|
|
|
@ -21,15 +21,15 @@ |
|
|
|
|
# include "opencv2/core/eigen.hpp" |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
using namespace std; |
|
|
|
|
namespace cv { |
|
|
|
|
|
|
|
|
|
dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints) |
|
|
|
|
dls::dls(const Mat& opoints, const Mat& ipoints) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
N = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F)); |
|
|
|
|
p = cv::Mat(3, N, CV_64F); |
|
|
|
|
z = cv::Mat(3, N, CV_64F); |
|
|
|
|
mn = cv::Mat::zeros(3, 1, CV_64F); |
|
|
|
|
N = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F)); |
|
|
|
|
p = Mat(3, N, CV_64F); |
|
|
|
|
z = Mat(3, N, CV_64F); |
|
|
|
|
mn = Mat::zeros(3, 1, CV_64F); |
|
|
|
|
|
|
|
|
|
cost__ = 9999; |
|
|
|
|
|
|
|
|
@ -40,14 +40,14 @@ dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints) |
|
|
|
|
if (opoints.depth() == ipoints.depth()) |
|
|
|
|
{ |
|
|
|
|
if (opoints.depth() == CV_32F) |
|
|
|
|
init_points<cv::Point3f, cv::Point2f>(opoints, ipoints); |
|
|
|
|
init_points<Point3f, Point2f>(opoints, ipoints); |
|
|
|
|
else |
|
|
|
|
init_points<cv::Point3d, cv::Point2d>(opoints, ipoints); |
|
|
|
|
init_points<Point3d, Point2d>(opoints, ipoints); |
|
|
|
|
} |
|
|
|
|
else if (opoints.depth() == CV_32F) |
|
|
|
|
init_points<cv::Point3f, cv::Point2d>(opoints, ipoints); |
|
|
|
|
init_points<Point3f, Point2d>(opoints, ipoints); |
|
|
|
|
else |
|
|
|
|
init_points<cv::Point3d, cv::Point2f>(opoints, ipoints); |
|
|
|
|
init_points<Point3d, Point2f>(opoints, ipoints); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
dls::~dls() |
|
|
|
@ -55,10 +55,10 @@ dls::~dls() |
|
|
|
|
// TODO Auto-generated destructor stub
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool dls::compute_pose(cv::Mat& R, cv::Mat& t) |
|
|
|
|
bool dls::compute_pose(Mat& R, Mat& t) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
std::vector<cv::Mat> R_; |
|
|
|
|
std::vector<Mat> R_; |
|
|
|
|
R_.push_back(rotx(CV_PI/2)); |
|
|
|
|
R_.push_back(roty(CV_PI/2)); |
|
|
|
|
R_.push_back(rotz(CV_PI/2)); |
|
|
|
@ -67,7 +67,7 @@ bool dls::compute_pose(cv::Mat& R, cv::Mat& t) |
|
|
|
|
for (int i = 0; i < 3; ++i) |
|
|
|
|
{ |
|
|
|
|
// Make a random rotation
|
|
|
|
|
cv::Mat pp = R_[i] * ( p - cv::repeat(mn, 1, p.cols) ); |
|
|
|
|
Mat pp = R_[i] * ( p - repeat(mn, 1, p.cols) ); |
|
|
|
|
|
|
|
|
|
// clear for new data
|
|
|
|
|
C_est_.clear(); |
|
|
|
@ -99,13 +99,13 @@ bool dls::compute_pose(cv::Mat& R, cv::Mat& t) |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void dls::run_kernel(const cv::Mat& pp) |
|
|
|
|
void dls::run_kernel(const Mat& pp) |
|
|
|
|
{ |
|
|
|
|
cv::Mat Mtilde(27, 27, CV_64F); |
|
|
|
|
cv::Mat D = cv::Mat::zeros(9, 9, CV_64F); |
|
|
|
|
Mat Mtilde(27, 27, CV_64F); |
|
|
|
|
