Added declaration, definition and unit test for initInverseRectificationMap()

Fixed trailing whitespace

Update to initInverseRectificationMap documentation for clarity

Added test case for initInverseRectificationMap()
Updated documentation.

Fixed whitespace error in docs

Small update to test function
Now passes success_error_level

final update to inverseRectification documentation
pull/20165/head
Ian Maquignaz 4 years ago
parent 993416d9cf
commit b05631432b
  1. 71
      modules/calib3d/include/opencv2/calib3d.hpp
  2. 11
      modules/calib3d/perf/perf_undistort.cpp
  3. 121
      modules/calib3d/src/undistort.dispatch.cpp
  4. 195
      modules/calib3d/test/test_undistort.cpp
  5. 1
      modules/ts/include/opencv2/ts.hpp
  6. 80
      modules/ts/src/ts_func.cpp

@ -3711,6 +3711,77 @@ void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs,
InputArray R, InputArray newCameraMatrix,
Size size, int m1type, OutputArray map1, OutputArray map2);
/** @brief Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.
The function computes the joint projection and inverse rectification transformation and represents the
result in the form of maps for #remap. The projected image looks like a distorted version of the original which,
once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix
is usually equal to cameraMatrix, or it can be computed by
#getOptimalNewCameraMatrix for a better control over scaling. In case of a projector-camera pair,
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs,
this helps align the projector (in the same manner as #initUndistortRectifyMap for the camera) to create a stereo-rectified pair. This
allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair).
The function builds the maps for the inverse mapping algorithm that is used by #remap. That
is, for each pixel \f$(u, v)\f$ in the destination (projected and inverse-rectified) image, the function
computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied:
\f[
\begin{array}{l}
\text{newCameraMatrix}\\
x \leftarrow (u - {c'}_x)/{f'}_x \\
y \leftarrow (v - {c'}_y)/{f'}_y \\
\\\text{Undistortion}
\\\scriptsize{\textit{though equation shown is for radial undistortion, function implements cv::undistortPoints()}}\\
r^2 \leftarrow x^2 + y^2 \\
\theta \leftarrow \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}\\
x' \leftarrow \frac{x}{\theta} \\
y' \leftarrow \frac{y}{\theta} \\
\\\text{Rectification}\\
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
x'' \leftarrow X/W \\
y'' \leftarrow Y/W \\
\\\text{cameraMatrix}\\
map_x(u,v) \leftarrow x'' f_x + c_x \\
map_y(u,v) \leftarrow y'' f_y + c_y
\end{array}
\f]
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
are the distortion coefficients vector distCoeffs.
In case of a stereo-rectified projector-camera pair, this function is called for the projector while #initUndistortRectifyMap is called for the camera head.
This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair
is not calibrated, it is still possible to compute the rectification transformations directly from
the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
space. R can be computed from H as
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
where cameraMatrix can be chosen arbitrarily.
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2,
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
is assumed.
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
@param size Undistorted image size.
@param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
@param map1 The first output map for #remap.
@param map2 The second output map for #remap.
*/
CV_EXPORTS_W
void initInverseRectificationMap( InputArray cameraMatrix, InputArray distCoeffs,
InputArray R, InputArray newCameraMatrix,
Size size, int m1type, OutputArray map1, OutputArray map2 );
//! initializes maps for #remap for wide-angle
CV_EXPORTS
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,

@ -16,4 +16,15 @@ PERF_TEST(Undistort, InitUndistortMap)
SANITY_CHECK_NOTHING();
}
PERF_TEST(Undistort, InitInverseRectificationMap)
{
Size size_w_h(512 + 3, 512);
Mat k(3, 3, CV_32FC1);
Mat d(1, 14, CV_64FC1);
Mat dst(size_w_h, CV_32FC2);
declare.in(k, d, WARMUP_RNG).out(dst);
TEST_CYCLE() initInverseRectificationMap(k, d, noArray(), k, size_w_h, CV_32FC2, dst, noArray());
SANITY_CHECK_NOTHING();
}
} // namespace

