Merge remote-tracking branch 'upstream/3.4' into merge-3.4

pull/21430/head
Alexander Alekhin 3 years ago
commit aebb65e983
  1. 202
      modules/calib3d/src/dls.cpp
  2. 52
      modules/calib3d/src/dls.h
  3. 20
      modules/calib3d/src/solvepnp.cpp
  4. 13
      modules/core/include/opencv2/core/mat.hpp
  5. 2
      modules/core/src/kmeans.cpp
  6. 2
      modules/core/src/matrix.cpp
  7. 5
      modules/dnn/src/layers/convolution_layer.cpp
  8. 2
      modules/dnn/src/layers/layers_common.simd.hpp
  9. 6
      modules/imgproc/src/connectedcomponents.cpp
  10. 11
      modules/imgproc/test/test_connectedcomponents.cpp
  11. 2
      modules/videoio/src/cap_msmf.cpp

@ -21,15 +21,15 @@
# include "opencv2/core/eigen.hpp"
#endif
using namespace std;
namespace cv {
dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints)
dls::dls(const Mat& opoints, const Mat& ipoints)
{
N = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
p = cv::Mat(3, N, CV_64F);
z = cv::Mat(3, N, CV_64F);
mn = cv::Mat::zeros(3, 1, CV_64F);
p = Mat(3, N, CV_64F);
z = Mat(3, N, CV_64F);
mn = Mat::zeros(3, 1, CV_64F);
cost__ = 9999;
@ -40,14 +40,14 @@ dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints)
if (opoints.depth() == ipoints.depth())
{
if (opoints.depth() == CV_32F)
init_points<cv::Point3f, cv::Point2f>(opoints, ipoints);
init_points<Point3f, Point2f>(opoints, ipoints);
else
init_points<cv::Point3d, cv::Point2d>(opoints, ipoints);
init_points<Point3d, Point2d>(opoints, ipoints);
}
else if (opoints.depth() == CV_32F)
init_points<cv::Point3f, cv::Point2d>(opoints, ipoints);
init_points<Point3f, Point2d>(opoints, ipoints);
else
init_points<cv::Point3d, cv::Point2f>(opoints, ipoints);
init_points<Point3d, Point2f>(opoints, ipoints);
}
dls::~dls()
@ -55,10 +55,10 @@ dls::~dls()
// TODO Auto-generated destructor stub
}
bool dls::compute_pose(cv::Mat& R, cv::Mat& t)
bool dls::compute_pose(Mat& R, Mat& t)
{
std::vector<cv::Mat> R_;
std::vector<Mat> R_;
R_.push_back(rotx(CV_PI/2));
R_.push_back(roty(CV_PI/2));
R_.push_back(rotz(CV_PI/2));
@ -67,7 +67,7 @@ bool dls::compute_pose(cv::Mat& R, cv::Mat& t)
for (int i = 0; i < 3; ++i)
{
// Make a random rotation
cv::Mat pp = R_[i] * ( p - cv::repeat(mn, 1, p.cols) );
Mat pp = R_[i] * ( p - repeat(mn, 1, p.cols) );
// clear for new data
C_est_.clear();
@ -99,13 +99,13 @@ bool dls::compute_pose(cv::Mat& R, cv::Mat& t)
return false;
}
void dls::run_kernel(const cv::Mat& pp)
void dls::run_kernel(const Mat& pp)
{
cv::Mat Mtilde(27, 27, CV_64F);
cv::Mat D = cv::Mat::zeros(9, 9, CV_64F);
Mat Mtilde(27, 27, CV_64F);
Mat D = Mat::zeros(9, 9, CV_64F);
build_coeff_matrix(pp, Mtilde, D);
cv::Mat eigenval_r, eigenval_i, eigenvec_r, eigenvec_i;
Mat eigenval_r, eigenval_i, eigenvec_r, eigenvec_i;
