performance issue when gamma=0

pull/2942/head
Ernest Galbrun 11 years ago
parent f2e09d048c
commit afb9b9540c
  1. 223
      modules/video/src/tvl1flow.cpp

@ -351,7 +351,7 @@ OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
nscales = 5;
warps = 5;
epsilon = 0.01;
gamma = 0.;
gamma = 0.;
innerIterations = 30;
outerIterations = 10;
useInitialFlow = false;
@ -373,20 +373,20 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
CV_Assert( I0.type() == I1.type() );
CV_Assert( !useInitialFlow || (_flow.size() == I0.size() && _flow.type() == CV_32FC2) );
CV_Assert( nscales > 0 );
bool use_gamma = gamma != 0;
// allocate memory for the pyramid structure
dm.I0s.resize(nscales);
dm.I1s.resize(nscales);
dm.u1s.resize(nscales);
dm.u2s.resize(nscales);
dm.u3s.resize(nscales);
dm.u2s.resize(nscales);
dm.u3s.resize(nscales);
I0.convertTo(dm.I0s[0], dm.I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0);
I1.convertTo(dm.I1s[0], dm.I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0);
dm.u1s[0].create(I0.size());
dm.u2s[0].create(I0.size());
dm.u3s[0].create(I0.size());
dm.u2s[0].create(I0.size());
if (use_gamma) dm.u3s[0].create(I0.size());
if (useInitialFlow)
{
@ -408,26 +408,26 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
dm.rho_c_buf.create(I0.size());
dm.v1_buf.create(I0.size());
dm.v2_buf.create(I0.size());
dm.v3_buf.create(I0.size());
dm.v2_buf.create(I0.size());
dm.v3_buf.create(I0.size());
dm.p11_buf.create(I0.size());
dm.p12_buf.create(I0.size());
dm.p21_buf.create(I0.size());
dm.p22_buf.create(I0.size());
dm.p31_buf.create(I0.size());
dm.p32_buf.create(I0.size());
dm.p22_buf.create(I0.size());
dm.p31_buf.create(I0.size());
dm.p32_buf.create(I0.size());
dm.div_p1_buf.create(I0.size());
dm.div_p2_buf.create(I0.size());
dm.div_p3_buf.create(I0.size());
dm.div_p2_buf.create(I0.size());
dm.div_p3_buf.create(I0.size());
dm.u1x_buf.create(I0.size());
dm.u1y_buf.create(I0.size());
dm.u2x_buf.create(I0.size());
dm.u2y_buf.create(I0.size());
dm.u3x_buf.create(I0.size());
dm.u3y_buf.create(I0.size());
dm.u2y_buf.create(I0.size());
dm.u3x_buf.create(I0.size());
dm.u3y_buf.create(I0.size());
// create the scales
for (int s = 1; s < nscales; ++s)
@ -452,16 +452,16 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
else
{
dm.u1s[s].create(dm.I0s[s].size());
dm.u2s[s].create(dm.I0s[s].size());
dm.u2s[s].create(dm.I0s[s].size());
}
dm.u3s[s].create(dm.I0s[s].size());
if (use_gamma) dm.u3s[s].create(dm.I0s[s].size());
}
if (!useInitialFlow)
{
dm.u1s[nscales - 1].setTo(Scalar::all(0));
dm.u2s[nscales - 1].setTo(Scalar::all(0));
}
dm.u3s[nscales - 1].setTo(Scalar::all(0));
}
if (use_gamma) dm.u3s[nscales - 1].setTo(Scalar::all(0));
// pyramidal structure for computing the optical flow
for (int s = nscales - 1; s >= 0; --s)
{
@ -476,8 +476,8 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
// zoom the optical flow for the next finer scale
resize(dm.u1s[s], dm.u1s[s - 1], dm.I0s[s - 1].size());
resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size());
resize(dm.u3s[s], dm.u3s[s - 1], dm.I0s[s - 1].size());
resize(dm.u2s[s], dm.u2s[s - 1], dm.I0s[s - 1].size());
if (use_gamma) resize(dm.u3s[s], dm.u3s[s - 1], dm.I0s[s - 1].size());
// scale the optical flow with the appropriate zoom factor (don't scale u3!)