@ -164,6 +164,127 @@ void initUndistortRectifyMap( InputArray _cameraMatrix, InputArray _distCoeffs,
fx, fy, k1, k2, p1, p2, k3, k4, k5, k6, s1, s2, s3, s4));
}
void initInverseRectificationMap( InputArray _cameraMatrix, InputArray _distCoeffs,
InputArray _matR, InputArray _newCameraMatrix,
Size size, int m1type, OutputArray _map1, OutputArray _map2 )
{
// Parameters
Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
Mat matR = _matR.getMat(), newCameraMatrix = _newCameraMatrix.getMat();
// Check m1type validity
if( m1type <= 0 )
m1type = CV_16SC2;
CV_Assert( m1type == CV_16SC2 || m1type == CV_32FC1 || m1type == CV_32FC2 );
// Init Maps
_map1.create( size, m1type );
Mat map1 = _map1.getMat(), map2;
if( m1type != CV_32FC2 )
{
_map2.create( size, m1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 );
map2 = _map2.getMat();
}
else {
_map2.release();
}
// Init camera intrinsics
Mat_<double> A = Mat_<double>(cameraMatrix), Ar;
if( !newCameraMatrix.empty() )
Ar = Mat_<double>(newCameraMatrix);
else
Ar = getDefaultNewCameraMatrix( A, size, true );
CV_Assert( A.size() == Size(3,3) );
CV_Assert( Ar.size() == Size(3,3) || Ar.size() == Size(4, 3));
// Init rotation matrix
Mat_<double> R = Mat_<double>::eye(3, 3);
if( !matR.empty() )
{
R = Mat_<double>(matR);
//Note, do not inverse
}
CV_Assert( Size(3,3) == R.size() );
// Init distortion vector
if( !distCoeffs.empty() )
distCoeffs = Mat_<double>(distCoeffs);
else
{
distCoeffs.create(14, 1, CV_64F);
distCoeffs = 0.;
}
// Validate distortion vector size
CV_Assert( distCoeffs.size() == Size(1, 4) || distCoeffs.size() == Size(4, 1) ||
distCoeffs.size() == Size(1, 5) || distCoeffs.size() == Size(5, 1) ||
distCoeffs.size() == Size(1, 8) || distCoeffs.size() == Size(8, 1) ||
distCoeffs.size() == Size(1, 12) || distCoeffs.size() == Size(12, 1) ||
distCoeffs.size() == Size(1, 14) || distCoeffs.size() == Size(14, 1));
// Fix distortion vector orientation
if( distCoeffs.rows != 1 && !distCoeffs.isContinuous() )
distCoeffs = distCoeffs.t();
// Create objectPoints
std::vector<cv::Point2i> p2i_objPoints;
std::vector<cv::Point2f> p2f_objPoints;
for (int r = 0; r < size.height; r++)
{
for (int c = 0; c < size.width; c++)
{
p2i_objPoints.push_back(cv::Point2i(c, r));
p2f_objPoints.push_back(cv::Point2f(static_cast<float>(c), static_cast<float>(r)));
}
}
// Undistort
std::vector<cv::Point2f> p2f_objPoints_undistorted;
undistortPoints(
p2f_objPoints,
p2f_objPoints_undistorted,
A,
distCoeffs,
cv::Mat::eye(cv::Size(3, 3), CV_64FC1), // R
cv::Mat::eye(cv::Size(3, 3), CV_64FC1) // P = New K
);
// Rectify
std::vector<cv::Point2f> p2f_sourcePoints_pinHole;
perspectiveTransform(
p2f_objPoints_undistorted,
p2f_sourcePoints_pinHole,
R
);
// Project points back to camera coordinates.
std::vector<cv::Point2f> p2f_sourcePoints;
undistortPoints(
p2f_sourcePoints_pinHole,
p2f_sourcePoints,
cv::Mat::eye(cv::Size(3, 3), CV_32FC1), // K
cv::Mat::zeros(cv::Size(1, 4), CV_32FC1), // Distortion
cv::Mat::eye(cv::Size(3, 3), CV_32FC1), // R
Ar // New K
);
// Copy to map
if (m1type == CV_16SC2) {
for (size_t i=0; i < p2i_objPoints.size(); i++) {
map1.at<Vec2s>(p2i_objPoints[i].y, p2i_objPoints[i].x) = Vec2s(saturate_cast<short>(p2f_sourcePoints[i].x), saturate_cast<short>(p2f_sourcePoints[i].y));
}
} else if (m1type == CV_32FC2) {
for (size_t i=0; i < p2i_objPoints.size(); i++) {
map1.at<Vec2f>(p2i_objPoints[i].y, p2i_objPoints[i].x) = Vec2f(p2f_sourcePoints[i]);
}
} else { // m1type == CV_32FC1
for (size_t i=0; i < p2i_objPoints.size(); i++) {
map1.at<float>(p2i_objPoints[i].y, p2i_objPoints[i].x) = p2f_sourcePoints[i].x;
map2.at<float>(p2i_objPoints[i].y, p2i_objPoints[i].x) = p2f_sourcePoints[i].y;
}
}
}
void undistort( InputArray _src, OutputArray _dst, InputArray _cameraMatrix,
InputArray _distCoeffs, InputArray _newCameraMatrix )

