Merge pull request #17801 from LupusSanctus:am/pytorch_tf_segm

[GSoC] Added TF and PyTorch segmentation conversion cases

* WIP: Added conversion of segmentation models

* Added tutorial mds

* remove unused
pull/18237/head^2
Anastasia M 4 years ago committed by GitHub
parent 34a8a45a6a
commit ad333e0d22
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 332
      doc/tutorials/dnn/dnn_pytorch_tf_segmentation/pytorch_sem_segm_model_conversion_tutorial.md
  2. 406
      doc/tutorials/dnn/dnn_pytorch_tf_segmentation/tf_sem_segm_model_conversion_tutorial.md
  3. 2
      doc/tutorials/dnn/table_of_content_dnn.markdown
  4. 41
      samples/python/tutorial_code/dnn/dnn_conversion/common/test/voc_segm_test.py
  5. 59
      samples/python/tutorial_code/dnn/dnn_conversion/pytorch/segmentation/py_to_py_fcn_resnet50.py

@ -0,0 +1,332 @@
# Conversion of PyTorch Segmentation Models and Launch with OpenCV {#pytorch_segm_tutorial_dnn_conversion}
## Goals
In this tutorial you will learn how to:
* convert PyTorch segmentation models
* run converted PyTorch model with OpenCV
* obtain an evaluation of the PyTorch and OpenCV DNN models
We will explore the above-listed points by the example of the FCN ResNet-50 architecture.
## Introduction
The key points involved in the transition pipeline of the [PyTorch classification](https://link_to_cls_tutorial) and segmentation models with OpenCV API are equal. The first step is model transferring into [ONNX](https://onnx.ai/about.html) format with PyTorch [``torch.onnx.export``](https://pytorch.org/docs/stable/onnx.html#torch.onnx.export) built-in function.
Further the obtained ``.onnx`` model is passed into cv.dnn.readNetFromONNX, which returns cv.dnn.Net object ready for DNN manipulations.
## Practice
In this part we are going to cover the following points:
1. create a segmentation model conversion pipeline and provide the inference
2. evaluate and test segmentation models
If you'd like merely to run evaluation or test model pipelines, the "Model Conversion Pipeline" part can be skipped.
### Model Conversion Pipeline
The code in this subchapter is located in the ``dnn_model_runner`` module and can be executed with the line:
``
python -m dnn_model_runner.dnn_conversion.pytorch.segmentation.py_to_py_fcnresnet50
``
The following code contains the description of the below-listed steps:
1. instantiate PyTorch model
2. convert PyTorch model into ``.onnx``
3. read the transferred network with OpenCV API
4. prepare input data
5. provide inference
6. get colored masks from predictions
7. visualize results
```python
# initialize PyTorch FCN ResNet-50 model
original_model = models.segmentation.fcn_resnet50(pretrained=True)
# get the path to the converted into ONNX PyTorch model
full_model_path = get_pytorch_onnx_model(original_model)
# read converted .onnx model with OpenCV API
opencv_net = cv2.dnn.readNetFromONNX(full_model_path)
print("OpenCV model was successfully read. Layer IDs: \n", opencv_net.getLayerNames())
# get preprocessed image
img, input_img = get_processed_imgs("test_data/sem_segm/2007_000033.jpg")
# obtain OpenCV DNN predictions
opencv_prediction = get_opencv_dnn_prediction(opencv_net, input_img)
# obtain original PyTorch ResNet50 predictions
pytorch_prediction = get_pytorch_dnn_prediction(original_model, input_img)
pascal_voc_classes, pascal_voc_colors = read_colors_info("test_data/sem_segm/pascal-classes.txt")
# obtain colored segmentation masks
opencv_colored_mask = get_colored_mask(img.shape, opencv_prediction, pascal_voc_colors)
pytorch_colored_mask = get_colored_mask(img.shape, pytorch_prediction, pascal_voc_colors)
# obtain palette of PASCAL VOC colors
color_legend = get_legend(pascal_voc_classes, pascal_voc_colors)
cv2.imshow('PyTorch Colored Mask', pytorch_colored_mask)
cv2.imshow('OpenCV DNN Colored Mask', opencv_colored_mask)
cv2.imshow('Color Legend', color_legend)
cv2.waitKey(0)
```
To provide the model inference we will use the below picture from the [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/) validation dataset:
![PASCAL VOC img](images/2007_000033.jpg)
The target segmented result is:
![PASCAL VOC ground truth](images/2007_000033.png)
For the PASCAL VOC colors decoding and its mapping with the predicted masks, we also need ``pascal-classes.txt`` file, which contains the full list of the PASCAL VOC classes and corresponding colors.