multiply(dm.u1s[s - 1], Scalar::all(1 / scaleStep), dm.u1s[s - 1]);
@ -935,64 +935,65 @@ struct EstimateVBody : ParallelLoopBody
Mat_<float> I1wx;
Mat_<float> I1wy;
Mat_<float> u1;
Mat_<float> u2;
Mat_<float> u3;
Mat_<float> u2;
Mat_<float> u3;
Mat_<float> grad;
Mat_<float> rho_c;
mutable Mat_<float> v1;
mutable Mat_<float> v2;
mutable Mat_<float> v3;
mutable Mat_<float> v2;
mutable Mat_<float> v3;
float l_t;
float gamma;
float gamma;
};
void EstimateVBody::operator() (const Range& range) const
{
bool use_gamma = gamma != 0;
for (int y = range.start; y < range.end; ++y)
{
const float* I1wxRow = I1wx[y];
const float* I1wyRow = I1wy[y];
const float* u1Row = u1[y];
const float* u2Row = u2[y];
const float* u3Row = u3[y];
const float* u2Row = u2[y];
const float* u3Row = use_gamma?u3[y]:nullptr;
const float* gradRow = grad[y];
const float* rhoRow = rho_c[y];
float* v1Row = v1[y];
float* v2Row = v2[y];
float* v3Row = v3[y];
float* v2Row = v2[y];
float* v3Row = use_gamma ? v3[y]:nullptr;
for (int x = 0; x < I1wx.cols; ++x)
{
const float rho = rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]) + gamma * u3Row[x];
{
const float rho = use_gamma ? rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]) + gamma * u3Row[x] :
rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]);
float d1 = 0.0f;
float d2 = 0.0f;
float d3 = 0.0f;
float d3 = 0.0f;
// add d3 for 3 cases
if (rho < -l_t * gradRow[x])
{
d1 = l_t * I1wxRow[x];
d2 = l_t * I1wyRow[x];
d3 = l_t * gamma;
if (use_gamma) d3 = l_t * gamma;
}
else if (rho > l_t * gradRow[x])
{
d1 = -l_t * I1wxRow[x];
d2 = -l_t * I1wyRow[x];
d3 = -l_t * gamma;
d2 = -l_t * I1wyRow[x];
if (use_gamma) d3 = -l_t * gamma;
}
else if (gradRow[x] > std::numeric_limits<float>::epsilon())
{
float fi = -rho / gradRow[x];
d1 = fi * I1wxRow[x];
d2 = fi * I1wyRow[x];
d3 = fi * gamma;
if (use_gamma) d3 = fi * gamma;
}
v1Row[x] = u1Row[x] + d1;
v2Row[x] = u2Row[x] + d2;
v3Row[x] = u3Row[x] + d3;
v2Row[x] = u2Row[x] + d2;
if (use_gamma) v3Row[x] = u3Row[x] + d3;
}
}
}
@ -1003,28 +1004,25 @@ void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<floa
CV_DbgAssert( I1wy.size() == I1wx.size() );
CV_DbgAssert( u1.size() == I1wx.size() );
CV_DbgAssert( u2.size() == I1wx.size() );
CV_DbgAssert( u3.size() == I1wx.size() );
CV_DbgAssert( grad.size() == I1wx.size() );
CV_DbgAssert( rho_c.size() == I1wx.size() );
CV_DbgAssert( v1.size() == I1wx.size() );
CV_DbgAssert( v2.size() == I1wx.size() );
CV_DbgAssert( v3.size() == I1wx.size() );
EstimateVBody body;
bool use_gamma = gamma != 0;
body.I1wx = I1wx;
body.I1wy = I1wy;
body.u1 = u1;
body.u2 = u2;
body.u3 = u3;
body.u2 = u2;
if (use_gamma) body.u3 = u3;
body.grad = grad;
body.rho_c = rho_c;
body.v1 = v1;
body.v2 = v2;
body.v3 = v3;
body.l_t = l_t;
body.gamma = gamma;
body.v2 = v2;
if (use_gamma) body.v3 = v3;
body.l_t = l_t;
body.gamma = gamma;
parallel_for_(Range(0, I1wx.rows), body);
}
@ -1037,39 +1035,39 @@ float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>&
float theta, float gamma)
{
CV_DbgAssert( v2.size() == v1.size() );
CV_DbgAssert( v3.size() == v1.size() );
CV_DbgAssert( div_p1.size() == v1.size() );
CV_DbgAssert( div_p2.size() == v1.size() );
CV_DbgAssert( div_p3.size() == v1.size() );
CV_DbgAssert( u1.size() == v1.size() );
CV_DbgAssert( u2.size() == v1.size() );
CV_DbgAssert( u3.size() == v1.size() );
float error = 0.0f;
float error = 0.0f;
bool use_gamma = gamma != 0;
for (int y = 0; y < v1.rows; ++y)