Mat D = Mat::zeros(9, 9, CV_64F); |
|
|
|
|
build_coeff_matrix(pp, Mtilde, D); |
|
|
|
|
|
|
|
|
|
cv::Mat eigenval_r, eigenval_i, eigenvec_r, eigenvec_i; |
|
|
|
|
Mat eigenval_r, eigenval_i, eigenvec_r, eigenvec_i; |
|
|
|
|
compute_eigenvec(Mtilde, eigenval_r, eigenval_i, eigenvec_r, eigenvec_i); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
@ -115,16 +115,16 @@ void dls::run_kernel(const cv::Mat& pp) |
|
|
|
|
// extract the optimal solutions from the eigen decomposition of the
|
|
|
|
|
// Multiplication matrix
|
|
|
|
|
|
|
|
|
|
cv::Mat sols = cv::Mat::zeros(3, 27, CV_64F); |
|
|
|
|
Mat sols = Mat::zeros(3, 27, CV_64F); |
|
|
|
|
std::vector<double> cost; |
|
|
|
|
int count = 0; |
|
|
|
|
for (int k = 0; k < 27; ++k) |
|
|
|
|
{ |
|
|
|
|
// V(:,k) = V(:,k)/V(1,k);
|
|
|
|
|
cv::Mat V_kA = eigenvec_r.col(k); // 27x1
|
|
|
|
|
cv::Mat V_kB = cv::Mat(1, 1, z.depth(), V_kA.at<double>(0)); // 1x1
|
|
|
|
|
cv::Mat V_k; cv::solve(V_kB.t(), V_kA.t(), V_k); // A/B = B'\A'
|
|
|
|
|
cv::Mat( V_k.t()).copyTo( eigenvec_r.col(k) ); |
|
|
|
|
Mat V_kA = eigenvec_r.col(k); // 27x1
|
|
|
|
|
Mat V_kB = Mat(1, 1, z.depth(), V_kA.at<double>(0)); // 1x1
|
|
|
|
|
Mat V_k; solve(V_kB.t(), V_kA.t(), V_k); // A/B = B'\A'
|
|
|
|
|
Mat( V_k.t()).copyTo( eigenvec_r.col(k) ); |
|
|
|
|
|
|
|
|
|
//if (imag(V(2,k)) == 0)
|
|
|
|
|
#ifdef HAVE_EIGEN |
|
|
|
@ -138,24 +138,24 @@ void dls::run_kernel(const cv::Mat& pp) |
|
|
|
|
stmp[1] = eigenvec_r.at<double>(3, k); |
|
|
|
|
stmp[2] = eigenvec_r.at<double>(1, k); |
|
|
|
|
|
|
|
|
|
cv::Mat H = Hessian(stmp); |
|
|
|
|
Mat H = Hessian(stmp); |
|
|
|
|
|
|
|
|
|
cv::Mat eigenvalues, eigenvectors; |
|
|
|
|
cv::eigen(H, eigenvalues, eigenvectors); |
|
|
|
|
Mat eigenvalues, eigenvectors; |
|
|
|
|
eigen(H, eigenvalues, eigenvectors); |
|
|
|
|
|
|
|
|
|
if(positive_eigenvalues(&eigenvalues)) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
// sols(:,i) = stmp;
|
|
|
|
|
cv::Mat stmp_mat(3, 1, CV_64F, &stmp); |
|
|
|
|
Mat stmp_mat(3, 1, CV_64F, &stmp); |
|
|
|
|
|
|
|
|
|
stmp_mat.copyTo( sols.col(count) ); |
|
|
|
|
|
|
|
|
|
cv::Mat Cbar = cayley2rotbar(stmp_mat); |
|
|
|
|
cv::Mat Cbarvec = Cbar.reshape(1,1).t(); |
|
|
|
|
Mat Cbar = cayley2rotbar(stmp_mat); |
|
|
|
|
Mat Cbarvec = Cbar.reshape(1,1).t(); |
|
|
|
|
|
|
|
|
|
// cost(i) = CbarVec' * D * CbarVec;
|
|
|
|
|
cv::Mat cost_mat = Cbarvec.t() * D * Cbarvec; |
|
|
|
|
Mat cost_mat = Cbarvec.t() * D * Cbarvec; |
|
|
|
|
cost.push_back( cost_mat.at<double>(0) ); |
|
|
|
|
|
|
|
|
|
count++; |
|
|
|
@ -166,30 +166,30 @@ void dls::run_kernel(const cv::Mat& pp) |
|
|
|
|
// extract solutions
|
|
|
|
|
sols = sols.clone().colRange(0, count); |
|
|
|
|
|
|
|
|
|
std::vector<cv::Mat> C_est, t_est; |
|
|
|
|
std::vector<Mat> C_est, t_est; |
|
|
|
|
