|
|
@ -19,7 +19,6 @@ FLANN_INDEX_LSH = 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_feature(name): |
|
|
|
def init_feature(name): |
|
|
|
detector, matcher = None, None |
|
|
|
|
|
|
|
chunks = name.split('-') |
|
|
|
chunks = name.split('-') |
|
|
|
if chunks[0] == 'sift': |
|
|
|
if chunks[0] == 'sift': |
|
|
|
detector = cv2.SIFT() |
|
|
|
detector = cv2.SIFT() |
|
|
@ -30,6 +29,8 @@ def init_feature(name): |
|
|
|
elif chunks[0] == 'orb': |
|
|
|
elif chunks[0] == 'orb': |
|
|
|
detector = cv2.ORB(400) |
|
|
|
detector = cv2.ORB(400) |
|
|
|
norm = cv2.NORM_HAMMING |
|
|
|
norm = cv2.NORM_HAMMING |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
return None, None |
|
|
|
if 'flann' in chunks: |
|
|
|
if 'flann' in chunks: |
|
|
|
if norm == cv2.NORM_L2: |
|
|
|
if norm == cv2.NORM_L2: |
|
|
|
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) |
|
|
|
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) |
|
|
|