Added L1 distance code and used factory functions in evaluation framework

pull/13383/head
Ilya Lysenkov 15 years ago
parent 4bcd81f85f
commit add94f9bd6
  1. 57
      modules/features2d/include/opencv2/features2d/features2d.hpp
  2. 89
      modules/features2d/src/descriptors.cpp
  3. 5
      modules/features2d/src/detectors.cpp
  4. 234
      tests/cv/src/adetectordescriptor_evaluation.cpp

@ -1507,6 +1507,27 @@ struct CV_EXPORTS L2
}
};
/*
* Manhattan distance (city block distance) functor
*/
template<class T>
struct CV_EXPORTS L1
{
typedef T ValueType;
typedef typename Accumulator<T>::Type ResultType;
ResultType operator()( const T* a, const T* b, int size ) const
{
ResultType result = ResultType();
for( int i = 0; i < size; i++ )
{
ResultType diff = a[i] - b[i];
result += fabs( diff );
}
return result;
}
};
/****************************************************************************************\
* DMatch *
@ -1755,6 +1776,7 @@ void BruteForceMatcher<Distance>::matchImpl( const Mat& descriptors_1, const Mat
{
vector<DMatch> matchings;
matchImpl( descriptors_1, descriptors_2, mask, matchings);
matches.clear();
matches.resize( matchings.size() );
for( size_t i=0;i<matchings.size();i++)
{
@ -1776,6 +1798,7 @@ void BruteForceMatcher<Distance>::matchImpl( const Mat& descriptors_1, const Mat
assert( DataType<ValueType>::type == descriptors_2.type() || descriptors_2.empty() );
int dimension = descriptors_1.cols;
matches.clear();
matches.resize(descriptors_1.rows);
for( int i = 0; i < descriptors_1.rows; i++ )
@ -1823,6 +1846,7 @@ void BruteForceMatcher<Distance>::matchImpl( const Mat& descriptors_1, const Mat
assert( DataType<ValueType>::type == descriptors_2.type() || descriptors_2.empty() );
int dimension = descriptors_1.cols;
matches.clear();
matches.resize( descriptors_1.rows );
for( int i = 0; i < descriptors_1.rows; i++ )
@ -1930,8 +1954,6 @@ public:
// Writes match object to a file storage
virtual void write( FileStorage& fs ) const {};
static GenericDescriptorMatch* CreateDescriptorMatch( const string &alg_name, const string &params_filename = string () );
protected:
KeyPointCollection collection;
@ -1998,6 +2020,8 @@ public:
virtual void match( const Mat& image, vector<KeyPoint>& points, vector<DMatch>& matches );
virtual void match( const Mat& image, vector<KeyPoint>& points, vector<vector<DMatch> >& matches, float threshold);
// Classify a set of keypoints. The same as match, but returns point classes rather than indices
virtual void classify( const Mat& image, vector<KeyPoint>& points );
@ -2146,6 +2170,7 @@ protected:
Params params;
};
GenericDescriptorMatch* createDescriptorMatch( const string& genericDescritptorMatchType, const string &paramsFilename = string () );
/****************************************************************************************\
* VectorDescriptorMatch *
\****************************************************************************************/
@ -2159,7 +2184,7 @@ class CV_EXPORTS VectorDescriptorMatch : public GenericDescriptorMatch
public:
using GenericDescriptorMatch::add;
VectorDescriptorMatch( const Extractor& _extractor = Extractor(), const Matcher& _matcher = Matcher() ) :
VectorDescriptorMatch( Extractor *_extractor = 0, Matcher * _matcher = 0 ) :
extractor(_extractor), matcher(_matcher) {}
~VectorDescriptorMatch() {}
@ -2171,8 +2196,8 @@ public:
virtual void add( const Mat& image, vector<KeyPoint>& keypoints )
{
Mat descriptors;