compute_eigenvec(Mtilde, eigenval_r, eigenval_i, eigenvec_r, eigenvec_i);
/*
@ -115,16 +115,16 @@ void dls::run_kernel(const cv::Mat& pp)
// extract the optimal solutions from the eigen decomposition of the
// Multiplication matrix
cv::Mat sols = cv::Mat::zeros(3, 27, CV_64F);
Mat sols = Mat::zeros(3, 27, CV_64F);
std::vector<double> cost;
int count = 0;
for (int k = 0; k < 27; ++k)
{
// V(:,k) = V(:,k)/V(1,k);
cv::Mat V_kA = eigenvec_r.col(k); // 27x1
cv::Mat V_kB = cv::Mat(1, 1, z.depth(), V_kA.at<double>(0)); // 1x1
cv::Mat V_k; cv::solve(V_kB.t(), V_kA.t(), V_k); // A/B = B'\A'
cv::Mat( V_k.t()).copyTo( eigenvec_r.col(k) );
Mat V_kA = eigenvec_r.col(k); // 27x1
Mat V_kB = Mat(1, 1, z.depth(), V_kA.at<double>(0)); // 1x1
Mat V_k; solve(V_kB.t(), V_kA.t(), V_k); // A/B = B'\A'
Mat( V_k.t()).copyTo( eigenvec_r.col(k) );
//if (imag(V(2,k)) == 0)
#ifdef HAVE_EIGEN
@ -138,24 +138,24 @@ void dls::run_kernel(const cv::Mat& pp)
stmp[1] = eigenvec_r.at<double>(3, k);
stmp[2] = eigenvec_r.at<double>(1, k);
cv::Mat H = Hessian(stmp);
Mat H = Hessian(stmp);
cv::Mat eigenvalues, eigenvectors;
cv::eigen(H, eigenvalues, eigenvectors);
Mat eigenvalues, eigenvectors;
eigen(H, eigenvalues, eigenvectors);
if(positive_eigenvalues(&eigenvalues))
{
// sols(:,i) = stmp;
cv::Mat stmp_mat(3, 1, CV_64F, &stmp);
Mat stmp_mat(3, 1, CV_64F, &stmp);
stmp_mat.copyTo( sols.col(count) );
cv::Mat Cbar = cayley2rotbar(stmp_mat);
cv::Mat Cbarvec = Cbar.reshape(1,1).t();
Mat Cbar = cayley2rotbar(stmp_mat);
Mat Cbarvec = Cbar.reshape(1,1).t();
// cost(i) = CbarVec' * D * CbarVec;
cv::Mat cost_mat = Cbarvec.t() * D * Cbarvec;
Mat cost_mat = Cbarvec.t() * D * Cbarvec;
cost.push_back( cost_mat.at<double>(0) );
count++;
@ -166,30 +166,30 @@ void dls::run_kernel(const cv::Mat& pp)
// extract solutions
sols = sols.clone().colRange(0, count);
std::vector<cv::Mat> C_est, t_est;
std::vector<Mat> C_est, t_est;
for (int j = 0; j < sols.cols; ++j)
{
// recover the optimal orientation
// C_est(:,:,j) = 1/(1 + sols(:,j)' * sols(:,j)) * cayley2rotbar(sols(:,j));
cv::Mat sols_j = sols.col(j);
double sols_mult = 1./(1.+cv::Mat( sols_j.t() * sols_j ).at<double>(0));
cv::Mat C_est_j = cayley2rotbar(sols_j).mul(sols_mult);
Mat sols_j = sols.col(j);
double sols_mult = 1./(1.+Mat( sols_j.t() * sols_j ).at<double>(0));
Mat C_est_j = cayley2rotbar(sols_j).mul(sols_mult);
C_est.push_back( C_est_j );
cv::Mat A2 = cv::Mat::zeros(3, 3, CV_64F);
cv::Mat b2 = cv::Mat::zeros(3, 1, CV_64F);
Mat A2 = Mat::zeros(3, 3, CV_64F);
Mat b2 = Mat::zeros(3, 1, CV_64F);
for (int i = 0; i < N; ++i)
{
cv::Mat eye = cv::Mat::eye(3, 3, CV_64F);
cv::Mat z_mul = z.col(i)*z.col(i).t();
Mat eye = Mat::eye(3, 3, CV_64F);
Mat z_mul = z.col(i)*z.col(i).t();
A2 += eye - z_mul;
b2 += (z_mul - eye) * C_est_j * pp.col(i);