@ -719,11 +719,206 @@ double CV_InitUndistortRectifyMapTest::get_success_error_level( int /*test_case_
return 8;
}
//------------------------------------------------------
class CV_InitInverseRectificationMapTest : public cvtest::ArrayTest
{
public:
CV_InitInverseRectificationMapTest();
protected:
int prepare_test_case (int test_case_idx);
void prepare_to_validation( int test_case_idx );
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
double get_success_error_level( int test_case_idx, int i, int j );
void run_func();
private:
static const int MAX_X = 1024;
static const int MAX_Y = 1024;
bool zero_new_cam;
bool zero_distortion;
bool zero_R;
cv::Size img_size;
int map_type;
};
CV_InitInverseRectificationMapTest::CV_InitInverseRectificationMapTest()
{
test_array[INPUT].push_back(NULL); // camera matrix
test_array[INPUT].push_back(NULL); // distortion coeffs
test_array[INPUT].push_back(NULL); // R matrix
test_array[INPUT].push_back(NULL); // new camera matrix
test_array[OUTPUT].push_back(NULL); // inverse rectified mapx
test_array[OUTPUT].push_back(NULL); // inverse rectified mapy
test_array[REF_OUTPUT].push_back(NULL);
test_array[REF_OUTPUT].push_back(NULL);
zero_distortion = zero_new_cam = zero_R = false;
map_type = 0;
}
void CV_InitInverseRectificationMapTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types);
RNG& rng = ts->get_rng();
//rng.next();
map_type = CV_32F;
types[OUTPUT][0] = types[OUTPUT][1] = types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = map_type;
img_size.width = cvtest::randInt(rng) % MAX_X + 1;
img_size.height = cvtest::randInt(rng) % MAX_Y + 1;
types[INPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
types[INPUT][3] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
sizes[OUTPUT][0] = sizes[OUTPUT][1] = sizes[REF_OUTPUT][0] = sizes[REF_OUTPUT][1] = img_size;
sizes[INPUT][0] = sizes[INPUT][2] = sizes[INPUT][3] = cvSize(3,3);
Size dsize;
if (cvtest::randInt(rng)%2)
{
if (cvtest::randInt(rng)%2)
{
dsize = Size(1,4);
}
else
{
dsize = Size(1,5);
}
}
else
{
if (cvtest::randInt(rng)%2)
{
dsize = Size(4,1);
}
else
{
dsize = Size(5,1);
}
}
sizes[INPUT][1] = dsize;
}
int CV_InitInverseRectificationMapTest::prepare_test_case(int test_case_idx)
{
RNG& rng = ts->get_rng();
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
if (code <= 0)
return code;
int dist_size = test_mat[INPUT][1].cols > test_mat[INPUT][1].rows ? test_mat[INPUT][1].cols : test_mat[INPUT][1].rows;
double cam[9] = {0,0,0,0,0,0,0,0,1};
vector<double> dist(dist_size);
vector<double> new_cam(test_mat[INPUT][3].cols * test_mat[INPUT][3].rows);
Mat _camera(3,3,CV_64F,cam);
Mat _distort(test_mat[INPUT][1].size(),CV_64F,&dist[0]);
Mat _new_cam(test_mat[INPUT][3].size(),CV_64F,&new_cam[0]);
//Generating camera matrix
double sz = MAX(img_size.width,img_size.height);
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7;
cam[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
cam[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
cam[0] = sz/(0.9 - cvtest::randReal(rng)*0.6);
cam[4] = aspect_ratio*cam[0];
//Generating distortion coeffs
dist[0] = cvtest::randReal(rng)*0.06 - 0.03;