for (int j = 0; j < sols.cols; ++j) |
|
|
|
|
{ |
|
|
|
|
// recover the optimal orientation
|
|
|
|
|
// C_est(:,:,j) = 1/(1 + sols(:,j)' * sols(:,j)) * cayley2rotbar(sols(:,j));
|
|
|
|
|
|
|
|
|
|
cv::Mat sols_j = sols.col(j); |
|
|
|
|
double sols_mult = 1./(1.+cv::Mat( sols_j.t() * sols_j ).at<double>(0)); |
|
|
|
|
cv::Mat C_est_j = cayley2rotbar(sols_j).mul(sols_mult); |
|
|
|
|
Mat sols_j = sols.col(j); |
|
|
|
|
double sols_mult = 1./(1.+Mat( sols_j.t() * sols_j ).at<double>(0)); |
|
|
|
|
Mat C_est_j = cayley2rotbar(sols_j).mul(sols_mult); |
|
|
|
|
C_est.push_back( C_est_j ); |
|
|
|
|
|
|
|
|
|
cv::Mat A2 = cv::Mat::zeros(3, 3, CV_64F); |
|
|
|
|
cv::Mat b2 = cv::Mat::zeros(3, 1, CV_64F); |
|
|
|
|
Mat A2 = Mat::zeros(3, 3, CV_64F); |
|
|
|
|
Mat b2 = Mat::zeros(3, 1, CV_64F); |
|
|
|
|
for (int i = 0; i < N; ++i) |
|
|
|
|
{ |
|
|
|
|
cv::Mat eye = cv::Mat::eye(3, 3, CV_64F); |
|
|
|
|
cv::Mat z_mul = z.col(i)*z.col(i).t(); |
|
|
|
|
Mat eye = Mat::eye(3, 3, CV_64F); |
|
|
|
|
Mat z_mul = z.col(i)*z.col(i).t(); |
|
|
|
|
|
|
|
|
|
A2 += eye - z_mul; |
|
|
|
|
b2 += (z_mul - eye) * C_est_j * pp.col(i); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// recover the optimal translation
|
|
|
|
|
cv::Mat X2; cv::solve(A2, b2, X2); // A\B
|
|
|
|
|
Mat X2; solve(A2, b2, X2); // A\B
|
|
|
|
|
t_est.push_back(X2); |
|
|
|
|
|
|
|
|
|
} |
|
|
|
@ -197,12 +197,12 @@ void dls::run_kernel(const cv::Mat& pp) |
|
|
|
|
// check that the points are infront of the center of perspectivity
|
|
|
|
|
for (int k = 0; k < sols.cols; ++k) |
|
|
|
|
{ |
|
|
|
|
cv::Mat cam_points = C_est[k] * pp + cv::repeat(t_est[k], 1, pp.cols); |
|
|
|
|
cv::Mat cam_points_k = cam_points.row(2); |
|
|
|
|
Mat cam_points = C_est[k] * pp + repeat(t_est[k], 1, pp.cols); |
|
|
|
|
Mat cam_points_k = cam_points.row(2); |
|
|
|
|
|
|
|
|
|
if(is_empty(&cam_points_k)) |
|
|
|
|
{ |
|
|
|
|
cv::Mat C_valid = C_est[k], t_valid = t_est[k]; |
|
|
|
|
Mat C_valid = C_est[k], t_valid = t_est[k]; |
|
|
|
|
double cost_valid = cost[k]; |
|
|
|
|
|
|
|
|
|
C_est_.push_back(C_valid); |
|
|
|
@ -213,20 +213,20 @@ void dls::run_kernel(const cv::Mat& pp) |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D) |
|
|
|
|
void dls::build_coeff_matrix(const Mat& pp, Mat& Mtilde, Mat& D) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(!pp.empty() && N > 0); |
|
|
|
|
cv::Mat eye = cv::Mat::eye(3, 3, CV_64F); |
|
|
|
|
Mat eye = Mat::eye(3, 3, CV_64F); |
|
|
|
|
|
|
|
|
|
// build coeff matrix
|
|
|
|
|
// An intermediate matrix, the inverse of what is called "H" in the paper
|
|
|
|
|
// (see eq. 25)
|
|
|
|
|
|
|
|
|
|
cv::Mat H = cv::Mat::zeros(3, 3, CV_64F); |
|
|
|
|
cv::Mat A = cv::Mat::zeros(3, 9, CV_64F); |
|
|
|
|
cv::Mat pp_i(3, 1, CV_64F); |
|
|
|
|
Mat H = Mat::zeros(3, 3, CV_64F); |
|