{
const float* v1Row = v1[y];
const float* v2Row = v2[y];
const float* v3Row = v3[y];
const float* v2Row = v2[y];
const float* v3Row = use_gamma?v3[y]:nullptr;
const float* divP1Row = div_p1[y];
const float* divP2Row = div_p2[y];
const float* divP3Row = div_p3[y];
const float* divP2Row = div_p2[y];
const float* divP3Row = use_gamma?div_p3[y]:nullptr;
float* u1Row = u1[y];
float* u2Row = u2[y];
float* u3Row = u3[y];
float* u2Row = u2[y];
float* u3Row = use_gamma?u3[y]:nullptr;
for (int x = 0; x < v1.cols; ++x)
{
const float u1k = u1Row[x];
const float u2k = u2Row[x];
const float u3k = u3Row[x];
const float u2k = u2Row[x];
const float u3k = use_gamma?u3Row[x]:0;
u1Row[x] = v1Row[x] + theta * divP1Row[x];
u2Row[x] = v2Row[x] + theta * divP2Row[x];
u3Row[x] = v3Row[x] + theta * divP3Row[x];
u2Row[x] = v2Row[x] + theta * divP2Row[x];
if (use_gamma) u3Row[x] = v3Row[x] + theta * divP3Row[x];
error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k) + (u3Row[x] - u3k) * (u3Row[x] - u3k);
error += use_gamma?(u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k) + (u3Row[x] - u3k) * (u3Row[x] - u3k):
(u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k);
}
}
@ -1086,16 +1084,17 @@ struct EstimateDualVariablesBody : ParallelLoopBody
Mat_<float> u1x;
Mat_<float> u1y;
Mat_<float> u2x;
Mat_<float> u2y;
Mat_<float> u3x;
Mat_<float> u3y;
Mat_<float> u2y;
Mat_<float> u3x;
Mat_<float> u3y;
mutable Mat_<float> p11;
mutable Mat_<float> p12;
mutable Mat_<float> p21;
mutable Mat_<float> p22;
mutable Mat_<float> p31;
mutable Mat_<float> p32;
mutable Mat_<float> p22;
mutable Mat_<float> p31;
mutable Mat_<float> p32;
float taut;
bool use_gamma;
};
void EstimateDualVariablesBody::operator() (const Range& range) const
@ -1105,33 +1104,33 @@ void EstimateDualVariablesBody::operator() (const Range& range) const
const float* u1xRow = u1x[y];
const float* u1yRow = u1y[y];
const float* u2xRow = u2x[y];
const float* u2yRow = u2y[y];
const float* u3xRow = u3x[y];
const float* u3yRow = u3y[y];
const float* u2yRow = u2y[y];
const float* u3xRow = u3x[y];
const float* u3yRow = u3y[y];
float* p11Row = p11[y];
float* p12Row = p12[y];
float* p21Row = p21[y];
float* p22Row = p22[y];
float* p31Row = p31[y];
float* p32Row = p32[y];
float* p22Row = p22[y];
float* p31Row = p31[y];
float* p32Row = p32[y];
for (int x = 0; x < u1x.cols; ++x)
{
const float g1 = static_cast<float>(hypot(u1xRow[x], u1yRow[x]));
const float g2 = static_cast<float>(hypot(u2xRow[x], u2yRow[x]));
const float g3 = static_cast<float>(hypot(u3xRow[x], u3yRow[x]));
const float g2 = static_cast<float>(hypot(u2xRow[x], u2yRow[x]));
const float g3 = static_cast<float>(hypot(u3xRow[x], u3yRow[x]));
const float ng1 = 1.0f + taut * g1;
const float ng2 = 1.0f + taut * g2;
const float ng3 = 1.0f + taut * g3;
const float ng2 = 1.0f + taut * g2;
const float ng3 = 1.0f + taut * g3;
p11Row[x] = (p11Row[x] + taut * u1xRow[x]) / ng1;
p12Row[x] = (p12Row[x] + taut * u1yRow[x]) / ng1;
p21Row[x] = (p21Row[x] + taut * u2xRow[x]) / ng2;
p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2;
p31Row[x] = (p31Row[x] + taut * u3xRow[x]) / ng3;
p32Row[x] = (p32Row[x] + taut * u3yRow[x]) / ng3;
p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2;
if (use_gamma) p31Row[x] = (p31Row[x] + taut * u3xRow[x]) / ng3;
if (use_gamma) p32Row[x] = (p32Row[x] + taut * u3yRow[x]) / ng3;
}
}
}
@ -1142,7 +1141,7 @@ void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y,