}
// recover the optimal translation
cv::Mat X2; cv::solve(A2, b2, X2); // A\B
Mat X2; solve(A2, b2, X2); // A\B
t_est.push_back(X2);
}
@ -197,12 +197,12 @@ void dls::run_kernel(const cv::Mat& pp)
// check that the points are infront of the center of perspectivity
for (int k = 0; k < sols.cols; ++k)
{
cv::Mat cam_points = C_est[k] * pp + cv::repeat(t_est[k], 1, pp.cols);
cv::Mat cam_points_k = cam_points.row(2);
Mat cam_points = C_est[k] * pp + repeat(t_est[k], 1, pp.cols);
Mat cam_points_k = cam_points.row(2);
if(is_empty(&cam_points_k))
{
cv::Mat C_valid = C_est[k], t_valid = t_est[k];
Mat C_valid = C_est[k], t_valid = t_est[k];
double cost_valid = cost[k];
C_est_.push_back(C_valid);
@ -213,20 +213,20 @@ void dls::run_kernel(const cv::Mat& pp)
}
void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D)
void dls::build_coeff_matrix(const Mat& pp, Mat& Mtilde, Mat& D)
{
CV_Assert(!pp.empty() && N > 0);
cv::Mat eye = cv::Mat::eye(3, 3, CV_64F);
Mat eye = Mat::eye(3, 3, CV_64F);
// build coeff matrix
// An intermediate matrix, the inverse of what is called "H" in the paper
// (see eq. 25)
cv::Mat H = cv::Mat::zeros(3, 3, CV_64F);
cv::Mat A = cv::Mat::zeros(3, 9, CV_64F);
cv::Mat pp_i(3, 1, CV_64F);
Mat H = Mat::zeros(3, 3, CV_64F);
Mat A = Mat::zeros(3, 9, CV_64F);
Mat pp_i(3, 1, CV_64F);
cv::Mat z_i(3, 1, CV_64F);
Mat z_i(3, 1, CV_64F);
for (int i = 0; i < N; ++i)
{
z.col(i).copyTo(z_i);
@ -236,10 +236,10 @@ void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D)
H = eye.mul(N) - z * z.t();
// A\B
cv::solve(H, A, A, cv::DECOMP_NORMAL);
solve(H, A, A, DECOMP_NORMAL);
H.release();
cv::Mat ppi_A(3, 1, CV_64F);
Mat ppi_A(3, 1, CV_64F);
for (int i = 0; i < N; ++i)
{
z.col(i).copyTo(z_i);
@ -253,18 +253,18 @@ void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D)
// generate random samples
std::vector<double> u(5);
cv::randn(u, 0, 200);
randn(u, 0, 200);
cv::Mat M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff, u);
Mat M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff, u);
cv::Mat M2_1 = M2(cv::Range(0,27), cv::Range(0,27));
cv::Mat M2_2 = M2(cv::Range(0,27), cv::Range(27,120));
cv::Mat M2_3 = M2(cv::Range(27,120), cv::Range(27,120));
cv::Mat M2_4 = M2(cv::Range(27,120), cv::Range(0,27));
Mat M2_1 = M2(Range(0,27), Range(0,27));
Mat M2_2 = M2(Range(0,27), Range(27,120));
Mat M2_3 = M2(Range(27,120), Range(27,120));
Mat M2_4 = M2(Range(27,120), Range(0,27));
M2.release();
// A/B = B'\A'
cv::Mat M2_5; cv::solve(M2_3.t(), M2_2.t(), M2_5);
Mat M2_5; solve(M2_3.t(), M2_2.t(), M2_5);
M2_2.release(); M2_3.release();
// construct the multiplication matrix via schur compliment of the Macaulay
@ -273,13 +273,13 @@ void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D)
}
