|
|
|
@ -1466,25 +1466,28 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const |
|
|
|
|
//Get the gaussian weighted x and y responses
|
|
|
|
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.50f*scale); |
|
|
|
|
|
|
|
|
|
y1 = (int)(sample_y - .5f); |
|
|
|
|
x1 = (int)(sample_x - .5f); |
|
|
|
|
y1 = cvFloor(sample_y); |
|
|
|
|
x1 = cvFloor(sample_x); |
|
|
|
|
|
|
|
|
|
y2 = (int)(sample_y + .5f); |
|
|
|
|
x2 = (int)(sample_x + .5f); |
|
|
|
|
y2 = y1 + 1; |
|
|
|
|
x2 = x1 + 1; |
|
|
|
|
|
|
|
|
|
if (x1 < 0 || y1 < 0 || x2 >= Lx.cols || y2 >= Lx.rows) |
|
|
|
|
continue; // FIXIT Boundaries
|
|
|
|
|
|
|
|
|
|
fx = sample_x - x1; |
|
|
|
|
fy = sample_y - y1; |
|
|
|
|
|
|
|
|
|
res1 = *(Lx.ptr<float>(y1)+x1); |
|
|
|
|
res2 = *(Lx.ptr<float>(y1)+x2); |
|
|
|
|
res3 = *(Lx.ptr<float>(y2)+x1); |
|
|
|
|
res4 = *(Lx.ptr<float>(y2)+x2); |
|
|
|
|
res1 = Lx.at<float>(y1, x1); |
|
|
|
|
res2 = Lx.at<float>(y1, x2); |
|
|
|
|
res3 = Lx.at<float>(y2, x1); |
|
|
|
|
res4 = Lx.at<float>(y2, x2); |
|
|
|
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
|
|
|
|
|
|
res1 = *(Ly.ptr<float>(y1)+x1); |
|
|
|
|
res2 = *(Ly.ptr<float>(y1)+x2); |
|
|
|
|
res3 = *(Ly.ptr<float>(y2)+x1); |
|
|
|
|
res4 = *(Ly.ptr<float>(y2)+x2); |
|
|
|
|
res1 = Ly.at<float>(y1, x1); |
|
|
|
|
res2 = Ly.at<float>(y1, x2); |
|
|
|
|
res3 = Ly.at<float>(y2, x1); |
|
|
|
|
res4 = Ly.at<float>(y2, x2); |
|
|
|
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
|
|
|
|
|
|
rx = gauss_s1*rx; |
|
|
|
@ -1519,8 +1522,9 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const |
|
|
|
|
// convert to unit vector
|
|
|
|
|
len = sqrt(len); |
|
|
|
|
|
|
|
|
|
const float len_inv = 1.0f / len; |
|
|
|
|
for (i = 0; i < dsize; i++) { |
|
|
|
|
desc[i] /= len; |
|
|
|
|
desc[i] *= len_inv; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -1599,34 +1603,28 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f |
|
|
|
|
// Get the gaussian weighted x and y responses
|
|
|
|
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale); |
|
|
|
|
|
|
|
|
|
y1 = cvRound(sample_y - 0.5f); |
|
|
|
|
x1 = cvRound(sample_x - 0.5f); |
|
|
|
|
y1 = cvFloor(sample_y); |
|
|
|
|
x1 = cvFloor(sample_x); |
|
|
|
|
|
|
|
|
|
y2 = cvRound(sample_y + 0.5f); |
|
|
|
|
x2 = cvRound(sample_x + 0.5f); |
|
|
|
|
y2 = y1 + 1; |
|
|
|
|
x2 = x1 + 1; |
|
|
|
|
|
|
|
|
|
// fix crash: indexing with out-of-bounds index, this might happen near the edges of image
|
|
|
|
|
// clip values so they fit into the image
|
|
|
|
|
const MatSize& size = Lx.size; |
|
|
|
|
y1 = min(max(0, y1), size[0] - 1); |
|
|
|
|
x1 = min(max(0, x1), size[1] - 1); |
|
|
|
|
y2 = min(max(0, y2), size[0] - 1); |
|
|
|
|
x2 = min(max(0, x2), size[1] - 1); |
|
|
|
|
CV_DbgAssert(Lx.size == Ly.size); |
|
|
|
|
if (x1 < 0 || y1 < 0 || x2 >= Lx.cols || y2 >= Lx.rows) |
|
|
|
|
continue; // FIXIT Boundaries
|
|
|
|
|
|
|
|
|
|
fx = sample_x - x1; |
|
|
|
|
fy = sample_y - y1; |
|
|
|
|
|
|
|
|
|
res1 = *(Lx.ptr<float>(y1, x1)); |
|
|
|
|
res2 = *(Lx.ptr<float>(y1, x2)); |
|
|
|
|
res3 = *(Lx.ptr<float>(y2, x1)); |
|
|
|
|