Let's go deeper into each code step by the example of pretrained PyTorch FCN ResNet-50:
* instantiate PyTorch FCN ResNet-50 model:
```python
# initialize PyTorch FCN ResNet-50 model
original_model = models.segmentation.fcn_resnet50(pretrained=True)
```
* convert PyTorch model into ONNX format:
```python
# define the directory for further converted model save
onnx_model_path = "models"
# define the name of further converted model
onnx_model_name = "fcnresnet50.onnx"
# create directory for further converted model
os.makedirs(onnx_model_path, exist_ok=True)
# get full path to the converted model
full_model_path = os.path.join(onnx_model_path, onnx_model_name)
# generate model input to build the graph
generated_input = Variable(
torch.randn(1, 3, 500, 500)
)
# model export into ONNX format
torch.onnx.export(
original_model,
generated_input,
full_model_path,
verbose=True,
input_names=["input"],
output_names=["output"],
opset_version=11
)
```
The code from this step does not differ from the classification conversion case. Thus, after the successful execution of the above code, we will get ``models/fcnresnet50.onnx``.
* read the transferred network with cv.dnn.readNetFromONNX passing the obtained in the previous step ONNX model into it:
```python
# read converted .onnx model with OpenCV API
opencv_net = cv2.dnn.readNetFromONNX(full_model_path)
```
* prepare input data:
```python
# read the image
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
input_img = input_img.astype(np.float32)
# target image sizes
img_height = input_img.shape[0]
img_width = input_img.shape[1]
# define preprocess parameters
mean = np.array([0.485, 0.456, 0.406]) * 255.0
scale = 1 / 255.0
std = [0.229, 0.224, 0.225]
# prepare input blob to fit the model input:
# 1. subtract mean
# 2. scale to set pixel values from 0 to 1
input_blob = cv2.dnn.blobFromImage(
image=input_img,
scalefactor=scale,
size=(img_width, img_height), # img target size
mean=mean,
swapRB=True, # BGR -> RGB
crop=False # center crop
)
# 3. divide by std
input_blob[0] /= np.asarray(std, dtype=np.float32).reshape(3, 1, 1)
```
In this step we read the image and prepare model input with cv2.dnn.blobFromImage function, which returns 4-dimensional blob.
It should be noted that firstly in ``cv2.dnn.blobFromImage`` mean value is subtracted and only then pixel values are scaled. Thus, ``mean`` is multiplied by ``255.0`` to reproduce the original image preprocessing order:
```python
img /= 255.0
img -= [0.485, 0.456, 0.406]
img /= [0.229, 0.224, 0.225]
```
* OpenCV ``cv.dnn_Net`` inference:
```python
# set OpenCV DNN input
opencv_net.setInput(preproc_img)
# OpenCV DNN inference
out = opencv_net.forward()
print("OpenCV DNN segmentation prediction: \n")
print("* shape: ", out.shape)
# get IDs of predicted classes
out_predictions = np.argmax(out[0], axis=0)
```
After the above code execution we will get the following output:
```
OpenCV DNN segmentation prediction:
* shape: (1, 21, 500, 500)
```
Each prediction channel out of 21, where 21 represents the number of PASCAL VOC classes, contains probabilities, which indicate how likely the pixel corresponds to the PASCAL VOC class.