void dls::compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Mat& eigenval_imag,
cv::Mat& eigenvec_real, cv::Mat& eigenvec_imag)
void dls::compute_eigenvec(const Mat& Mtilde, Mat& eigenval_real, Mat& eigenval_imag,
Mat& eigenvec_real, Mat& eigenvec_imag)
{
#ifdef HAVE_EIGEN
Eigen::MatrixXd Mtilde_eig, zeros_eig;
cv::cv2eigen(Mtilde, Mtilde_eig);
cv::cv2eigen(cv::Mat::zeros(27, 27, CV_64F), zeros_eig);
cv2eigen(Mtilde, Mtilde_eig);
cv2eigen(Mat::zeros(27, 27, CV_64F), zeros_eig);
Eigen::MatrixXcd Mtilde_eig_cmplx(27, 27);
Mtilde_eig_cmplx.real() = Mtilde_eig;
@ -293,20 +293,20 @@ void dls::compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Ma
Eigen::MatrixXd eigvec_real = ces.eigenvectors().real();
Eigen::MatrixXd eigvec_imag = ces.eigenvectors().imag();
cv::eigen2cv(eigval_real, eigenval_real);
cv::eigen2cv(eigval_imag, eigenval_imag);
cv::eigen2cv(eigvec_real, eigenvec_real);
cv::eigen2cv(eigvec_imag, eigenvec_imag);
eigen2cv(eigval_real, eigenval_real);
eigen2cv(eigval_imag, eigenval_imag);
eigen2cv(eigvec_real, eigenvec_real);
eigen2cv(eigvec_imag, eigenvec_imag);
#else
EigenvalueDecomposition es(Mtilde);
eigenval_real = es.eigenvalues();
eigenvec_real = es.eigenvectors();
eigenval_imag = eigenvec_imag = cv::Mat();
eigenval_imag = eigenvec_imag = Mat();
#endif
}
void dls::fill_coeff(const cv::Mat * D_mat)
void dls::fill_coeff(const Mat * D_mat)
{
// TODO: shift D and coefficients one position to left
@ -394,9 +394,9 @@ void dls::fill_coeff(const cv::Mat * D_mat)
}
cv::Mat dls::LeftMultVec(const cv::Mat& v)
Mat dls::LeftMultVec(const Mat& v)
{
cv::Mat mat_ = cv::Mat::zeros(3, 9, CV_64F);
Mat mat_ = Mat::zeros(3, 9, CV_64F);
for (int i = 0; i < 3; ++i)
{
@ -407,12 +407,12 @@ cv::Mat dls::LeftMultVec(const cv::Mat& v)
return mat_;
}
cv::Mat dls::cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b, const std::vector<double>& c, const std::vector<double>& u)
Mat dls::cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b, const std::vector<double>& c, const std::vector<double>& u)
{
// TODO: input matrix pointer
// TODO: shift coefficients one position to left
cv::Mat M = cv::Mat::zeros(120, 120, CV_64F);
Mat M = Mat::zeros(120, 120, CV_64F);
M.at<double>(0,0)=u[1]; M.at<double>(0,35)=a[1]; M.at<double>(0,83)=b[1]; M.at<double>(0,118)=c[1];
M.at<double>(1,0)=u[4]; M.at<double>(1,1)=u[1]; M.at<double>(1,34)=a[1]; M.at<double>(1,35)=a[10]; M.at<double>(1,54)=b[1]; M.at<double>(1,83)=b[10]; M.at<double>(1,99)=c[1]; M.at<double>(1,118)=c[10];
@ -538,7 +538,7 @@ cv::Mat dls::cayley_LS_M(const std::vector<double>& a, const std::vector<double>
return M.t();
}
cv::Mat dls::Hessian(const double s[])
Mat dls::Hessian(const double s[])
{
// the vector of monomials is
// m = [ const ; s1^2 * s2 ; s1 * s2 ; s1 * s3 ; s2 * s3 ; s2^2 * s3 ; s2^3 ; ...