|
|
|
Mat A = Mat::zeros(3, 9, CV_64F); |
|
|
|
|
Mat pp_i(3, 1, CV_64F); |
|
|
|
|
|
|
|
|
|
cv::Mat z_i(3, 1, CV_64F); |
|
|
|
|
Mat z_i(3, 1, CV_64F); |
|
|
|
|
for (int i = 0; i < N; ++i) |
|
|
|
|
{ |
|
|
|
|
z.col(i).copyTo(z_i); |
|
|
|
@ -236,10 +236,10 @@ void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D) |
|
|
|
|
H = eye.mul(N) - z * z.t(); |
|
|
|
|
|
|
|
|
|
// A\B
|
|
|
|
|
cv::solve(H, A, A, cv::DECOMP_NORMAL); |
|
|
|
|
solve(H, A, A, DECOMP_NORMAL); |
|
|
|
|
H.release(); |
|
|
|
|
|
|
|
|
|
cv::Mat ppi_A(3, 1, CV_64F); |
|
|
|
|
Mat ppi_A(3, 1, CV_64F); |
|
|
|
|
for (int i = 0; i < N; ++i) |
|
|
|
|
{ |
|
|
|
|
z.col(i).copyTo(z_i); |
|
|
|
@ -253,18 +253,18 @@ void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D) |
|
|
|
|
|
|
|
|
|
// generate random samples
|
|
|
|
|
std::vector<double> u(5); |
|
|
|
|
cv::randn(u, 0, 200); |
|
|
|
|
randn(u, 0, 200); |
|
|
|
|
|
|
|
|
|
cv::Mat M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff, u); |
|
|
|
|
Mat M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff, u); |
|
|
|
|
|
|
|
|
|
cv::Mat M2_1 = M2(cv::Range(0,27), cv::Range(0,27)); |
|
|
|
|
cv::Mat M2_2 = M2(cv::Range(0,27), cv::Range(27,120)); |
|
|
|
|
cv::Mat M2_3 = M2(cv::Range(27,120), cv::Range(27,120)); |
|
|
|
|
cv::Mat M2_4 = M2(cv::Range(27,120), cv::Range(0,27)); |
|
|
|
|
Mat M2_1 = M2(Range(0,27), Range(0,27)); |
|
|
|
|
Mat M2_2 = M2(Range(0,27), Range(27,120)); |
|
|
|
|
Mat M2_3 = M2(Range(27,120), Range(27,120)); |
|
|
|
|
Mat M2_4 = M2(Range(27,120), Range(0,27)); |
|
|
|
|
M2.release(); |
|
|
|
|
|
|
|
|
|
// A/B = B'\A'
|
|
|
|
|
cv::Mat M2_5; cv::solve(M2_3.t(), M2_2.t(), M2_5); |
|
|
|
|
Mat M2_5; solve(M2_3.t(), M2_2.t(), M2_5); |
|
|
|
|
M2_2.release(); M2_3.release(); |
|
|
|
|
|
|
|
|
|
// construct the multiplication matrix via schur compliment of the Macaulay
|
|
|
|
@ -273,13 +273,13 @@ void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D) |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void dls::compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Mat& eigenval_imag, |
|
|
|
|
cv::Mat& eigenvec_real, cv::Mat& eigenvec_imag) |
|
|
|
|
void dls::compute_eigenvec(const Mat& Mtilde, Mat& eigenval_real, Mat& eigenval_imag, |
|
|
|
|
Mat& eigenvec_real, Mat& eigenvec_imag) |
|
|
|
|
{ |
|
|
|
|
#ifdef HAVE_EIGEN |
|
|
|
|
Eigen::MatrixXd Mtilde_eig, zeros_eig; |
|
|
|
|
cv::cv2eigen(Mtilde, Mtilde_eig); |
|
|
|
|
cv::cv2eigen(cv::Mat::zeros(27, 27, CV_64F), zeros_eig); |
|
|
|
|
cv2eigen(Mtilde, Mtilde_eig); |
|
|
|
|
cv2eigen(Mat::zeros(27, 27, CV_64F), zeros_eig); |
|
|
|
|
|
|
|
|
|
Eigen::MatrixXcd Mtilde_eig_cmplx(27, 27); |
|
|
|
|
Mtilde_eig_cmplx.real() = Mtilde_eig; |
|
|
|
@ -293,20 +293,20 @@ void dls::compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Ma |