* PyTorch FCN ResNet-50 model inference:
```python
original_net.eval()
preproc_img = torch.FloatTensor(preproc_img)
with torch.no_grad():
# obtaining unnormalized probabilities for each class
out = original_net(preproc_img)['out']
print("\nPyTorch segmentation model prediction: \n")
print("* shape: ", out.shape)
# get IDs of predicted classes
out_predictions = out[0].argmax(dim=0)
```
After the above code launching we will get the following output:
```
PyTorch segmentation model prediction:
* shape: torch.Size([1, 21, 366, 500])
```
PyTorch prediction also contains probabilities corresponding to each class prediction.
* get colored masks from predictions:
```python
# convert mask values into PASCAL VOC colors
processed_mask = np.stack([colors[color_id] for color_id in segm_mask.flatten()])
# reshape mask into 3-channel image
processed_mask = processed_mask.reshape(mask_height, mask_width, 3)
processed_mask = cv2.resize(processed_mask, (img_width, img_height), interpolation=cv2.INTER_NEAREST).astype(
np.uint8)
# convert colored mask from BGR to RGB for compatibility with PASCAL VOC colors
processed_mask = cv2.cvtColor(processed_mask, cv2.COLOR_BGR2RGB)
```
In this step we map the probabilities from segmentation masks with appropriate colors of the predicted classes. Let's have a look at the results:
![OpenCV Colored Mask](images/legend_opencv_color_mask.png)
For the extended evaluation of the models, we can use ``py_to_py_segm`` script of the ``dnn_model_runner`` module. This module part will be described in the next subchapter.
### Evaluation of the Models
The proposed in ``dnn/samples`` ``dnn_model_runner`` module allows to run the full evaluation pipeline on the PASCAL VOC dataset and test execution for the following PyTorch segmentation models:
* FCN ResNet-50
* FCN ResNet-101
This list can be also extended with further appropriate evaluation pipeline configuration.
#### Evaluation Mode
The below line represents running of the module in the evaluation mode:
```
python -m dnn_model_runner.dnn_conversion.pytorch.segmentation.py_to_py_segm --model_name <pytorch_segm_model_name>
```
Chosen from the list segmentation model will be read into OpenCV ``cv.dnn_Net`` object. Evaluation results of PyTorch and OpenCV models (pixel accuracy, mean IoU, inference time) will be written into the log file. Inference time values will be also depicted in a chart to generalize the obtained model information.
Necessary evaluation configurations are defined in the [``test_config.py``](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/common/test/configs/test_config.py):
```python
@dataclass
class TestSegmConfig:
frame_size: int = 500
img_root_dir: str = "./VOC2012"
img_dir: str = os.path.join(img_root_dir, "JPEGImages/")
img_segm_gt_dir: str = os.path.join(img_root_dir, "SegmentationClass/")
# reduced val: https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/data/pascal/seg11valid.txt
segm_val_file: str = os.path.join(img_root_dir, "ImageSets/Segmentation/seg11valid.txt")
colour_file_cls: str = os.path.join(img_root_dir, "ImageSets/Segmentation/pascal-classes.txt")
```
These values can be modified in accordance with chosen model pipeline.
To initiate the evaluation of the PyTorch FCN ResNet-50, run the following line:
```
python -m dnn_model_runner.dnn_conversion.pytorch.segmentation.py_to_py_segm --model_name fcnresnet50
```
#### Test Mode
The below line represents running of the module in the test mode, which provides the steps for the model inference:
```
python -m dnn_model_runner.dnn_conversion.pytorch.segmentation.py_to_py_segm --model_name <pytorch_segm_model_name> --test True --default_img_preprocess <True/False> --evaluate False
```
Here ``default_img_preprocess`` key defines whether you'd like to parametrize the model test process with some particular values or use the default values, for example, ``scale``, ``mean`` or ``std``.