dist[1] = cvtest::randReal(rng)*0.06 - 0.03;
if( dist[0]*dist[1] > 0 )
dist[1] = -dist[1];
if( cvtest::randInt(rng)%4 != 0 )
{
dist[2] = cvtest::randReal(rng)*0.004 - 0.002;
dist[3] = cvtest::randReal(rng)*0.004 - 0.002;
if (dist_size > 4)
dist[4] = cvtest::randReal(rng)*0.004 - 0.002;
}
else
{
dist[2] = dist[3] = 0;
if (dist_size > 4)
dist[4] = 0;
}
//Generating new camera matrix
_new_cam = Scalar::all(0);
new_cam[8] = 1;
// If P == K
//new_cam[0] = cam[0];
//new_cam[4] = cam[4];
//new_cam[2] = cam[2];
//new_cam[5] = cam[5];
// If P != K
new_cam[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10%
new_cam[4] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10%
new_cam[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15%
new_cam[5] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15%
//Generating R matrix
Mat _rot(3,3,CV_64F);
Mat rotation(1,3,CV_64F);
rotation.at<double>(0) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // phi
rotation.at<double>(1) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // ksi
rotation.at<double>(2) = CV_PI/3*(cvtest::randReal(rng) - (double)0.5); //khi
cvtest::Rodrigues(rotation, _rot);
//cvSetIdentity(_rot);
//copying data
cvtest::convert( _camera, test_mat[INPUT][0], test_mat[INPUT][0].type());
cvtest::convert( _distort, test_mat[INPUT][1], test_mat[INPUT][1].type());
cvtest::convert( _rot, test_mat[INPUT][2], test_mat[INPUT][2].type());
cvtest::convert( _new_cam, test_mat[INPUT][3], test_mat[INPUT][3].type());
zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true;
zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true;
zero_R = (cvtest::randInt(rng)%2) == 0 ? false : true;
return code;
}
void CV_InitInverseRectificationMapTest::prepare_to_validation(int/* test_case_idx*/)
{
cvtest::initInverseRectificationMap(test_mat[INPUT][0],
zero_distortion ? cv::Mat() : test_mat[INPUT][1],
zero_R ? cv::Mat() : test_mat[INPUT][2],
zero_new_cam ? test_mat[INPUT][0] : test_mat[INPUT][3],
img_size, test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][1],
test_mat[REF_OUTPUT][0].type());
}
void CV_InitInverseRectificationMapTest::run_func()
{
cv::Mat camera_mat = test_mat[INPUT][0];
cv::Mat dist = zero_distortion ? cv::Mat() : test_mat[INPUT][1];
cv::Mat R = zero_R ? cv::Mat() : test_mat[INPUT][2];
cv::Mat new_cam = zero_new_cam ? cv::Mat() : test_mat[INPUT][3];
cv::Mat& mapx = test_mat[OUTPUT][0], &mapy = test_mat[OUTPUT][1];
cv::initInverseRectificationMap(camera_mat,dist,R,new_cam,img_size,map_type,mapx,mapy);
}
double CV_InitInverseRectificationMapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
return 8;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Calib3d_DefaultNewCameraMatrix, accuracy) { CV_DefaultNewCameraMatrixTest test; test.safe_run(); }
TEST(Calib3d_UndistortPoints, accuracy) { CV_UndistortPointsTest test; test.safe_run(); }
TEST(Calib3d_InitUndistortRectifyMap, accuracy) { CV_InitUndistortRectifyMapTest test; test.safe_run(); }
TEST(Calib3d_InitInverseRectificationMap, accuracy) { CV_InitInverseRectificationMapTest test; test.safe_run(); }
////////////////////////////// undistort /////////////////////////////////