res4 = *(Lx.ptr<float>(y2, x2)); |
|
|
|
|
res1 = Lx.at<float>(y1, x1); |
|
|
|
|
res2 = Lx.at<float>(y1, x2); |
|
|
|
|
res3 = Lx.at<float>(y2, x1); |
|
|
|
|
res4 = Lx.at<float>(y2, x2); |
|
|
|
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
|
|
|
|
|
|
res1 = *(Ly.ptr<float>(y1, x1)); |
|
|
|
|
res2 = *(Ly.ptr<float>(y1, x2)); |
|
|
|
|
res3 = *(Ly.ptr<float>(y2, x1)); |
|
|
|
|
res4 = *(Ly.ptr<float>(y2, x2)); |
|
|
|
|
res1 = Ly.at<float>(y1, x1); |
|
|
|
|
res2 = Ly.at<float>(y1, x2); |
|
|
|
|
res3 = Ly.at<float>(y2, x1); |
|
|
|
|
res4 = Ly.at<float>(y2, x2); |
|
|
|
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
|
|
|
|
|
|
// Get the x and y derivatives on the rotated axis
|
|
|
|
@ -1661,8 +1659,9 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f |
|
|
|
|
// convert to unit vector
|
|
|
|
|
len = sqrt(len); |
|
|
|
|
|
|
|
|
|
const float len_inv = 1.0f / len; |
|
|
|
|
for (i = 0; i < dsize; i++) { |
|
|
|
|
desc[i] /= len; |
|
|
|
|
desc[i] *= len_inv; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -1675,13 +1674,6 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f |
|
|
|
|
*/ |
|
|
|
|
void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc, int desc_size) const { |
|
|
|
|
|
|
|
|
|
float di = 0.0, dx = 0.0, dy = 0.0; |
|
|
|
|
float ri = 0.0, rx = 0.0, ry = 0.0, xf = 0.0, yf = 0.0; |
|
|
|
|
float sample_x = 0.0, sample_y = 0.0, ratio = 0.0; |
|
|
|
|
int x1 = 0, y1 = 0; |
|
|
|
|
int nsamples = 0, scale = 0; |
|
|
|
|
int dcount1 = 0, dcount2 = 0; |
|
|
|
|
|
|
|
|
|
const AKAZEOptions & options = *options_; |
|
|
|
|
const std::vector<Evolution>& evolution = *evolution_; |
|
|
|
|
|
|
|
|
@ -1691,14 +1683,14 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons |
|
|
|
|
float values[16*max_channels]; |
|
|
|
|
|
|
|
|
|
// Get the information from the keypoint
|
|
|
|
|
ratio = (float)(1 << kpt.octave); |
|
|
|
|
scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
const float ratio = (float)(1 << kpt.octave); |
|
|
|
|
const int scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
const int level = kpt.class_id; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
const Mat Lt = evolution[level].Lt; |
|
|
|
|
yf = kpt.pt.y / ratio; |
|
|
|
|
xf = kpt.pt.x / ratio; |
|
|
|
|
const float yf = kpt.pt.y / ratio; |
|
|
|
|
const float xf = kpt.pt.x / ratio; |
|
|
|
|
|
|
|
|
|
// For 2x2 grid, 3x3 grid and 4x4 grid
|
|
|
|
|
const int pattern_size = options_->descriptor_pattern_size; |
|
|
|
@ -1712,27 +1704,31 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons |
|
|
|
|
memset(desc, 0, desc_size); |
|
|
|
|
|
|
|
|
|
// For the three grids
|
|
|
|
|
int dcount1 = 0; |
|
|
|
|
for (int z = 0; z < 3; z++) { |
|
|
|
|
dcount2 = 0; |
|
|
|
|
int dcount2 = 0; |
|
|
|
|
const int step = sample_step[z]; |
|
|
|
|
for (int i = -pattern_size; i < pattern_size; i += step) { |
|
|
|
|
for (int j = -pattern_size; j < pattern_size; j += step) { |
|
|
|
|
di = dx = dy = 0.0; |
|
|
|
|
nsamples = 0; |
|
|
|
|
float di = 0.0, dx = 0.0, dy = 0.0; |
|
|
|
|
|
|
|
|
|
for (int k = i; k < i + step; k++) { |