extractor.compute( image, keypoints, descriptors );
matcher.add( descriptors );
extractor->compute( image, keypoints, descriptors );
matcher->add( descriptors );
collection.add( Mat(), keypoints );
};
@ -2181,47 +2206,47 @@ public:
virtual void match( const Mat& image, vector<KeyPoint>& points, vector<int>& keypointIndices )
{
Mat descriptors;
extractor.compute( image, points, descriptors );
extractor->compute( image, points, descriptors );
matcher.match( descriptors, keypointIndices );
matcher->match( descriptors, keypointIndices );
};
virtual void match( const Mat& image, vector<KeyPoint>& points, vector<DMatch>& matches )
{
Mat descriptors;
extractor.compute( image, points, descriptors );
extractor->compute( image, points, descriptors );
matcher.match( descriptors, matches );
matcher->match( descriptors, matches );
}
virtual void match( const Mat& image, vector<KeyPoint>& points, vector<vector<DMatch> >& matches, float threshold )
{
Mat descriptors;
extractor.compute( image, points, descriptors );
extractor->compute( image, points, descriptors );
matcher.match( descriptors, matches, threshold );
matcher->match( descriptors, matches, threshold );
}
virtual void clear()
{
GenericDescriptorMatch::clear();
matcher.clear();
matcher->clear();
}
virtual void read (const FileNode& fn)
{
GenericDescriptorMatch::read(fn);
extractor.read (fn);
extractor->read (fn);
}
virtual void write (FileStorage& fs) const
{
GenericDescriptorMatch::write(fs);
extractor.write (fs);
extractor->write (fs);
}
protected:
Extractor extractor;
Matcher matcher;
Ptr<Extractor> extractor;
Ptr<Matcher> matcher;
//vector<int> classIds;
};

@ -40,6 +40,7 @@
//M*/
#include "precomp.hpp"
#include <stdio.h>
//#define _KDTREE
@ -254,6 +255,10 @@ DescriptorMatcher* createDescriptorMatcher( const string& descriptorMatcherType
{
dm = new BruteForceMatcher<L2<float> >();
}
else if ( !descriptorMatcherType.compare( "BruteForce-L1" ) )
{
dm = new BruteForceMatcher<L1<float> >();
}
else
{
//CV_Error( CV_StsBadArg, "unsupported descriptor matcher type");
@ -330,27 +335,27 @@ void GenericDescriptorMatch::clear()
collection.clear();
}
GenericDescriptorMatch* GenericDescriptorMatch::CreateDescriptorMatch( const string &alg_name, const string &params_filename )
GenericDescriptorMatch* createDescriptorMatch( const string& genericDescritptorMatchType, const string &paramsFilename )
{
GenericDescriptorMatch *descriptorMatch = 0;
if( ! alg_name.compare ("one_way") )
if( ! genericDescritptorMatchType.compare ("ONEWAY") )
{
descriptorMatch = new OneWayDescriptorMatch ();
}
else if( ! alg_name.compare ("fern") )
else if( ! genericDescritptorMatchType.compare ("FERN") )
{
FernDescriptorMatch::Params params;
params.signatureSize = INT_MAX;
params.signatureSize = numeric_limits<int>::max();
descriptorMatch = new FernDescriptorMatch (params);
}
else if( ! alg_name.compare ("calonder") )
else if( ! genericDescritptorMatchType.compare ("CALONDER") )
{
descriptorMatch = new CalonderDescriptorMatch ();
}
if( !params_filename.empty() && descriptorMatch != 0 )
if( !paramsFilename.empty() && descriptorMatch != 0 )
{
FileStorage fs = FileStorage( params_filename, FileStorage::READ );
FileStorage fs = FileStorage( paramsFilename, FileStorage::READ );
if( fs.isOpened() )
{
descriptorMatch->read( fs.root() );
@ -460,6 +465,76 @@ void OneWayDescriptorMatch::match( const Mat& image, vector<KeyPoint>& points, v
}
}
void OneWayDescriptorMatch::match( const Mat& image, vector<KeyPoint>& points, vector<vector<DMatch> >& matches, float threshold )