|
|
|
|
Eigen::MatrixXd eigvec_real = ces.eigenvectors().real(); |
|
|
|
|
Eigen::MatrixXd eigvec_imag = ces.eigenvectors().imag(); |
|
|
|
|
|
|
|
|
|
cv::eigen2cv(eigval_real, eigenval_real); |
|
|
|
|
cv::eigen2cv(eigval_imag, eigenval_imag); |
|
|
|
|
cv::eigen2cv(eigvec_real, eigenvec_real); |
|
|
|
|
cv::eigen2cv(eigvec_imag, eigenvec_imag); |
|
|
|
|
eigen2cv(eigval_real, eigenval_real); |
|
|
|
|
eigen2cv(eigval_imag, eigenval_imag); |
|
|
|
|
eigen2cv(eigvec_real, eigenvec_real); |
|
|
|
|
eigen2cv(eigvec_imag, eigenvec_imag); |
|
|
|
|
#else |
|
|
|
|
EigenvalueDecomposition es(Mtilde); |
|
|
|
|
eigenval_real = es.eigenvalues(); |
|
|
|
|
eigenvec_real = es.eigenvectors(); |
|
|
|
|
eigenval_imag = eigenvec_imag = cv::Mat(); |
|
|
|
|
eigenval_imag = eigenvec_imag = Mat(); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void dls::fill_coeff(const cv::Mat * D_mat) |
|
|
|
|
void dls::fill_coeff(const Mat * D_mat) |
|
|
|
|
{ |
|
|
|
|
// TODO: shift D and coefficients one position to left
|
|
|
|
|
|
|
|
|
@ -394,9 +394,9 @@ void dls::fill_coeff(const cv::Mat * D_mat) |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat dls::LeftMultVec(const cv::Mat& v) |
|
|
|
|
Mat dls::LeftMultVec(const Mat& v) |
|
|
|
|
{ |
|
|
|
|
cv::Mat mat_ = cv::Mat::zeros(3, 9, CV_64F); |
|
|
|
|
Mat mat_ = Mat::zeros(3, 9, CV_64F); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < 3; ++i) |
|
|
|
|
{ |
|
|
|
@ -407,12 +407,12 @@ cv::Mat dls::LeftMultVec(const cv::Mat& v) |
|
|
|
|
return mat_; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat dls::cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b, const std::vector<double>& c, const std::vector<double>& u) |
|
|
|
|
Mat dls::cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b, const std::vector<double>& c, const std::vector<double>& u) |
|
|
|
|
{ |
|
|
|
|
// TODO: input matrix pointer
|
|
|
|
|
// TODO: shift coefficients one position to left
|
|
|
|
|
|
|
|
|
|
cv::Mat M = cv::Mat::zeros(120, 120, CV_64F); |
|
|
|
|
Mat M = Mat::zeros(120, 120, CV_64F); |
|
|
|
|
|
|
|
|
|
M.at<double>(0,0)=u[1]; M.at<double>(0,35)=a[1]; M.at<double>(0,83)=b[1]; M.at<double>(0,118)=c[1]; |
|
|
|
|
M.at<double>(1,0)=u[4]; M.at<double>(1,1)=u[1]; M.at<double>(1,34)=a[1]; M.at<double>(1,35)=a[10]; M.at<double>(1,54)=b[1]; M.at<double>(1,83)=b[10]; M.at<double>(1,99)=c[1]; M.at<double>(1,118)=c[10]; |
|
|
|
@ -538,7 +538,7 @@ cv::Mat dls::cayley_LS_M(const std::vector<double>& a, const std::vector<double> |
|
|
|
|
return M.t(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat dls::Hessian(const double s[]) |
|
|
|
|
Mat dls::Hessian(const double s[]) |
|
|
|
|
{ |
|
|
|
|
// the vector of monomials is
|
|
|
|
|
// m = [ const ; s1^2 * s2 ; s1 * s2 ; s1 * s3 ; s2 * s3 ; s2^2 * s3 ; s2^3 ; ...