|
|
|
|
for (int l = j; l < j + step; l++) { |
|
|
|
|
int nsamples = 0; |
|
|
|
|
for (int k = 0; k < step; k++) { |
|
|
|
|
for (int l = 0; l < step; l++) { |
|
|
|
|
|
|
|
|
|
// Get the coordinates of the sample point
|
|
|
|
|
sample_y = yf + l*scale; |
|
|
|
|
sample_x = xf + k*scale; |
|
|
|
|
const float sample_y = yf + (l+j)*scale; |
|
|
|
|
const float sample_x = xf + (k+i)*scale; |
|
|
|
|
|
|
|
|
|
y1 = cvRound(sample_y); |
|
|
|
|
x1 = cvRound(sample_x); |
|
|
|
|
const int y1 = cvRound(sample_y); |
|
|
|
|
const int x1 = cvRound(sample_x); |
|
|
|
|
|
|
|
|
|
ri = *(Lt.ptr<float>(y1)+x1); |
|
|
|
|
rx = *(Lx.ptr<float>(y1)+x1); |
|
|
|
|
ry = *(Ly.ptr<float>(y1)+x1); |
|
|
|
|
if (y1 < 0 || y1 >= Lt.rows || x1 < 0 || x1 >= Lt.cols) |
|
|
|
|
continue; // Boundaries
|
|
|
|
|
|
|
|
|
|
const float ri = Lt.at<float>(y1, x1); |
|
|
|
|
const float rx = Lx.at<float>(y1, x1); |
|
|
|
|
const float ry = Ly.at<float>(y1, x1); |
|
|
|
|
|
|
|
|
|
di += ri; |
|
|
|
|
dx += rx; |
|
|
|
@ -1741,9 +1737,13 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
di /= nsamples; |
|
|
|
|
dx /= nsamples; |
|
|
|
|
dy /= nsamples; |
|
|
|
|
if (nsamples > 0) |
|
|
|
|
{ |
|
|
|
|
const float nsamples_inv = 1.0f / nsamples; |
|
|
|
|
di *= nsamples_inv; |
|
|
|
|
dx *= nsamples_inv; |
|
|
|
|
dy *= nsamples_inv; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float *val = &values[dcount2*max_channels]; |
|
|
|
|
*(val) = di; |
|
|
|
@ -1780,17 +1780,20 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st |
|
|
|
|
const std::vector<Evolution>& evolution = *evolution_; |
|
|
|
|
int pattern_size = options_->descriptor_pattern_size; |
|
|
|
|
int chan = options_->descriptor_channels; |
|
|
|
|
int valpos = 0; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
const Mat Lt = evolution[level].Lt; |
|
|
|
|
|
|
|
|
|
const Size size = Lt.size(); |
|
|
|
|
CV_Assert(size == Lx.size()); |
|
|
|
|
CV_Assert(size == Ly.size()); |
|
|
|
|
|
|
|
|
|
int valpos = 0; |
|
|
|
|
for (int i = -pattern_size; i < pattern_size; i += sample_step) { |
|
|
|
|
for (int j = -pattern_size; j < pattern_size; j += sample_step) { |
|
|
|
|
float di, dx, dy; |
|
|
|
|
di = dx = dy = 0.0; |
|
|
|
|
int nsamples = 0; |
|
|
|
|
float di = 0.0f, dx = 0.0f, dy = 0.0f; |
|
|
|
|
|
|
|
|
|
int nsamples = 0; |
|
|
|
|
for (int k = i; k < i + sample_step; k++) { |
|
|
|
|
for (int l = j; l < j + sample_step; l++) { |
|
|
|
|
float sample_y = yf + (l*co * scale + k*si*scale); |
|
|
|
@ -1799,20 +1802,15 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st |
|
|
|
|
int y1 = cvRound(sample_y); |
|
|
|
|
int x1 = cvRound(sample_x); |
|
|
|
|
|
|
|
|
|
// fix crash: indexing with out-of-bounds index, this might happen near the edges of image
|
|
|
|
|
// clip values so they fit into the image
|
|
|
|
|
const MatSize& size = Lt.size; |
|
|
|
|
CV_DbgAssert(size == Lx.size && |
|
|
|
|
size == Ly.size); |
|
|
|
|
y1 = min(max(0, y1), size[0] - 1); |
|
|
|
|
x1 = min(max(0, x1), size[1] - 1); |
|
|
|
|
if (y1 < 0 || y1 >= Lt.rows || x1 < 0 || x1 >= Lt.cols) |
|
|
|
|