{
matches.clear();
matches.resize( points.size() );
IplImage _image = image;
vector<DMatch> dmatches;
match( image, points, dmatches );
for( size_t i=0;i<matches.size();i++ )
{
matches[i].push_back( dmatches[i] );
}
/*
printf("Start matching %d points\n", points.size());
//std::cout << "Start matching " << points.size() << "points\n";
assert(collection.images.size() == 1);
int n = collection.points[0].size();
printf("n = %d\n", n);
for( size_t i = 0; i < points.size(); i++ )
{
//printf("Matching %d\n", i);
//int poseIdx = -1;
DMatch match;
match.indexQuery = i;
match.indexTrain = -1;
CvPoint pt = points[i].pt;
CvRect roi = cvRect(cvRound(pt.x - 24/4),
cvRound(pt.y - 24/4),
24/2, 24/2);
cvSetImageROI(&_image, roi);
std::vector<int> desc_idxs;
std::vector<int> pose_idxs;
std::vector<float> distances;
std::vector<float> _scales;
base->FindDescriptor(&_image, n, desc_idxs, pose_idxs, distances, _scales);
cvResetImageROI(&_image);
for( int j=0;j<n;j++ )
{
match.indexTrain = desc_idxs[j];
match.distance = distances[j];
matches[i].push_back( match );
}
//sort( matches[i].begin(), matches[i].end(), compareIndexTrain );
//for( int j=0;j<n;j++ )
//{
//printf( "%d %f; ",matches[i][j].indexTrain, matches[i][j].distance);
//}
//printf("\n\n\n");
//base->FindDescriptor( &_image, 100, points[i].pt, match.indexTrain, poseIdx, match.distance );
//matches[i].push_back( match );
}
*/
}
void OneWayDescriptorMatch::read( const FileNode &fn )
{
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, string (), string (), string (),

@ -344,6 +344,11 @@ FeatureDetector* createDetector( const string& detectorType )
5/*edge_blur_size*/ );
}
else if( !detectorType.compare( "GFTT" ) )
{
fd = new GoodFeaturesToTrackDetector( 1000/*maxCorners*/, 0.01/*qualityLevel*/, 1./*minDistance*/,
3/*int _blockSize*/, false/*useHarrisDetector*/, 0.04/*k*/ );
}
else if( !detectorType.compare( "HARRIS" ) )
{
fd = new GoodFeaturesToTrackDetector( 1000/*maxCorners*/, 0.01/*qualityLevel*/, 1./*minDistance*/,
3/*int _blockSize*/, true/*useHarrisDetector*/, 0.04/*k*/ );

@ -1042,56 +1042,12 @@ inline void readKeypoints( FileStorage& fs, vector<KeyPoint>& keypoints, int img
void DetectorQualityTest::readAlgorithm ()
{
//TODO: use Factory Register when it will be implemented
if (! algName.compare ("fast"))
defaultDetector = createDetector( algName );
specificDetector = createDetector( algName );
if( defaultDetector == 0 )
{
defaultDetector = new FastFeatureDetector(50, true);
specificDetector = new FastFeatureDetector();
}
else if (! algName.compare ("mser"))
{
defaultDetector = new MserFeatureDetector();
specificDetector = new MserFeatureDetector();
}
else if (! algName.compare ("star"))
{
defaultDetector = new StarFeatureDetector();
specificDetector = new StarFeatureDetector();
}
else if (! algName.compare ("sift"))
{
defaultDetector = new SiftFeatureDetector(SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(), 3);
specificDetector = new SiftFeatureDetector();
}
else if (! algName.compare ("surf"))
{
defaultDetector = new SurfFeatureDetector(1500);
specificDetector = new SurfFeatureDetector();
}
else
{
int maxCorners = 1500;
double qualityLevel = 0.01;
double minDistance = 2.0;
int blockSize=3;
if (! algName.compare ("gftt"))
{
bool useHarrisDetector = false;
defaultDetector = new GoodFeaturesToTrackDetector (maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector);