@ -577,73 +577,73 @@ cv::Mat dls::Hessian(const double s[])
Hs3[14]=0; Hs3[15]=3*s[2]*s[2]; Hs3[16]=s[0]*s[1]; Hs3[17]=0; Hs3[18]=s[0]*s[0]; Hs3[19]=0;
// fill Hessian matrix
cv::Mat H(3, 3, CV_64F);
H.at<double>(0,0) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
H.at<double>(0,1) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
H.at<double>(0,2) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
Mat H(3, 3, CV_64F);
H.at<double>(0,0) = Mat(Mat(f1coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
H.at<double>(0,1) = Mat(Mat(f1coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
H.at<double>(0,2) = Mat(Mat(f1coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
H.at<double>(1,0) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
H.at<double>(1,1) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
H.at<double>(1,2) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
H.at<double>(1,0) = Mat(Mat(f2coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
H.at<double>(1,1) = Mat(Mat(f2coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
H.at<double>(1,2) = Mat(Mat(f2coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
H.at<double>(2,0) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
H.at<double>(2,1) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
H.at<double>(2,2) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
H.at<double>(2,0) = Mat(Mat(f3coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
H.at<double>(2,1) = Mat(Mat(f3coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
H.at<double>(2,2) = Mat(Mat(f3coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
return H;
}
cv::Mat dls::cayley2rotbar(const cv::Mat& s)
Mat dls::cayley2rotbar(const Mat& s)
{
double s_mul1 = cv::Mat(s.t()*s).at<double>(0,0);
cv::Mat s_mul2 = s*s.t();
cv::Mat eye = cv::Mat::eye(3, 3, CV_64F);
double s_mul1 = Mat(s.t()*s).at<double>(0,0);
Mat s_mul2 = s*s.t();
Mat eye = Mat::eye(3, 3, CV_64F);
return cv::Mat( eye.mul(1.-s_mul1) + skewsymm(&s).mul(2.) + s_mul2.mul(2.) ).t();
return Mat( eye.mul(1.-s_mul1) + skewsymm(&s).mul(2.) + s_mul2.mul(2.) ).t();
}
cv::Mat dls::skewsymm(const cv::Mat * X1)
Mat dls::skewsymm(const Mat * X1)
{
cv::MatConstIterator_<double> it = X1->begin<double>();
return (cv::Mat_<double>(3,3) << 0, -*(it+2), *(it+1),
MatConstIterator_<double> it = X1->begin<double>();
return (Mat_<double>(3,3) << 0, -*(it+2), *(it+1),
*(it+2), 0, -*(it+0),
-*(it+1), *(it+0), 0);
}
cv::Mat dls::rotx(const double t)
Mat dls::rotx(const double t)
{
// rotx: rotation about y-axis
double ct = cos(t);
double st = sin(t);
return (cv::Mat_<double>(3,3) << 1, 0, 0, 0, ct, -st, 0, st, ct);
return (Mat_<double>(3,3) << 1, 0, 0, 0, ct, -st, 0, st, ct);
}
cv::Mat dls::roty(const double t)
Mat dls::roty(const double t)
{
// roty: rotation about y-axis
double ct = cos(t);
double st = sin(t);
return (cv::Mat_<double>(3,3) << ct, 0, st, 0, 1, 0, -st, 0, ct);
return (Mat_<double>(3,3) << ct, 0, st, 0, 1, 0, -st, 0, ct);
}
cv::Mat dls::rotz(const double t)
Mat dls::rotz(const double t)
{
// rotz: rotation about y-axis
double ct = cos(t);
double st = sin(t);
return (cv::Mat_<double>(3,3) << ct, -st, 0, st, ct, 0, 0, 0, 1);
return (Mat_<double>(3,3) << ct, -st, 0, st, ct, 0, 0, 0, 1);
}
cv::Mat dls::mean(const cv::Mat& M)
Mat dls::mean(const Mat& M)
{
cv::Mat m = cv::Mat::zeros(3, 1, CV_64F);
Mat m = Mat::zeros(3, 1, CV_64F);