Test configuration is represented in [``test_config.py``](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/common/test/configs/test_config.py) ``TestSegmModuleConfig`` class:
```python
@dataclass
class TestSegmModuleConfig:
segm_test_data_dir: str = "test_data/sem_segm"
test_module_name: str = "segmentation"
test_module_path: str = "segmentation.py"
input_img: str = os.path.join(segm_test_data_dir, "2007_000033.jpg")
model: str = ""
frame_height: str = str(TestSegmConfig.frame_size)
frame_width: str = str(TestSegmConfig.frame_size)
scale: float = 1.0
mean: List[float] = field(default_factory=lambda: [0.0, 0.0, 0.0])
std: List[float] = field(default_factory=list)
crop: bool = False
rgb: bool = True
classes: str = os.path.join(segm_test_data_dir, "pascal-classes.txt")
```
The default image preprocessing options are defined in ``default_preprocess_config.py``:
```python
pytorch_segm_input_blob = {
"mean": ["123.675", "116.28", "103.53"],
"scale": str(1 / 255.0),
"std": ["0.229", "0.224", "0.225"],
"crop": "False",
"rgb": "True"
}
```
The basis of the model testing is represented in ``samples/dnn/segmentation.py``. ``segmentation.py`` can be executed autonomously with provided converted model in ``--input`` and populated parameters for ``cv2.dnn.blobFromImage``.
To reproduce from scratch the described in "Model Conversion Pipeline" OpenCV steps with ``dnn_model_runner`` execute the below line:
```
python -m dnn_model_runner.dnn_conversion.pytorch.segmentation.py_to_py_segm --model_name fcnresnet50 --test True --default_img_preprocess True --evaluate False
```

@ -0,0 +1,406 @@
# Conversion of TensorFlow Segmentation Models and Launch with OpenCV {#tf_segm_tutorial_dnn_conversion}
## Goals
In this tutorial you will learn how to:
* convert TensorFlow (TF) segmentation models
* run converted TensorFlow model with OpenCV
* obtain an evaluation of the TensorFlow and OpenCV DNN models
We will explore the above-listed points by the example of the DeepLab architecture.
## Introduction
The key concepts involved in the transition pipeline of the [TensorFlow classification](https://link_to_cls_tutorial) and segmentation models with OpenCV API are almost equal excepting the phase of graph optimization. The initial step in conversion of TensorFlow models into cv.dnn.Net
is obtaining the frozen TF model graph. Frozen graph defines the combination of the model graph structure with kept values of the required variables, for example, weights. Usually the frozen graph is saved in [protobuf](https://en.wikipedia.org/wiki/Protocol_Buffers) (```.pb```) files.
To read the generated segmentation model ``.pb`` file with cv.dnn.readNetFromTensorflow, it is needed to modify the graph with TF [graph transform tool](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms).
## Practice
In this part we are going to cover the following points:
1. create a TF classification model conversion pipeline and provide the inference
2. evaluate and test TF classification models
If you'd like merely to run evaluation or test model pipelines, the "Model Conversion Pipeline" tutorial part can be skipped.
### Model Conversion Pipeline
The code in this subchapter is located in the ``dnn_model_runner`` module and can be executed with the line:
```
python -m dnn_model_runner.dnn_conversion.tf.segmentation.py_to_py_deeplab
```
TensorFlow segmentation models can be found in [TensorFlow Research Models](https://github.com/tensorflow/models/tree/master/research/#tensorflow-research-models) section, which contains the implementations of models on the basis of published research papers.
We will retrieve the archive with the pre-trained TF DeepLabV3 from the below link:
```
http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_trainval_2018_01_29.tar.gz
```
The full frozen graph obtaining pipeline is described in ``deeplab_retrievement.py``:
```python
def get_deeplab_frozen_graph():
# define model path to download
models_url = 'http://download.tensorflow.org/models/'
mobilenetv2_voctrainval = 'deeplabv3_mnv2_pascal_trainval_2018_01_29.tar.gz'
# construct model link to download
model_link = models_url + mobilenetv2_voctrainval
try:
urllib.request.urlretrieve(model_link, mobilenetv2_voctrainval)
except Exception:
print("TF DeepLabV3 was not retrieved: {}".format(model_link))
return
tf_model_tar = tarfile.open(mobilenetv2_voctrainval)
# iterate the obtained model archive
for model_tar_elem in tf_model_tar.getmembers():
# check whether the model archive contains frozen graph
if TF_FROZEN_GRAPH_NAME in os.path.basename(model_tar_elem.name):
# extract frozen graph
tf_model_tar.extract(model_tar_elem, FROZEN_GRAPH_PATH)
tf_model_tar.close()
```
After running this script:
```
python -m dnn_model_runner.dnn_conversion.tf.segmentation.deeplab_retrievement
```
we will get ``frozen_inference_graph.pb`` in ``deeplab/deeplabv3_mnv2_pascal_trainval``.