|
|
|
|
@ -577,73 +577,73 @@ cv::Mat dls::Hessian(const double s[]) |
|
|
|
|
Hs3[14]=0; Hs3[15]=3*s[2]*s[2]; Hs3[16]=s[0]*s[1]; Hs3[17]=0; Hs3[18]=s[0]*s[0]; Hs3[19]=0; |
|
|
|
|
|
|
|
|
|
// fill Hessian matrix
|
|
|
|
|
cv::Mat H(3, 3, CV_64F); |
|
|
|
|
H.at<double>(0,0) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0); |
|
|
|
|
H.at<double>(0,1) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0); |
|
|
|
|
H.at<double>(0,2) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0); |
|
|
|
|
Mat H(3, 3, CV_64F); |
|
|
|
|
H.at<double>(0,0) = Mat(Mat(f1coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0); |
|
|
|
|
H.at<double>(0,1) = Mat(Mat(f1coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0); |
|
|
|
|
H.at<double>(0,2) = Mat(Mat(f1coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0); |
|
|
|
|
|
|
|
|
|
H.at<double>(1,0) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0); |
|
|
|
|
H.at<double>(1,1) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0); |
|
|
|
|
H.at<double>(1,2) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0); |
|
|
|
|
H.at<double>(1,0) = Mat(Mat(f2coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0); |
|
|
|
|
H.at<double>(1,1) = Mat(Mat(f2coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0); |
|
|
|
|
H.at<double>(1,2) = Mat(Mat(f2coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0); |
|
|
|
|
|
|
|
|
|
H.at<double>(2,0) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0); |
|
|
|
|
H.at<double>(2,1) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0); |
|
|
|
|
H.at<double>(2,2) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0); |
|
|
|
|
H.at<double>(2,0) = Mat(Mat(f3coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0); |
|
|
|
|
H.at<double>(2,1) = Mat(Mat(f3coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0); |
|
|
|
|
H.at<double>(2,2) = Mat(Mat(f3coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0); |
|
|
|
|
|
|
|
|
|
return H; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat dls::cayley2rotbar(const cv::Mat& s) |
|
|
|
|
Mat dls::cayley2rotbar(const Mat& s) |
|
|
|
|
{ |
|
|
|
|
double s_mul1 = cv::Mat(s.t()*s).at<double>(0,0); |
|
|
|
|
cv::Mat s_mul2 = s*s.t(); |
|
|
|
|
cv::Mat eye = cv::Mat::eye(3, 3, CV_64F); |
|
|
|
|
double s_mul1 = Mat(s.t()*s).at<double>(0,0); |
|
|
|
|
Mat s_mul2 = s*s.t(); |
|
|
|
|
Mat eye = Mat::eye(3, 3, CV_64F); |
|
|
|
|
|
|
|
|
|
return cv::Mat( eye.mul(1.-s_mul1) + skewsymm(&s).mul(2.) + s_mul2.mul(2.) ).t(); |
|
|
|
|
return Mat( eye.mul(1.-s_mul1) + skewsymm(&s).mul(2.) + s_mul2.mul(2.) ).t(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat dls::skewsymm(const cv::Mat * X1) |
|
|
|
|
Mat dls::skewsymm(const Mat * X1) |
|
|
|
|
{ |
|
|
|
|
cv::MatConstIterator_<double> it = X1->begin<double>(); |
|