continue; // Boundaries
|
|
|
|
|
|
|
|
|
|
float ri = *(Lt.ptr<float>(y1, x1)); |
|
|
|
|
float ri = Lt.at<float>(y1, x1); |
|
|
|
|
di += ri; |
|
|
|
|
|
|
|
|
|
if(chan > 1) { |
|
|
|
|
float rx = *(Lx.ptr<float>(y1, x1)); |
|
|
|
|
float ry = *(Ly.ptr<float>(y1, x1)); |
|
|
|
|
float rx = Lx.at<float>(y1, x1); |
|
|
|
|
float ry = Ly.at<float>(y1, x1); |
|
|
|
|
if (chan == 2) { |
|
|
|
|
dx += sqrtf(rx*rx + ry*ry); |
|
|
|
|
} |
|
|
|
@ -1826,20 +1824,25 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st |
|
|
|
|
nsamples++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
di /= nsamples; |
|
|
|
|
dx /= nsamples; |
|
|
|
|
dy /= nsamples; |
|
|
|
|
|
|
|
|
|
if (nsamples > 0) |
|
|
|
|
{ |
|
|
|
|
const float nsamples_inv = 1.0f / nsamples; |
|
|
|
|
di *= nsamples_inv; |
|
|
|
|
dx *= nsamples_inv; |
|
|
|
|
dy *= nsamples_inv; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
values[valpos] = di; |
|
|
|
|
if (chan > 1) { |
|
|
|
|
values[valpos + 1] = dx; |
|
|
|
|
} |
|
|
|
|
if (chan > 2) { |
|
|
|
|
values[valpos + 2] = dy; |
|
|
|
|
values[valpos + 2] = dy; |
|
|
|
|
} |
|
|
|
|
valpos += chan; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void MLDB_Full_Descriptor_Invoker::MLDB_Binary_Comparisons(float* values, unsigned char* desc, |
|
|
|
@ -1917,10 +1920,8 @@ void MLDB_Full_Descriptor_Invoker::Get_MLDB_Full_Descriptor(const KeyPoint& kpt, |
|
|
|
|
*/ |
|
|
|
|
void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc, int desc_size) const { |
|
|
|
|
|
|
|
|
|
float di = 0.f, dx = 0.f, dy = 0.f; |
|
|
|
|
float rx = 0.f, ry = 0.f; |
|
|
|
|
float sample_x = 0.f, sample_y = 0.f; |
|
|
|
|
int x1 = 0, y1 = 0; |
|
|
|
|
|
|
|
|
|
const AKAZEOptions & options = *options_; |
|
|
|
|
const std::vector<Evolution>& evolution = *evolution_; |
|
|
|
@ -1943,7 +1944,7 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& |
|
|
|
|
const int max_channels = 3; |
|
|
|
|
const int channels = options.descriptor_channels; |
|
|
|
|
CV_Assert(channels <= max_channels); |
|
|
|
|
float values[(4 + 9 + 16)*max_channels]; |
|
|
|
|
float values[(4 + 9 + 16)*max_channels] = { 0 }; |
|
|
|
|
|
|
|
|
|
// Sample everything, but only do the comparisons
|
|
|
|
|
const int pattern_size = options.descriptor_pattern_size; |
|
|
|
@ -1958,9 +1959,7 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& |
|
|
|
|
const int *coords = descriptorSamples_.ptr<int>(i); |
|
|
|
|
CV_Assert(coords[0] >= 0 && coords[0] < 3); |
|
|
|
|
const int sample_step = sample_steps[coords[0]]; |
|
|
|
|
di = 0.0f; |
|
|
|
|
dx = 0.0f; |
|
|
|
|
dy = 0.0f; |
|
|
|
|
float di = 0.f, dx = 0.f, dy = 0.f; |
|
|
|
|
|
|
|
|
|
for (int k = coords[1]; k < coords[1] + sample_step; k++) { |
|
|
|
|
for (int l = coords[2]; l < coords[2] + sample_step; l++) { |
|
|
|
@ -1969,14 +1968,17 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& |
|
|
|
|
sample_y = yf + (l*scale*co + k*scale*si); |
|
|
|
|
sample_x = xf + (-l*scale*si + k*scale*co); |
|
|
|
|
|
|
|
|
|
y1 = cvRound(sample_y); |
|
|
|
|
x1 = cvRound(sample_x); |
|
|
|
|
const int y1 = cvRound(sample_y); |
|
|
|