for (int i = 0; i < M.cols; ++i) m += M.col(i);
return m.mul(1./(double)M.cols);
}
bool dls::is_empty(const cv::Mat * M)
bool dls::is_empty(const Mat * M)
{
cv::MatConstIterator_<double> it = M->begin<double>(), it_end = M->end<double>();
MatConstIterator_<double> it = M->begin<double>(), it_end = M->end<double>();
for(; it != it_end; ++it)
{
if(*it < 0) return false;
@ -651,9 +651,11 @@ bool dls::is_empty(const cv::Mat * M)
return true;
}
bool dls::positive_eigenvalues(const cv::Mat * eigenvalues)
bool dls::positive_eigenvalues(const Mat * eigenvalues)
{
CV_Assert(eigenvalues && !eigenvalues->empty());
cv::MatConstIterator_<double> it = eigenvalues->begin<double>();
MatConstIterator_<double> it = eigenvalues->begin<double>();
return *(it) > 0 && *(it+1) > 0 && *(it+2) > 0;
}
} // namespace cv

@ -5,22 +5,21 @@
#include <iostream>
using namespace std;
using namespace cv;
namespace cv {
class dls
{
public:
dls(const cv::Mat& opoints, const cv::Mat& ipoints);
dls(const Mat& opoints, const Mat& ipoints);
~dls();
bool compute_pose(cv::Mat& R, cv::Mat& t);
bool compute_pose(Mat& R, Mat& t);
private:
// initialisation
template <typename OpointType, typename IpointType>
void init_points(const cv::Mat& opoints, const cv::Mat& ipoints)
void init_points(const Mat& opoints, const Mat& ipoints)
{
for(int i = 0; i < N; i++)
{
@ -49,33 +48,33 @@ private:
}
// main algorithm
cv::Mat LeftMultVec(const cv::Mat& v);
void run_kernel(const cv::Mat& pp);
void build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D);
void compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Mat& eigenval_imag,
cv::Mat& eigenvec_real, cv::Mat& eigenvec_imag);
void fill_coeff(const cv::Mat * D);
Mat LeftMultVec(const Mat& v);
void run_kernel(const Mat& pp);
void build_coeff_matrix(const Mat& pp, Mat& Mtilde, Mat& D);
void compute_eigenvec(const Mat& Mtilde, Mat& eigenval_real, Mat& eigenval_imag,
Mat& eigenvec_real, Mat& eigenvec_imag);
void fill_coeff(const Mat * D);
// useful functions
cv::Mat cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b,
Mat cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b,
const std::vector<double>& c, const std::vector<double>& u);
cv::Mat Hessian(const double s[]);
cv::Mat cayley2rotbar(const cv::Mat& s);
cv::Mat skewsymm(const cv::Mat * X1);
Mat Hessian(const double s[]);
Mat cayley2rotbar(const Mat& s);
Mat skewsymm(const Mat * X1);
// extra functions
cv::Mat rotx(const double t);
cv::Mat roty(const double t);
cv::Mat rotz(const double t);
cv::Mat mean(const cv::Mat& M);
bool is_empty(const cv::Mat * v);
bool positive_eigenvalues(const cv::Mat * eigenvalues);
cv::Mat p, z, mn; // object-image points
Mat rotx(const double t);
Mat roty(const double t);
Mat rotz(const double t);
Mat mean(const Mat& M);
bool is_empty(const Mat * v);
bool positive_eigenvalues(const Mat * eigenvalues);
Mat p, z, mn; // object-image points
int N; // number of input points
std::vector<double> f1coeff, f2coeff, f3coeff, cost_; // coefficient for coefficients matrix
std::vector<cv::Mat> C_est_, t_est_; // optimal candidates
cv::Mat C_est__, t_est__; // optimal found solution
std::vector<Mat> C_est_, t_est_; // optimal candidates
Mat C_est__, t_est__; // optimal found solution
double cost__; // optimal found solution
};
@ -738,7 +737,7 @@ public:
{
/*if(isSymmetric(src)) {
// Fall back to OpenCV for a symmetric matrix!