|
|
|
return (cv::Mat_<double>(3,3) << 0, -*(it+2), *(it+1), |
|
|
|
|
*(it+2), 0, -*(it+0), |
|
|
|
|
-*(it+1), *(it+0), 0); |
|
|
|
|
MatConstIterator_<double> it = X1->begin<double>(); |
|
|
|
|
return (Mat_<double>(3,3) << 0, -*(it+2), *(it+1), |
|
|
|
|
*(it+2), 0, -*(it+0), |
|
|
|
|
-*(it+1), *(it+0), 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat dls::rotx(const double t) |
|
|
|
|
Mat dls::rotx(const double t) |
|
|
|
|
{ |
|
|
|
|
// rotx: rotation about y-axis
|
|
|
|
|
double ct = cos(t); |
|
|
|
|
double st = sin(t); |
|
|
|
|
return (cv::Mat_<double>(3,3) << 1, 0, 0, 0, ct, -st, 0, st, ct); |
|
|
|
|
return (Mat_<double>(3,3) << 1, 0, 0, 0, ct, -st, 0, st, ct); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat dls::roty(const double t) |
|
|
|
|
Mat dls::roty(const double t) |
|
|
|
|
{ |
|
|
|
|
// roty: rotation about y-axis
|
|
|
|
|
double ct = cos(t); |
|
|
|
|
double st = sin(t); |
|
|
|
|
return (cv::Mat_<double>(3,3) << ct, 0, st, 0, 1, 0, -st, 0, ct); |
|
|
|
|
return (Mat_<double>(3,3) << ct, 0, st, 0, 1, 0, -st, 0, ct); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat dls::rotz(const double t) |
|
|
|
|
Mat dls::rotz(const double t) |
|
|
|
|
{ |
|
|
|
|
// rotz: rotation about y-axis
|
|
|
|
|
double ct = cos(t); |
|
|
|
|
double st = sin(t); |
|
|
|
|
return (cv::Mat_<double>(3,3) << ct, -st, 0, st, ct, 0, 0, 0, 1); |
|
|
|
|
return (Mat_<double>(3,3) << ct, -st, 0, st, ct, 0, 0, 0, 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat dls::mean(const cv::Mat& M) |
|
|
|
|
Mat dls::mean(const Mat& M) |
|
|
|
|
{ |
|
|
|
|
cv::Mat m = cv::Mat::zeros(3, 1, CV_64F); |
|
|
|
|
Mat m = Mat::zeros(3, 1, CV_64F); |
|
|
|
|
for (int i = 0; i < M.cols; ++i) m += M.col(i); |
|
|
|
|
return m.mul(1./(double)M.cols); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool dls::is_empty(const cv::Mat * M) |
|
|
|
|
bool dls::is_empty(const Mat * M) |
|
|
|
|
{ |
|
|
|
|
cv::MatConstIterator_<double> it = M->begin<double>(), it_end = M->end<double>(); |
|
|
|
|
MatConstIterator_<double> it = M->begin<double>(), it_end = M->end<double>(); |
|
|
|
|
for(; it != it_end; ++it) |
|
|
|
|
{ |
|
|
|
|
if(*it < 0) return false; |
|
|
|
@ -651,9 +651,11 @@ bool dls::is_empty(const cv::Mat * M) |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool dls::positive_eigenvalues(const cv::Mat * eigenvalues) |
|
|
|
|
bool dls::positive_eigenvalues(const Mat * eigenvalues) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(eigenvalues && !eigenvalues->empty()); |
|
|
|
|
cv::MatConstIterator_<double> it = eigenvalues->begin<double>(); |
|
|
|
|
MatConstIterator_<double> it = eigenvalues->begin<double>(); |
|
|
|
|
return *(it) > 0 && *(it+1) > 0 && *(it+2) > 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} // namespace cv
|
|
|
|
|