parent
3a0d3ebdde
commit
ae649e8c30
5 changed files with 223 additions and 0 deletions
@ -0,0 +1,200 @@ |
||||
.. _filter_2d: |
||||
|
||||
Making your own linear filters! |
||||
******************************** |
||||
|
||||
Goal |
||||
===== |
||||
|
||||
In this tutorial you will learn how to: |
||||
|
||||
* Use the OpenCV function :filter2d:`filter2D <>` to create your own linear filters. |
||||
|
||||
Theory |
||||
============ |
||||
|
||||
.. note:: |
||||
The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler. |
||||
|
||||
|
||||
Convolution |
||||
------------ |
||||
In a very general sense, convolution is an operation between every part of an image and an operator (kernel). |
||||
|
||||
What is a kernel? |
||||
------------------ |
||||
A kernel is essentially a fixed size array of numerical coefficeints along with an *anchor point* in that array, which is tipically located at the center. |
||||
|
||||
.. image:: images/filter_2d_tutorial_kernel_theory.png |
||||
:alt: kernel example |
||||
:align: center |
||||
|
||||
How does convolution with a kernel work? |
||||
----------------------------------------- |
||||
|
||||
Assume you want to know the resulting value of a particular location in the image. The value of the convolution is calculated in the following way: |
||||
|
||||
#. Place the kernel anchor on top of a determined pixel, with the rest of the kernel overlaying the corresponding local pixels in the image. |
||||
|
||||
#. Multiply the kernel coefficients by the corresponding image pixel values and sum the result. |
||||
|
||||
#. Place the result to the location of the *anchor* in the input image. |
||||
|
||||
#. Repeat the process for all pixels by scanning the kernel over the entire image. |
||||
|
||||
Expressing the procedure above in the form of an equation we would have: |
||||
|
||||
.. math:: |
||||
|
||||
H(x,y) = \sum_{i=0}^{M_{i} - 1} \sum_{j=0}^{M_{j}-1} I(x+i - a_{i}, y + j - a_{j})K(i,j) |
||||
|
||||
Fortunately, OpenCV provides you with the function :filter2d:`filter2D <>` so you do not have to code all these operations. |
||||
|
||||
Code |
||||
====== |
||||
|
||||
#. **What does this program do?** |
||||
|
||||
* Loads an image |
||||
* Performs a *normalized box filter*. For instance, for a kernel of size :math:`size = 3`, the kernel would be: |
||||
|
||||
.. math:: |
||||
|
||||
K = \dfrac{1}{3 \cdot 3} \begin{bmatrix} |
||||
1 & 1 & 1 \\ |
||||
1 & 1 & 1 \\ |
||||
1 & 1 & 1 |
||||
\end{bmatrix} |
||||
|
||||
The program will perform the filter operation with kernels of sizes 3, 5, 7, 9 and 11. |
||||
|
||||
* The filter output (with each kernel) will be shown during 500 milliseconds |
||||
|
||||
#. The tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/filter2D_demo.cpp>`_ |
||||
|
||||
|
||||
.. code-block:: cpp |
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
#include "opencv2/highgui/highgui.hpp" |
||||
#include <stdlib.h> |
||||
#include <stdio.h> |
||||
|
||||
using namespace cv; |
||||
|
||||
/** @function main */ |
||||
int main ( int argc, char** argv ) |
||||
{ |
||||
/// Declare variables |
||||
Mat src, dst; |
||||
|
||||
Mat kernel; |
||||
Point anchor; |
||||
double delta; |
||||
int ddepth; |
||||
int kernel_size; |
||||
char* window_name = "filter2D Demo"; |
||||
|
||||
int c; |
||||
|
||||
/// Load an image |
||||
src = imread( argv[1] ); |
||||
|
||||
if( !src.data ) |
||||
{ return -1; } |
||||
|
||||
/// Create window |
||||
namedWindow( window_name, CV_WINDOW_AUTOSIZE ); |
||||
|
||||
/// Initialize arguments for the filter |
||||
anchor = Point( -1, -1 ); |
||||
delta = 0; |
||||
ddepth = -1; |
||||
|
||||
/// Loop - Will filter the image with different kernel sizes each 0.5 seconds |
||||
int ind = 0; |
||||
while( true ) |
||||
{ |
||||
c = waitKey(500); |
||||
/// Press 'ESC' to exit the program |
||||
if( (char)c == 27 ) |
||||
{ break; } |
||||
|
||||
/// Update kernel size for a normalized box filter |
||||
kernel_size = 3 + 2*( ind%5 ); |
||||
kernel = Mat::ones( kernel_size, kernel_size, CV_32F )/ (float)(kernel_size*kernel_size); |
||||
|
||||
/// Apply filter |
||||
filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT ); |
||||
imshow( window_name, dst ); |
||||
ind++; |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
Explanation |
||||
============= |
||||
|
||||
#. We begin with the usual steps: |
||||
|
||||
* Load an image |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
src = imread( argv[1] ); |
||||
|
||||
if( !src.data ) |
||||
{ return -1; } |
||||
|
||||
* Create a window to display the result |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
namedWindow( window_name, CV_WINDOW_AUTOSIZE ); |
||||
|
||||
#. Initialize the arguments for the linear filter |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
anchor = Point( -1, -1 ); |
||||
delta = 0; |
||||
ddepth = -1; |
||||
|
||||
|
||||
#. Perform an infinite loop updating the kernel size and applying our linear filter to the input image. Let's analyze that more in detail: |
||||
|
||||
#. First we define the kernel our filter is going to use. Here it is: |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
kernel_size = 3 + 2*( ind%5 ); |
||||
kernel = Mat::ones( kernel_size, kernel_size, CV_32F )/ (float)(kernel_size*kernel_size); |
||||
|
||||
The first line is to update the *kernel_size* to odd values in the range: :math:`[3,11]`. The second line actually builds the kernel by setting its value to a matrix filled with :math:`1's` and normalizing it by dividing it between the number of elements. |
||||
|
||||
#. After setting the kernel, we can generate the filter by using the function :filter2d:`filter2D <>`: |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT ); |
||||
|
||||
The arguments denote: |
||||
|
||||
a. *src*: Source image |
||||
#. *dst*: Destination image |
||||
#. *ddepth*: The depth of *dst*. A negative value (such as :math:`-1`) indicates that the depth is the same as the source. |
||||
#. *kernel*: The kernel to be scanned through the image |
||||
#. *anchor*: The position of the anchor relative to its kernel. The location *Point(-1, -1)* indicates the center by default. |
||||
#. *delta*: A value to be added to each pixel during the convolution. By default it is :math:`0` |
||||
#. *BORDER_DEFAULT*: We let this value by default (more details in the following tutorial) |
||||
|
||||
#. Our program will effectuate a *while* loop, each 500 ms the kernel size of our filter will be updated in the range indicated. |
||||
|
||||
Results |
||||
======== |
||||
|
||||
#. After compiling the code above, you can execute it giving as argument the path of an image. The result should be a window that shows an image blurred by a normalized filter. Each 0.5 seconds the kernel size should change, as can be seen in the series of snapshots below: |
||||
|
||||
.. image:: images/filter_2d_tutorial_result.png |
||||
:alt: kernel example |
||||
:align: center |
After Width: | Height: | Size: 10 KiB |
After Width: | Height: | Size: 125 KiB |
After Width: | Height: | Size: 30 KiB |
Loading…
Reference in new issue