Before going to the network loading with OpenCV it is needed to optimize the extracted ``frozen_inference_graph.pb``.
To optimize the graph we use TF ``TransformGraph`` with default parameters:
```python
DEFAULT_OPT_GRAPH_NAME = "optimized_frozen_inference_graph.pb"
DEFAULT_INPUTS = "sub_7"
DEFAULT_OUTPUTS = "ResizeBilinear_3"
DEFAULT_TRANSFORMS = "remove_nodes(op=Identity)" \
" merge_duplicate_nodes" \
" strip_unused_nodes" \
" fold_constants(ignore_errors=true)" \
" fold_batch_norms" \
" fold_old_batch_norms"
def optimize_tf_graph(
in_graph,
out_graph=DEFAULT_OPT_GRAPH_NAME,
inputs=DEFAULT_INPUTS,
outputs=DEFAULT_OUTPUTS,
transforms=DEFAULT_TRANSFORMS,
is_manual=True,
was_optimized=True
):
# ...
tf_opt_graph = TransformGraph(
tf_graph,
inputs,
outputs,
transforms
)
```
To run graph optimization process, execute the line:
```
python -m dnn_model_runner.dnn_conversion.tf.segmentation.tf_graph_optimizer --in_graph deeplab/deeplabv3_mnv2_pascal_trainval/frozen_inference_graph.pb
```
As a result ``deeplab/deeplabv3_mnv2_pascal_trainval`` directory will contain ``optimized_frozen_inference_graph.pb``.
After we have obtained the model graphs, let's examine the below-listed steps:
1. read TF ``frozen_inference_graph.pb`` graph
2. read optimized TF frozen graph with OpenCV API
3. prepare input data
4. provide inference
5. get colored masks from predictions
6. visualize results
```python
# get TF model graph from the obtained frozen graph
deeplab_graph = read_deeplab_frozen_graph(deeplab_frozen_graph_path)
# read DeepLab frozen graph with OpenCV API
opencv_net = cv2.dnn.readNetFromTensorflow(opt_deeplab_frozen_graph_path)
print("OpenCV model was successfully read. Model layers: \n", opencv_net.getLayerNames())
# get processed image
original_img_shape, tf_input_blob, opencv_input_img = get_processed_imgs("test_data/sem_segm/2007_000033.jpg")
# obtain OpenCV DNN predictions
opencv_prediction = get_opencv_dnn_prediction(opencv_net, opencv_input_img)
# obtain TF model predictions
tf_prediction = get_tf_dnn_prediction(deeplab_graph, tf_input_blob)
# get PASCAL VOC classes and colors
pascal_voc_classes, pascal_voc_colors = read_colors_info("test_data/sem_segm/pascal-classes.txt")
# obtain colored segmentation masks
opencv_colored_mask = get_colored_mask(original_img_shape, opencv_prediction, pascal_voc_colors)
tf_colored_mask = get_tf_colored_mask(original_img_shape, tf_prediction, pascal_voc_colors)
# obtain palette of PASCAL VOC colors
color_legend = get_legend(pascal_voc_classes, pascal_voc_colors)
cv2.imshow('TensorFlow Colored Mask', tf_colored_mask)
cv2.imshow('OpenCV DNN Colored Mask', opencv_colored_mask)
cv2.imshow('Color Legend', color_legend)
```
To provide the model inference we will use the below picture from the [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/) validation dataset:
![PASCAL VOC img](images/2007_000033.jpg)
The target segmented result is:
![PASCAL VOC ground truth](images/2007_000033.png)
For the PASCAL VOC colors decoding and its mapping with the predicted masks, we also need ``pascal-classes.txt`` file, which contains the full list of the PASCAL VOC classes and corresponding colors.