@ -326,6 +326,7 @@ Mat calcSobelKernel2D( int dx, int dy, int apertureSize, int origin=0 );
Mat calcLaplaceKernel2D( int aperture_size );
void initUndistortMap( const Mat& a, const Mat& k, const Mat& R, const Mat& new_a, Size sz, Mat& mapx, Mat& mapy, int map_type );
void initInverseRectificationMap( const Mat& a, const Mat& k, const Mat& R, const Mat& new_a, Size sz, Mat& mapx, Mat& mapy, int map_type );
void minMaxLoc(const Mat& src, double* minval, double* maxval,
vector<int>* minloc, vector<int>* maxloc, const Mat& mask=Mat());

@ -2881,6 +2881,86 @@ void initUndistortMap( const Mat& _a0, const Mat& _k0, const Mat& _R0, const Mat
_mapy.convertTo(__mapy, map_type);
}
void initInverseRectificationMap( const Mat& _a0, const Mat& _k0, const Mat& _R0, const Mat& _new_cam0, Size sz, Mat& __mapx, Mat& __mapy, int map_type )
{
Mat _mapx(sz, CV_32F), _mapy(sz, CV_32F);
double a[9], k[5]={0,0,0,0,0}, iR[9]={1, 0, 0, 0, 1, 0, 0, 0, 1}, a1[9];
Mat _a(3, 3, CV_64F, a), _a1(3, 3, CV_64F, a1);
Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k);
Mat _iR(3, 3, CV_64F, iR);
double fx, fy, cx, cy, ifx, ify, cxn, cyn;
// Camera matrix
CV_Assert(_a0.size() == Size(3, 3));
_a0.convertTo(_a, CV_64F);
if( !_new_cam0.empty() )
{
CV_Assert(_new_cam0.size() == Size(3, 3));
_new_cam0.convertTo(_a1, CV_64F);
}
else
{
_a.copyTo(_a1);
}
// Distortion
CV_Assert(_k0.empty() ||
_k0.size() == Size(5, 1) ||
_k0.size() == Size(1, 5) ||
_k0.size() == Size(4, 1) ||
_k0.size() == Size(1, 4));
if( !_k0.empty() )
_k0.convertTo(_k, CV_64F);
// Rotation
if( !_R0.empty() )
{
CV_Assert(_R0.size() == Size(3, 3));
Mat tmp;
_R0.convertTo(_iR, CV_64F);
//invert(tmp, _iR, DECOMP_LU);
}
// Copy camera matrix
fx = a[0]; fy = a[4]; cx = a[2]; cy = a[5];
// Copy new camera matrix
ifx = a1[0]; ify = a1[4]; cxn = a1[2]; cyn = a1[5];
// Undistort
for( int v = 0; v < sz.height; v++ )
{
for( int u = 0; u < sz.width; u++ )
{
// Convert from image to pin-hole coordinates
double x = (u - cx)/fx;
double y = (v - cy)/fy;
// Undistort
double x2 = x*x, y2 = y*y;
double r2 = x2 + y2;
double cdist = 1./(1 + (k[0] + (k[1] + k[4]*r2)*r2)*r2); // (1 + (k[5] + (k[6] + k[7]*r2)*r2)*r2) == 1 as K[5-7]=0;
double x_ = x*cdist - k[2]*2*x*y + k[3]*(r2 + 2*x2);
double y_ = y*cdist - k[3]*2*x*y + k[2]*(r2 + 2*y2);
// Rectify
double X = iR[0]*x_ + iR[1]*y_ + iR[2];
double Y = iR[3]*x_ + iR[4]*y_ + iR[5];
double Z = iR[6]*x_ + iR[7]*y_ + iR[8];
double x__ = X/Z;
double y__ = Y/Z;
// Convert from pin-hole to image coordinates
_mapy.at<float>(v, u) = (float)(y__*ify + cyn);
_mapx.at<float>(v, u) = (float)(x__*ifx + cxn);
}
}
_mapx.convertTo(__mapx, map_type);
_mapy.convertTo(__mapy, map_type);
}
std::ostream& operator << (std::ostream& out, const MatInfo& m)
{
if( !m.m || m.m->empty() )

Loading…
Cancel
Save