specificDetector = new GoodFeaturesToTrackDetector (maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector);
}
else if (! algName.compare ("harris"))
{
bool useHarrisDetector = true;
defaultDetector = new GoodFeaturesToTrackDetector (maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector);
specificDetector = new GoodFeaturesToTrackDetector (maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector);
}
else
{
ts->printf(CvTS::LOG, "Algorithm can not be read\n");
ts->set_failed_test_info( CvTS::FAIL_GENERIC);
}
ts->printf(CvTS::LOG, "Algorithm can not be read\n");
ts->set_failed_test_info( CvTS::FAIL_GENERIC);
}
}
@ -1152,13 +1108,13 @@ int DetectorQualityTest::processResults( int datasetIdx, int caseIdx )
return res;
}
DetectorQualityTest fastDetectorQuality = DetectorQualityTest( "fast", "quality-detector-fast" );
DetectorQualityTest gfttDetectorQuality = DetectorQualityTest( "gftt", "quality-detector-gftt" );
DetectorQualityTest harrisDetectorQuality = DetectorQualityTest( "harris", "quality-detector-harris" );
DetectorQualityTest mserDetectorQuality = DetectorQualityTest( "mser", "quality-detector-mser" );
DetectorQualityTest starDetectorQuality = DetectorQualityTest( "star", "quality-detector-star" );
DetectorQualityTest siftDetectorQuality = DetectorQualityTest( "sift", "quality-detector-sift" );
DetectorQualityTest surfDetectorQuality = DetectorQualityTest( "surf", "quality-detector-surf" );
//DetectorQualityTest fastDetectorQuality = DetectorQualityTest( "FAST", "quality-detector-fast" );
//DetectorQualityTest gfttDetectorQuality = DetectorQualityTest( "GFTT", "quality-detector-gftt" );
//DetectorQualityTest harrisDetectorQuality = DetectorQualityTest( "HARRIS", "quality-detector-harris" );
//DetectorQualityTest mserDetectorQuality = DetectorQualityTest( "MSER", "quality-detector-mser" );
//DetectorQualityTest starDetectorQuality = DetectorQualityTest( "STAR", "quality-detector-star" );
//DetectorQualityTest siftDetectorQuality = DetectorQualityTest( "SIFT", "quality-detector-sift" );
//DetectorQualityTest surfDetectorQuality = DetectorQualityTest( "SURF", "quality-detector-surf" );
/****************************************************************************************\
* Descriptors evaluation *
@ -1179,7 +1135,7 @@ class DescriptorQualityTest : public BaseQualityTest
{
public:
enum{ NO_MATCH_FILTER = 0 };
DescriptorQualityTest( const char* _descriptorName, const char* _testName ) :
DescriptorQualityTest( const char* _descriptorName, const char* _testName, const char* _matcherName = 0 ) :
BaseQualityTest( _descriptorName, _testName, "quality-of-descriptor" )
{
validQuality.resize(DATASETS_COUNT);
@ -1190,6 +1146,9 @@ public:
commRunParamsDefault.projectKeypointsFrom1Image = true;
commRunParamsDefault.matchFilter = NO_MATCH_FILTER;
commRunParamsDefault.isActiveParams = false;
if( _matcherName )
matcherName = _matcherName;
}
protected:
@ -1223,6 +1182,7 @@ protected:
virtual int processResults( int datasetIdx, int caseIdx );
virtual void writePlotData( int di ) const;
void calculatePlotData( vector<DMatchForEvaluation> &allMatches, int allCorrespCount, int di );
struct Quality
{
@ -1246,6 +1206,7 @@ protected:
Ptr<GenericDescriptorMatch> defaultDescMatch;
CommonRunParams commRunParamsDefault;
string matcherName;
};
string DescriptorQualityTest::getRunParamsFilename() const
@ -1364,52 +1325,69 @@ void DescriptorQualityTest::writePlotData( int di ) const