|
const int x1 = cvRound(sample_x); |
|
|
|
|
|
|
|
|
|
di += *(Lt.ptr<float>(y1)+x1); |
|
|
|
|
if (x1 < 0 || y1 < 0 || x1 >= Lt.cols || y1 >= Lt.rows) |
|
|
|
|
continue; // Boundaries
|
|
|
|
|
|
|
|
|
|
di += Lt.at<float>(y1, x1); |
|
|
|
|
|
|
|
|
|
if (options.descriptor_channels > 1) { |
|
|
|
|
rx = *(Lx.ptr<float>(y1)+x1); |
|
|
|
|
ry = *(Ly.ptr<float>(y1)+x1); |
|
|
|
|
rx = Lx.at<float>(y1, x1); |
|
|
|
|
ry = Ly.at<float>(y1, x1); |
|
|
|
|
|
|
|
|
|
if (options.descriptor_channels == 2) { |
|
|
|
|
dx += sqrtf(rx*rx + ry*ry); |
|
|
|
@ -2044,7 +2046,10 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset( |
|
|
|
|
float xf = kpt.pt.x / ratio; |
|
|
|
|
|
|
|
|
|
// Allocate memory for the matrix of values
|
|
|
|
|
Mat values ((4 + 9 + 16)*options.descriptor_channels, 1, CV_32FC1); |
|
|
|
|
const int max_channels = 3; |
|
|
|
|
const int channels = options.descriptor_channels; |
|
|
|
|
CV_Assert(channels <= max_channels); |
|
|
|
|
float values[(4 + 9 + 16)*max_channels] = { 0 }; |
|
|
|
|
|
|
|
|
|
const int pattern_size = options.descriptor_pattern_size; |
|
|
|
|
CV_Assert((pattern_size & 1) == 0); |
|
|
|
@ -2069,11 +2074,15 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset( |
|
|
|
|
|
|
|
|
|
y1 = cvRound(sample_y); |
|
|
|
|
x1 = cvRound(sample_x); |
|
|
|
|
di += *(Lt.ptr<float>(y1)+x1); |
|
|
|
|
|
|
|
|
|
if (x1 < 0 || y1 < 0 || x1 >= Lt.cols || y1 >= Lt.rows) |
|
|
|
|
continue; // Boundaries
|
|
|
|
|
|
|
|
|
|
di += Lt.at<float>(y1, x1); |
|
|
|
|
|
|
|
|
|
if (options.descriptor_channels > 1) { |
|
|
|
|
rx = *(Lx.ptr<float>(y1)+x1); |
|
|
|
|
ry = *(Ly.ptr<float>(y1)+x1); |
|
|
|
|
rx = Lx.at<float>(y1, x1); |
|
|
|
|
ry = Ly.at<float>(y1, x1); |
|
|
|
|
|
|
|
|
|
if (options.descriptor_channels == 2) { |
|
|
|
|
dx += sqrtf(rx*rx + ry*ry); |
|
|
|
@ -2086,26 +2095,26 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset( |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
*(values.ptr<float>(options.descriptor_channels*i)) = di; |
|
|
|
|
float* pValues = &values[channels * i]; |
|
|
|
|
pValues[0] = di; |
|
|
|
|
|
|
|
|
|
if (options.descriptor_channels == 2) { |
|
|
|
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; |
|
|
|
|
pValues[1] = dx; |
|
|
|
|
} |
|
|
|
|
else if (options.descriptor_channels == 3) { |
|
|
|
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; |
|
|
|
|
*(values.ptr<float>(options.descriptor_channels*i + 2)) = dy; |
|
|
|
|
pValues[1] = dx; |
|
|
|
|
pValues[2] = dy; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Do the comparisons
|
|
|
|
|
const float *vals = values.ptr<float>(0); |
|
|
|
|
const int *comps = descriptorBits_.ptr<int>(0); |
|
|
|
|
|
|
|
|
|
CV_Assert(divUp(descriptorBits_.rows, 8) == desc_size); |
|
|
|
|
memset(desc, 0, desc_size); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i<descriptorBits_.rows; i++) { |
|
|
|
|
if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) { |
|
|
|
|
if (values[comps[2 * i]] > values[comps[2 * i + 1]]) { |
|
|
|
|
desc[i / 8] |= (1 << (i % 8)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|