cv::eigen(src, _eigenvalues, _eigenvectors);
eigen(src, _eigenvalues, _eigenvectors);
} else {*/
Mat tmp;
// Convert the given input matrix to double. Is there any way to
@ -770,4 +769,5 @@ public:
Mat eigenvectors() { return _eigenvectors; }
};
} // namespace cv
#endif // DLS_H

@ -103,12 +103,12 @@ void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray d
CV_Assert(length > 0);
// project axes points
vector<Point3f> axesPoints;
std::vector<Point3f> axesPoints;
axesPoints.push_back(Point3f(0, 0, 0));
axesPoints.push_back(Point3f(length, 0, 0));
axesPoints.push_back(Point3f(0, length, 0));
axesPoints.push_back(Point3f(0, 0, length));
vector<Point2f> imagePoints;
std::vector<Point2f> imagePoints;
projectPoints(axesPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints);
// draw axes lines
@ -123,7 +123,7 @@ bool solvePnP( InputArray opoints, InputArray ipoints,
{
CV_INSTRUMENT_REGION();
vector<Mat> rvecs, tvecs;
std::vector<Mat> rvecs, tvecs;
int solutions = solvePnPGeneric(opoints, ipoints, cameraMatrix, distCoeffs, rvecs, tvecs, useExtrinsicGuess, (SolvePnPMethod)flags, rvec, tvec);
if (solutions > 0)
@ -321,8 +321,8 @@ bool solvePnPRansac(InputArray _opoints, InputArray _ipoints,
return false;
}
vector<Point3d> opoints_inliers;
vector<Point2d> ipoints_inliers;
std::vector<Point3d> opoints_inliers;
std::vector<Point2d> ipoints_inliers;
opoints = opoints.reshape(3);
ipoints = ipoints.reshape(2);
opoints.convertTo(opoints_inliers, CV_64F);
@ -472,7 +472,7 @@ int solveP3P( InputArray _opoints, InputArray _ipoints,
else
imgPts = imgPts.reshape(1, 2*imgPts.rows);
vector<double> reproj_errors(solutions);
std::vector<double> reproj_errors(solutions);
for (size_t i = 0; i < reproj_errors.size(); i++)
{
Mat rvec;
@ -762,7 +762,7 @@ static void solvePnPRefine(InputArray _objectPoints, InputArray _imagePoints,
rvec0.convertTo(rvec, CV_64F);
tvec0.convertTo(tvec, CV_64F);
vector<Point2d> ipoints_normalized;
std::vector<Point2d> ipoints_normalized;
undistortPoints(ipoints, ipoints_normalized, cameraMatrix, distCoeffs);
Mat sd = Mat(ipoints_normalized).reshape(1, npoints*2);
Mat objectPoints0 = opoints.reshape(1, npoints);
@ -856,7 +856,7 @@ int solvePnPGeneric( InputArray _opoints, InputArray _ipoints,
Mat cameraMatrix = Mat_<double>(cameraMatrix0);
Mat distCoeffs = Mat_<double>(distCoeffs0);
vector<Mat> vec_rvecs, vec_tvecs;
std::vector<Mat> vec_rvecs, vec_tvecs;
if (flags == SOLVEPNP_EPNP || flags == SOLVEPNP_DLS || flags == SOLVEPNP_UPNP)
{
if (flags == SOLVEPNP_DLS)
@ -881,7 +881,7 @@ int solvePnPGeneric( InputArray _opoints, InputArray _ipoints,
}
else if (flags == SOLVEPNP_P3P || flags == SOLVEPNP_AP3P)
{
vector<Mat> rvecs, tvecs;
std::vector<Mat> rvecs, tvecs;
solveP3P(opoints, ipoints, _cameraMatrix, _distCoeffs, rvecs, tvecs, flags);
vec_rvecs.insert(vec_rvecs.end(), rvecs.begin(), rvecs.end());
vec_tvecs.insert(vec_tvecs.end(), tvecs.begin(), tvecs.end());
@ -1134,7 +1134,7 @@ int solvePnPGeneric( InputArray _opoints, InputArray _ipoints,
for (size_t i = 0; i < vec_rvecs.size(); i++)
{
vector<Point2d> projectedPoints;
std::vector<Point2d> projectedPoints;
projectPoints(objectPoints, vec_rvecs[i], vec_tvecs[i], cameraMatrix, distCoeffs, projectedPoints);
double rmse = norm(Mat(projectedPoints, false), imagePoints, NORM_L2) / sqrt(2*projectedPoints.size());

@ -449,7 +449,16 @@ CV_EXPORTS InputOutputArray noArray();
/////////////////////////////////// MatAllocator //////////////////////////////////////
//! Usage flags for allocator
/** @brief Usage flags for allocator
@warning All flags except `USAGE_DEFAULT` are experimental.
@warning For the OpenCL allocator, `USAGE_ALLOCATE_SHARED_MEMORY` depends on
OpenCV's optional, experimental integration with OpenCL SVM. To enable this
integration, build OpenCV using the `WITH_OPENCL_SVM=ON` CMake option and, at
runtime, call `cv::ocl::Context::getDefault().setUseSVM(true);` or similar
code. Note that SVM is incompatible with OpenCL 1.x.