Mat_<float>& p11, Mat_<float>& p12,
Mat_<float>& p21, Mat_<float>& p22,
Mat_<float>& p31, Mat_<float>& p32,
float taut)
float taut, bool use_gamma)
{
CV_DbgAssert( u1y.size() == u1x.size() );
CV_DbgAssert( u2x.size() == u1x.size() );
@ -1161,16 +1160,17 @@ void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y,
body.u1x = u1x;
body.u1y = u1y;
body.u2x = u2x;
body.u2y = u2y;
body.u3x = u3x;
body.u3y = u3y;
body.u2y = u2y;
body.u3x = u3x;
body.u3y = u3y;
body.p11 = p11;
body.p12 = p12;
body.p21 = p21;
body.p22 = p22;
body.p31 = p31;
body.p32 = p32;
body.p22 = p22;
body.p31 = p31;
body.p32 = p32;
body.taut = taut;
body.use_gamma = use_gamma;
parallel_for_(Range(0, u1x.rows), body);
}
@ -1287,32 +1287,33 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
Mat_<float> rho_c = dm.rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> v1 = dm.v1_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> v2 = dm.v2_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> v3 = dm.v3_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> v2 = dm.v2_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> v3 = dm.v3_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p11 = dm.p11_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p21 = dm.p21_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p22 = dm.p22_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p31 = dm.p31_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p32 = dm.p32_buf(Rect(0, 0, I0.cols, I0.rows));
p11.setTo(Scalar::all(0));
p12.setTo(Scalar::all(0));
p21.setTo(Scalar::all(0));
p22.setTo(Scalar::all(0));
p31.setTo(Scalar::all(0));
p32.setTo(Scalar::all(0));
p22.setTo(Scalar::all(0));
bool use_gamma = gamma != 0.;
if (use_gamma) p31.setTo(Scalar::all(0));
if (use_gamma) p32.setTo(Scalar::all(0));
Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> div_p3 = dm.div_p3_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> div_p3 = dm.div_p3_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u2x = dm.u2x_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u3x = dm.u3x_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u3y = dm.u3y_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u2y = dm.u2y_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u3x = dm.u3x_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u3y = dm.u3y_buf(Rect(0, 0, I0.cols, I0.rows));
const float l_t = static_cast<float>(lambda * theta);
const float taut = static_cast<float>(tau / theta);
@ -1341,19 +1342,19 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
// compute the divergence of the dual variable (p1, p2, p3)
divergence(p11, p12, div_p1);
divergence(p21, p22, div_p2);
divergence(p31, p32, div_p3);
divergence(p21, p22, div_p2);
if (use_gamma) divergence(p31, p32, div_p3);
// estimate the values of the optical flow (u1, u2)
error = estimateU(v1, v2, v3, div_p1, div_p2, div_p3, u1, u2, u3, static_cast<float>(theta), gamma);
// compute the gradient of the optical flow (Du1, Du2)
forwardGradient(u1, u1x, u1y);
forwardGradient(u2, u2x, u2y);
forwardGradient(u3, u3x, u3y);
forwardGradient(u2, u2x, u2y);
if (use_gamma) forwardGradient(u3, u3x, u3y);
// estimate the values of the dual variable (p1, p2, p3)
estimateDualVariables(u1x, u1y, u2x, u2y, u3x, u3y, p11, p12, p21, p22, p31, p32, taut);
estimateDualVariables(u1x, u1y, u2x, u2y, u3x, u3y, p11, p12, p21, p22, p31, p32, taut, use_gamma);
}
}
}

Loading…
Cancel
Save