void DescriptorQualityTest::readAlgorithm( )
{
//TODO: use Factory Register when it will be implemented
if (! algName.compare ("sift"))
{
SiftDescriptorExtractor extractor;
BruteForceMatcher<L2<float> > matcher;
defaultDescMatch = new VectorDescriptorMatch<SiftDescriptorExtractor, BruteForceMatcher<L2<float> > >(extractor, matcher);
specificDescMatch = new VectorDescriptorMatch<SiftDescriptorExtractor, BruteForceMatcher<L2<float> > >(extractor, matcher);
}
else if (! algName.compare ("surf"))
{
SurfDescriptorExtractor extractor;
BruteForceMatcher<L2<float> > matcher;
defaultDescMatch = new VectorDescriptorMatch<SurfDescriptorExtractor, BruteForceMatcher<L2<float> > >(extractor, matcher);
specificDescMatch = new VectorDescriptorMatch<SurfDescriptorExtractor, BruteForceMatcher<L2<float> > >(extractor, matcher);
}
else if (! algName.compare ("one_way"))
{
defaultDescMatch = new OneWayDescriptorMatch ();
specificDescMatch = new OneWayDescriptorMatch ();
}
else if (! algName.compare ("fern"))
{
FernDescriptorMatch::Params params;
params.nviews = 100;
params.signatureSize = INT_MAX;
params.nstructs = 50;
defaultDescMatch = new FernDescriptorMatch (params);
specificDescMatch = new FernDescriptorMatch ();
}
else if (! algName.compare ("calonder"))
defaultDescMatch = createDescriptorMatch( algName );
specificDescMatch = createDescriptorMatch( algName );
if( defaultDescMatch == 0 )
{
CalonderDescriptorMatch::Params params;
params.numTrees = 20;
params.depth = 7;
params.views = 100;
params.reducedNumDim = 100;
params.patchSize = 20;
defaultDescMatch = new CalonderDescriptorMatch (params);
specificDescMatch = new CalonderDescriptorMatch ();
DescriptorExtractor *extractor = createDescriptorExtractor( algName );
DescriptorMatcher *matcher = createDescriptorMatcher( matcherName );
defaultDescMatch = new VectorDescriptorMatch<DescriptorExtractor, DescriptorMatcher >( extractor, matcher );
specificDescMatch = new VectorDescriptorMatch<DescriptorExtractor, DescriptorMatcher >( extractor, matcher );
if( extractor == 0 || matcher == 0 )
{
ts->printf(CvTS::LOG, "Algorithm can not be read\n");
ts->set_failed_test_info( CvTS::FAIL_GENERIC);
}
}
else
}
void DescriptorQualityTest::calculatePlotData( vector<DMatchForEvaluation> &allMatches, int allCorrespCount, int di )
{
std::sort( allMatches.begin(), allMatches.end() );
//calcDatasetQuality[di].resize( allMatches.size() );
calcDatasetQuality[di].clear();
int correctMatchCount = 0, falseMatchCount = 0;
const float sparsePlotBound = 0.1;
const int npoints = 10000;
int step = 1 + allMatches.size() / npoints;
const float resultPrecision = 0.5;
bool isResultCalculated = false;
for( size_t i=0;i<allMatches.size();i++)
{
ts->printf(CvTS::LOG, "Algorithm can not be read\n");
ts->set_failed_test_info( CvTS::FAIL_GENERIC);
if( allMatches[i].isCorrect )
correctMatchCount++;
else
falseMatchCount++;
if( precision( correctMatchCount, falseMatchCount ) >= sparsePlotBound || (i % step == 0) )
{
Quality quality;
quality.recall = recall( correctMatchCount, allCorrespCount );
quality.precision = precision( correctMatchCount, falseMatchCount );
calcDatasetQuality[di].push_back( quality );
if( !isResultCalculated && quality.precision < resultPrecision)
{
for(int ci=0;ci<TEST_CASE_COUNT;ci++)
{
calcQuality[di][ci].recall = quality.recall;
calcQuality[di][ci].precision = quality.precision;
}
isResultCalculated = true;
}
}
}
Quality quality;
quality.recall = recall( correctMatchCount, allCorrespCount );