Let's go deeper into each step by the example of pretrained TF DeepLabV3 MobileNetV2:
* read TF ``frozen_inference_graph.pb`` graph :
```python
# init deeplab model graph
model_graph = tf.Graph()
# obtain
with tf.io.gfile.GFile(frozen_graph_path, 'rb') as graph_file:
tf_model_graph = GraphDef()
tf_model_graph.ParseFromString(graph_file.read())
with model_graph.as_default():
tf.import_graph_def(tf_model_graph, name='')
```
* read optimized TF frozen graph with OpenCV API:
```python
# read DeepLab frozen graph with OpenCV API
opencv_net = cv2.dnn.readNetFromTensorflow(opt_deeplab_frozen_graph_path)
```
* prepare input data with cv2.dnn.blobFromImage function:
```python
# read the image
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
input_img = input_img.astype(np.float32)
# preprocess image for TF model input
tf_preproc_img = cv2.resize(input_img, (513, 513))
tf_preproc_img = cv2.cvtColor(tf_preproc_img, cv2.COLOR_BGR2RGB)
# define preprocess parameters for OpenCV DNN
mean = np.array([1.0, 1.0, 1.0]) * 127.5
scale = 1 / 127.5
# prepare input blob to fit the model input:
# 1. subtract mean
# 2. scale to set pixel values from 0 to 1
input_blob = cv2.dnn.blobFromImage(
image=input_img,
scalefactor=scale,
size=(513, 513), # img target size
mean=mean,
swapRB=True, # BGR -> RGB
crop=False # center crop
)
```
Please, pay attention at the preprocessing order in the ``cv2.dnn.blobFromImage`` function. Firstly, the mean value is subtracted and only then pixel values are multiplied by the defined scale.
Therefore, to reproduce TF image preprocessing pipeline, we multiply ``mean`` by ``127.5``.
Another important point is image preprocessing for TF DeepLab. To pass the image into TF model we need only to construct an appropriate shape, the rest image preprocessing is described in [feature_extractor.py](https://github.com/tensorflow/models/blob/master/research/deeplab/core/feature_extractor.py) and will be invoked automatically.
* provide OpenCV ``cv.dnn_Net`` inference:
```python
# set OpenCV DNN input
opencv_net.setInput(preproc_img)
# OpenCV DNN inference
out = opencv_net.forward()
print("OpenCV DNN segmentation prediction: \n")
print("* shape: ", out.shape)
# get IDs of predicted classes
out_predictions = np.argmax(out[0], axis=0)
```
After the above code execution we will get the following output:
```
OpenCV DNN segmentation prediction:
* shape: (1, 21, 513, 513)
```
Each prediction channel out of 21, where 21 represents the number of PASCAL VOC classes, contains probabilities, which indicate how likely the pixel corresponds to the PASCAL VOC class.
* provide TF model inference:
```python
preproc_img = np.expand_dims(preproc_img, 0)
# init TF session
tf_session = Session(graph=model_graph)
input_tensor_name = "ImageTensor:0",
output_tensor_name = "SemanticPredictions:0"
# run inference
out = tf_session.run(
output_tensor_name,
feed_dict={input_tensor_name: [preproc_img]}
)
print("TF segmentation model prediction: \n")
print("* shape: ", out.shape)
```
TF inference results are the following:
```
TF segmentation model prediction:
* shape: (1, 513, 513)
```
TensorFlow prediction contains the indexes of corresponding PASCAL VOC classes.
