|
int counter = get_global_id(0); |
|
|
|
|
const int counter = get_global_id(0); |
|
|
|
|
int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0; |
|
|
|
|
GpuHidHaarTreeNode t1 = *(orinode + counter); |
|
|
|
|
GpuHidHaarTreeNode t1 = *(__global GpuHidHaarTreeNode*) |
|
|
|
|
(((__global uchar*)orinode) + counter * sizeof(GpuHidHaarTreeNode)); |
|
|
|
|
__global GpuHidHaarTreeNode* pNew = (__global GpuHidHaarTreeNode*) |
|
|
|
|
(((__global uchar*)newnode) + (counter + nodenum) * sizeof(GpuHidHaarTreeNode)); |
|
|
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
|
for (i = 0; i < 3; i++) |
|
|
|
@ -297,22 +303,21 @@ __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuH |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
t1.weight[0] = -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]); |
|
|
|
|
counter += nodenum; |
|
|
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
|
for (i = 0; i < 3; i++) |
|
|
|
|
{ |
|
|
|
|
newnode[counter].p[i][0] = tr_x[i]; |
|
|
|
|
newnode[counter].p[i][1] = tr_y[i]; |
|
|
|
|
newnode[counter].p[i][2] = tr_x[i] + tr_w[i]; |
|
|
|
|
newnode[counter].p[i][3] = tr_y[i] + tr_h[i]; |
|
|
|
|
newnode[counter].weight[i] = t1.weight[i] * weight_scale; |
|
|
|
|
pNew->p[i][0] = tr_x[i]; |
|
|
|
|
pNew->p[i][1] = tr_y[i]; |
|
|
|
|
pNew->p[i][2] = tr_x[i] + tr_w[i]; |
|
|
|
|
pNew->p[i][3] = tr_y[i] + tr_h[i]; |
|
|
|
|
pNew->weight[i] = t1.weight[i] * weight_scale; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
newnode[counter].left = t1.left; |
|
|
|
|
newnode[counter].right = t1.right; |
|
|
|
|
newnode[counter].threshold = t1.threshold; |
|
|
|
|
newnode[counter].alpha[0] = t1.alpha[0]; |
|
|
|
|
newnode[counter].alpha[1] = t1.alpha[1]; |
|
|
|
|
newnode[counter].alpha[2] = t1.alpha[2]; |
|
|
|
|
pNew->left = t1.left; |
|
|
|
|
pNew->right = t1.right; |
|
|
|
|
pNew->threshold = t1.threshold; |
|
|
|
|
pNew->alpha[0] = t1.alpha[0]; |
|
|
|
|
pNew->alpha[1] = t1.alpha[1]; |
|
|
|
|
pNew->alpha[2] = t1.alpha[2]; |
|
|
|
|
} |
|
|
|
|