Tutorial create pattern grid for calibration using gen_pattern.py

pull/14029/head
LaurentBerger 6 years ago
parent 11dbd86aa3
commit af0a83f0b3
  1. 33
      doc/tutorials/calib3d/camera_calibration_pattern/camera_calibration_pattern.markdown
  2. 8
      doc/tutorials/calib3d/table_of_content_calib3d.markdown

@ -0,0 +1,33 @@
Create calibration pattern {#tutorial_camera_calibration_pattern}
=========================================
The goal of this tutorial is to learn how to create calibration pattern.
You can find a chessboard pattern in https://github.com/opencv/opencv/blob/3.4/doc/pattern.png
You can find a circleboard pattern in https://github.com/opencv/opencv/blob/3.4/doc/acircles_pattern.png
Create your own pattern
---------------
Now, if you want to create your own pattern, you will need python to use https://github.com/opencv/opencv/blob/3.4/doc/pattern_tools/gen_pattern.py
Example
create a checkerboard pattern in file chessboard.svg with 9 rows, 6 columns and a square size of 20mm:
python gen_pattern.py -o chessboard.svg --rows 9 --columns 6 --type checkerboard --square_size 20
create a circle board pattern in file circleboard.svg with 7 rows, 5 columns and a radius of 15mm:
python gen_pattern.py -o circleboard.svg --rows 7 --columns 5 --type circles --square_size 15
create a circle board pattern in file acircleboard.svg with 7 rows, 5 columns and a square size of 10mm and less spacing between circle:
python gen_pattern.py -o acircleboard.svg --rows 7 --columns 5 --type acircles --square_size 10 --radius_rate 2
If you want to change unit use -u option (mm inches, px, m)
If you want to change page size use -w and -h options
If you want to create a ChArUco board read tutorial Detection of ChArUco Corners in opencv_contrib tutorial(https://docs.opencv.org/3.4/df/d4a/tutorial_charuco_detection.html)

@ -3,6 +3,14 @@ Camera calibration and 3D reconstruction (calib3d module) {#tutorial_table_of_co
Although we get most of our images in a 2D format they do come from a 3D world. Here you will learn how to find out 3D world information from 2D images. Although we get most of our images in a 2D format they do come from a 3D world. Here you will learn how to find out 3D world information from 2D images.
- @subpage tutorial_camera_calibration_pattern
*Compatibility:* \> OpenCV 2.0
*Author:* Laurent Berger
You will learn how to create some calibration pattern.
- @subpage tutorial_camera_calibration_square_chess - @subpage tutorial_camera_calibration_square_chess
*Compatibility:* \> OpenCV 2.0 *Compatibility:* \> OpenCV 2.0

Loading…
Cancel
Save