* transform OpenCV prediction into colored mask:
```python
mask_height = segm_mask.shape[0]
mask_width = segm_mask.shape[1]
img_height = original_img_shape[0]
img_width = original_img_shape[1]
# convert mask values into PASCAL VOC colors
processed_mask = np.stack([colors[color_id] for color_id in segm_mask.flatten()])
# reshape mask into 3-channel image
processed_mask = processed_mask.reshape(mask_height, mask_width, 3)
processed_mask = cv2.resize(processed_mask, (img_width, img_height), interpolation=cv2.INTER_NEAREST).astype(
np.uint8)
# convert colored mask from BGR to RGB
processed_mask = cv2.cvtColor(processed_mask, cv2.COLOR_BGR2RGB)
```
In this step we map the probabilities from segmentation masks with appropriate colors of the predicted classes. Let's have a look at the results:
![Color Legend](images/colors_legend.png)
![OpenCV Colored Mask](images/deeplab_opencv_colored_mask.png)
* transform TF prediction into colored mask:
```python
colors = np.array(colors)
processed_mask = colors[segm_mask[0]]
img_height = original_img_shape[0]
img_width = original_img_shape[1]
processed_mask = cv2.resize(processed_mask, (img_width, img_height), interpolation=cv2.INTER_NEAREST).astype(
np.uint8)
# convert colored mask from BGR to RGB for compatibility with PASCAL VOC colors
processed_mask = cv2.cvtColor(processed_mask, cv2.COLOR_BGR2RGB)
```
The result is:
![TF Colored Mask](images/deeplab_tf_colored_mask.png)
As a result, we get two equal segmentation masks.
### Evaluation of the Models
The proposed in ``dnn/samples`` ``dnn_model_runner`` module allows to run the full evaluation pipeline on the PASCAL VOC dataset and test execution for the DeepLab MobileNet model.
#### Evaluation Mode
To below line represents running of the module in the evaluation mode:
```
python -m dnn_model_runner.dnn_conversion.tf.segmentation.py_to_py_segm
```
The model will be read into OpenCV ``cv.dnn_Net`` object. Evaluation results of TF and OpenCV models (pixel accuracy, mean IoU, inference time) will be written into the log file. Inference time values will be also depicted in a chart to generalize the obtained model information.
Necessary evaluation configurations are defined in the [``test_config.py``](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/common/test/configs/test_config.py):
```python
@dataclass
class TestSegmConfig:
frame_size: int = 500
img_root_dir: str = "./VOC2012"
img_dir: str = os.path.join(img_root_dir, "JPEGImages/")
img_segm_gt_dir: str = os.path.join(img_root_dir, "SegmentationClass/")
# reduced val: https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/data/pascal/seg11valid.txt
segm_val_file: str = os.path.join(img_root_dir, "ImageSets/Segmentation/seg11valid.txt")
colour_file_cls: str = os.path.join(img_root_dir, "ImageSets/Segmentation/pascal-classes.txt")
```
These values can be modified in accordance with chosen model pipeline.
#### Test Mode
The below line represents running of the module in the test mode, which provides the steps for the model inference:
```
python -m dnn_model_runner.dnn_conversion.tf.segmentation.py_to_py_segm --test True --default_img_preprocess <True/False> --evaluate False
```
Here ``default_img_preprocess`` key defines whether you'd like to parametrize the model test process with some particular values or use the default values, for example, ``scale``, ``mean`` or ``std``.
Test configuration is represented in [``test_config.py``](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/common/test/configs/test_config.py) ``TestSegmModuleConfig`` class:
```python
@dataclass
class TestSegmModuleConfig:
segm_test_data_dir: str = "test_data/sem_segm"
test_module_name: str = "segmentation"
test_module_path: str = "segmentation.py"
input_img: str = os.path.join(segm_test_data_dir, "2007_000033.jpg")
model: str = ""
frame_height: str = str(TestSegmConfig.frame_size)
frame_width: str = str(TestSegmConfig.frame_size)
scale: float = 1.0
mean: List[float] = field(default_factory=lambda: [0.0, 0.0, 0.0])
std: List[float] = field(default_factory=list)
crop: bool = False
rgb: bool = True
classes: str = os.path.join(segm_test_data_dir, "pascal-classes.txt")
```
The default image preprocessing options are defined in ``default_preprocess_config.py``:
```python
tf_segm_input_blob = {
"scale": str(1 / 127.5),
"mean": ["127.5", "127.5", "127.5"],
"std": [],
"crop": "False",
"rgb": "True"
}
```
The basis of the model testing is represented in ``samples/dnn/segmentation.py``. ``segmentation.py`` can be executed autonomously with provided converted model in ``--input`` and populated parameters for ``cv2.dnn.blobFromImage``.