quality.precision = precision( correctMatchCount, falseMatchCount );
calcDatasetQuality[di].push_back( quality );
}
void DescriptorQualityTest::runDatasetTest (const vector<Mat> &imgs, const vector<Mat> &Hs, int di, int &progress)
@ -1465,48 +1443,7 @@ void DescriptorQualityTest::runDatasetTest (const vector<Mat> &imgs, const vecto
descMatch->clear ();
}
std::sort( allMatches.begin(), allMatches.end() );
//calcDatasetQuality[di].resize( allMatches.size() );
calcDatasetQuality[di].clear();
int correctMatchCount = 0, falseMatchCount = 0;
const float sparsePlotBound = 0.1;
const int npoints = 10000;
int step = allMatches.size() / npoints;
const float resultPrecision = 0.5;
bool isResultCalculated = false;
for( size_t i=0;i<allMatches.size();i++)
{
if( allMatches[i].isCorrect )
correctMatchCount++;
else
falseMatchCount++;
if( precision( correctMatchCount, falseMatchCount ) >= sparsePlotBound || (i % step == 0) )
{
Quality quality;
quality.recall = recall( correctMatchCount, allCorrespCount );
quality.precision = precision( correctMatchCount, falseMatchCount );
calcDatasetQuality[di].push_back( quality );
if( !isResultCalculated && quality.precision < resultPrecision)
{
for(int ci=0;ci<TEST_CASE_COUNT;ci++)
{
calcQuality[di][ci].recall = quality.recall;
calcQuality[di][ci].precision = quality.precision;
}
isResultCalculated = true;
}
}
}
Quality quality;
quality.recall = recall( correctMatchCount, allCorrespCount );
quality.precision = precision( correctMatchCount, falseMatchCount );
calcDatasetQuality[di].push_back( quality );
calculatePlotData( allMatches, allCorrespCount, di );
}
int DescriptorQualityTest::processResults( int datasetIdx, int caseIdx )
@ -1529,15 +1466,17 @@ int DescriptorQualityTest::processResults( int datasetIdx, int caseIdx )
return res;
}
DescriptorQualityTest siftDescriptorQuality = DescriptorQualityTest( "sift", "quality-descriptor-sift" );
DescriptorQualityTest surfDescriptorQuality = DescriptorQualityTest( "surf", "quality-descriptor-surf" );
//DescriptorQualityTest siftDescriptorQuality = DescriptorQualityTest( "SIFT", "quality-descriptor-sift", "BruteForce" );
//DescriptorQualityTest surfDescriptorQuality = DescriptorQualityTest( "SURF", "quality-descriptor-surf", "BruteForce" );
//DescriptorQualityTest siftL1DescriptorQuality = DescriptorQualityTest( "SIFT", "quality-descriptor-sift-L1", "BruteForce-L1" );
//DescriptorQualityTest surfL1DescriptorQuality = DescriptorQualityTest( "SURF", "quality-descriptor-surf-L1", "BruteForce-L1" );
//--------------------------------- One Way descriptor test --------------------------------------------
class OneWayDescriptorQualityTest : public DescriptorQualityTest
{
public:
OneWayDescriptorQualityTest() :
DescriptorQualityTest("one_way", "quality-descriptor-one-way")
DescriptorQualityTest("ONEWAY", "quality-descriptor-one-way")
{
}
protected:
@ -1587,7 +1526,6 @@ void OneWayDescriptorQualityTest::writeDatasetRunParams( FileStorage& fs, int da
}
OneWayDescriptorQualityTest oneWayDescriptorQuality;
DescriptorQualityTest fernDescriptorQualityTest( "fern", "quality-descriptor-fern");
DescriptorQualityTest calonderDescriptorQualityTest( "calonder", "quality-descriptor-calonder");
//OneWayDescriptorQualityTest oneWayDescriptorQuality;
//DescriptorQualityTest fernDescriptorQualityTest( "FERN", "quality-descriptor-fern");
//DescriptorQualityTest calonderDescriptorQualityTest( "CALONDER", "quality-descriptor-calonder");

Loading…
Cancel
Save