*/
enum UMatUsageFlags
{
USAGE_DEFAULT = 0,
@ -2077,7 +2086,7 @@ public:
Mat_<Pixel> image = Mat::zeros(3, sizes, CV_8UC3);
image.forEach<Pixel>([&](Pixel& pixel, const int position[]) -> void {
image.forEach<Pixel>([](Pixel& pixel, const int position[]) -> void {
pixel.x = position[0];
pixel.y = position[1];
pixel.z = position[2];

@ -240,7 +240,7 @@ double cv::kmeans( InputArray _data, int K,
attempts = std::max(attempts, 1);
CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 );
CV_CheckGE(N, K, "Number of clusters should be more than number of elements");
CV_CheckGE(N, K, "There can't be more clusters than elements");
Mat data(N, dims, CV_32F, data0.ptr(), isrow ? dims * sizeof(float) : static_cast<size_t>(data0.step));

@ -269,7 +269,7 @@ void setSize( Mat& m, int _dims, const int* _sz, const size_t* _steps, bool auto
else if( autoSteps )
{
m.step.p[i] = total;
int64 total1 = (int64)total*s;
uint64 total1 = (uint64)total*s;
if( (uint64)total1 != (size_t)total1 )
CV_Error( CV_StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
total = (size_t)total1;

@ -421,7 +421,9 @@ public:
if (!blobs.empty())
{
Mat wm = blobs[0].reshape(1, numOutput);
if( wm.step1() % VEC_ALIGN != 0 )
if ((wm.step1() % VEC_ALIGN != 0) ||
!isAligned<VEC_ALIGN * sizeof(float)>(wm.data)
)
{
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
Mat wm_buffer = Mat(numOutput, newcols, wm.type());
@ -1660,7 +1662,6 @@ public:
}
}
}
// now compute dot product of the weights
// and im2row-transformed part of the tensor
#if CV_TRY_AVX512_SKX

@ -81,6 +81,8 @@ void fastConv( const float* weights, size_t wstep, const float* bias,
int blockSize, int vecsize, int vecsize_aligned,
const float* relu, bool initOutput )
{
CV_Assert(isAligned<32>(weights));
int outCn = outShape[1];
size_t outPlaneSize = outShape[2]*outShape[3];
float r0 = 1.f, r1 = 1.f, r2 = 1.f;

@ -1570,7 +1570,7 @@ namespace cv{
#define CONDITION_S img_row[c - 1] > 0
#define CONDITION_X img_row[c] > 0
#define ACTION_1 // nothing to do
#define ACTION_1 img_labels_row[c] = 0;
#define ACTION_2 img_labels_row[c] = label; \
P_[label] = label; \
label = label + 1;
@ -1831,7 +1831,7 @@ namespace cv{
std::vector<LabelT> P_(Plength, 0);
LabelT* P = P_.data();
//P[0] = 0;
P[0] = 0;
LabelT lunique = 1;
// First scan
@ -1851,7 +1851,7 @@ namespace cv{
#define CONDITION_S img_row[c - 1] > 0
#define CONDITION_X img_row[c] > 0
#define ACTION_1 // nothing to do
#define ACTION_1 img_labels_row[c] = 0;
#define ACTION_2 img_labels_row[c] = lunique; \
P[lunique] = lunique; \
lunique = lunique + 1; // new label

@ -789,5 +789,16 @@ TEST(Imgproc_ConnectedComponents, single_column)
}
TEST(Imgproc_ConnectedComponents, 4conn_regression_21366)
{
Mat src = Mat::zeros(Size(10, 10), CV_8UC1);
{
Mat labels, stats, centroids;
EXPECT_NO_THROW(cv::connectedComponentsWithStats(src, labels, stats, centroids, 4));
}
}
}
} // namespace

@ -536,7 +536,7 @@ private:
// Destructor is private. Caller should call Release.
virtual ~SourceReaderCB()
{
CV_LOG_WARNING(NULL, "terminating async callback");
CV_LOG_INFO(NULL, "terminating async callback");
}
public:

Loading…
Cancel
Save