To reproduce from scratch the described in "Model Conversion Pipeline" OpenCV steps with ``dnn_model_runner`` execute the below line:
```
python -m dnn_model_runner.dnn_conversion.tf.segmentation.py_to_py_segm --test True --default_img_preprocess True --evaluate False
```

@ -15,7 +15,9 @@ Deep Neural Networks (dnn module) {#tutorial_table_of_content_dnn}
In this section you will find the guides, which describe how to run classification, segmentation and detection PyTorch DNN models with OpenCV.
- @subpage pytorch_cls_tutorial_dnn_conversion
- @subpage pytorch_cls_c_tutorial_dnn_conversion
- @subpage pytorch_segm_tutorial_dnn_conversion
#### TensorFlow models with OpenCV
In this section you will find the guides, which describe how to run classification, segmentation and detection TensorFlow DNN models with OpenCV.
- @subpage tf_cls_tutorial_dnn_conversion
- @subpage tf_segm_tutorial_dnn_conversion

@ -0,0 +1,41 @@
import numpy as np
from ..accuracy_eval import SemSegmEvaluation
from ..utils import plot_acc
def test_segm_models(models_list, data_fetcher, eval_params, experiment_name, is_print_eval_params=True,
is_plot_acc=True):
if is_print_eval_params:
print(
"===== Running evaluation of the classification models with the following params:\n"
"\t0. val data location: {}\n"
"\t1. val data labels: {}\n"
"\t2. frame size: {}\n"
"\t3. batch size: {}\n"
"\t4. transform to RGB: {}\n"
"\t5. log file location: {}\n".format(
eval_params.imgs_segm_dir,
eval_params.img_cls_file,
eval_params.frame_size,
eval_params.batch_size,
eval_params.bgr_to_rgb,
eval_params.log
)
)
accuracy_evaluator = SemSegmEvaluation(eval_params.log, eval_params.img_cls_file, eval_params.batch_size)
accuracy_evaluator.process(models_list, data_fetcher)
accuracy_array = np.array(accuracy_evaluator.general_fw_accuracy)
print(
"===== End of processing. Accuracy results:\n"
"\t1. max accuracy (top-5) for the original model: {}\n"
"\t2. max accuracy (top-5) for the DNN model: {}\n".format(
max(accuracy_array[:, 0]),
max(accuracy_array[:, 1]),
)
)
if is_plot_acc:
plot_acc(accuracy_array, experiment_name)

@ -0,0 +1,59 @@
from torchvision import models
from ..pytorch_model import (
PyTorchModelPreparer,
PyTorchModelProcessor,
PyTorchDnnModelProcessor
)
from ...common.utils import set_pytorch_env, create_parser
class PyTorchFcnResNet50(PyTorchModelPreparer):
def __init__(self, model_name, original_model):
super(PyTorchFcnResNet50, self).__init__(model_name, original_model)
def main():
parser = create_parser()
cmd_args = parser.parse_args()
set_pytorch_env()
# Test the base process of model retrieval
resnets = PyTorchFcnResNet50(
model_name="resnet50",
original_model=models.segmentation.fcn_resnet50(pretrained=True)
)
model_dict = resnets.get_prepared_models()
if cmd_args.is_evaluate:
from ...common.test_config import TestConfig
from ...common.accuracy_eval import PASCALDataFetch
from ...common.test.voc_segm_test import test_segm_models
eval_params = TestConfig()
model_names = list(model_dict.keys())
original_model_name = model_names[0]
dnn_model_name = model_names[1]
#img_dir, segm_dir, names_file, segm_cls_colors_file, preproc)
data_fetcher = PASCALDataFetch(
imgs_dir=eval_params.imgs_segm_dir,
frame_size=eval_params.frame_size,
bgr_to_rgb=eval_params.bgr_to_rgb,
)
test_segm_models(
[
PyTorchModelProcessor(model_dict[original_model_name], original_model_name),
PyTorchDnnModelProcessor(model_dict[dnn_model_name], dnn_model_name)
],
data_fetcher,
eval_params,
original_model_name
)
if __name__ == "__main__":
main()
Loading…
Cancel
Save