mirror of https://github.com/opencv/opencv.git
parent
d49c697fda
commit
acc031aaba
7 changed files with 1655 additions and 9 deletions
@ -0,0 +1,241 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
#ifndef HAVE_CUDA |
||||
|
||||
cv::gpu::MOG_GPU::MOG_GPU(int) { throw_nogpu(); } |
||||
void cv::gpu::MOG_GPU::initialize(cv::Size, int) { throw_nogpu(); } |
||||
void cv::gpu::MOG_GPU::operator()(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, float, Stream&) { throw_nogpu(); } |
||||
|
||||
cv::gpu::MOG2_GPU::MOG2_GPU(int) { throw_nogpu(); } |
||||
void cv::gpu::MOG2_GPU::initialize(cv::Size, int) { throw_nogpu(); } |
||||
void cv::gpu::MOG2_GPU::operator()(const GpuMat&, GpuMat&, float, Stream&) { throw_nogpu(); } |
||||
void cv::gpu::MOG2_GPU::getBackgroundImage(GpuMat&, Stream&) const { throw_nogpu(); } |
||||
|
||||
#else |
||||
|
||||
namespace cv { namespace gpu { namespace device |
||||
{ |
||||
namespace mog |
||||
{ |
||||
void mog_gpu(DevMem2Db frame, int cn, DevMem2Db fgmask, DevMem2Df weight, DevMem2Df sortKey, DevMem2Db mean, DevMem2Db var, |
||||
int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma, |
||||
cudaStream_t stream); |
||||
|
||||
void loadConstants(int nmixtures, float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal); |
||||
void mog2_gpu(DevMem2Db frame, int cn, DevMem2Db fgmask, DevMem2Db modesUsed, DevMem2Df weight, DevMem2Df variance, DevMem2Db mean, float alphaT, float prune, bool detectShadows, cudaStream_t stream); |
||||
void getBackgroundImage_gpu(int cn, DevMem2Db modesUsed, DevMem2Df weight, DevMem2Db mean, DevMem2Db dst, cudaStream_t stream); |
||||
} |
||||
}}} |
||||
|
||||
namespace mog |
||||
{ |
||||
const int defaultNMixtures = 5; |
||||
const int defaultHistory = 200; |
||||
const float defaultBackgroundRatio = 0.7f; |
||||
const float defaultVarThreshold = 2.5f * 2.5f; |
||||
const float defaultNoiseSigma = 30.0f * 0.5f; |
||||
const float defaultInitialWeight = 0.05f; |
||||
} |
||||
|
||||
cv::gpu::MOG_GPU::MOG_GPU(int nmixtures) : |
||||
frameSize_(0, 0), nframes_(0) |
||||
{ |
||||
nmixtures_ = std::min(nmixtures > 0 ? nmixtures : mog::defaultNMixtures, 8); |
||||
history = mog::defaultHistory; |
||||
varThreshold = mog::defaultVarThreshold; |
||||
backgroundRatio = mog::defaultBackgroundRatio; |
||||
noiseSigma = mog::defaultNoiseSigma; |
||||
} |
||||
|
||||
void cv::gpu::MOG_GPU::initialize(cv::Size frameSize, int frameType) |
||||
{ |
||||
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4); |
||||
|
||||
frameSize_ = frameSize; |
||||
|
||||
int ch = CV_MAT_CN(frameType); |
||||
int work_ch = ch; |
||||
|
||||
// for each gaussian mixture of each pixel bg model we store
|
||||
// the mixture sort key (w/sum_of_variances), the mixture weight (w),
|
||||
// the mean (nchannels values) and
|
||||
// the diagonal covariance matrix (another nchannels values)
|
||||
|
||||
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
||||
sortKey_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
||||
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); |
||||
var_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); |
||||
|
||||
weight_.setTo(cv::Scalar::all(0)); |
||||
sortKey_.setTo(cv::Scalar::all(0)); |
||||
mean_.setTo(cv::Scalar::all(0)); |
||||
var_.setTo(cv::Scalar::all(0)); |
||||
|
||||
nframes_ = 0; |
||||
} |
||||
|
||||
void cv::gpu::MOG_GPU::operator()(const cv::gpu::GpuMat& frame, cv::gpu::GpuMat& fgmask, float learningRate, Stream& stream) |
||||
{ |
||||
using namespace cv::gpu::device::mog; |
||||
|
||||
CV_Assert(frame.depth() == CV_8U); |
||||
|
||||
int ch = frame.channels(); |
||||
int work_ch = ch; |
||||
|
||||
if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.channels()) |
||||
initialize(frame.size(), frame.type()); |
||||
|
||||
fgmask.create(frameSize_, CV_8UC1); |
||||
|
||||
++nframes_; |
||||
learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(nframes_, history); |
||||
CV_Assert(learningRate >= 0.0f); |
||||
|
||||
mog_gpu(frame, ch, fgmask, weight_, sortKey_, mean_, var_, nmixtures_, |
||||
varThreshold, learningRate, backgroundRatio, noiseSigma, |
||||
StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// MOG2
|
||||
|
||||
namespace mog2 |
||||
{ |
||||
// default parameters of gaussian background detection algorithm
|
||||
const int defaultHistory = 500; // Learning rate; alpha = 1/defaultHistory2
|
||||
const float defaultVarThreshold = 4.0f * 4.0f; |
||||
const int defaultNMixtures = 5; // maximal number of Gaussians in mixture
|
||||
const float defaultBackgroundRatio = 0.9f; // threshold sum of weights for background test
|
||||
const float defaultVarThresholdGen = 3.0f * 3.0f; |
||||
const float defaultVarInit = 15.0f; // initial variance for new components
|
||||
const float defaultVarMax = 5.0f * defaultVarInit; |
||||
const float defaultVarMin = 4.0f; |
||||
|
||||
// additional parameters
|
||||
const float defaultfCT = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components
|
||||
const unsigned char defaultnShadowDetection = 127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
|
||||
const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation
|
||||
} |
||||
|
||||
cv::gpu::MOG2_GPU::MOG2_GPU(int nmixtures) : |
||||
frameSize_(0, 0), frameType_(0), nframes_(0) |
||||
{ |
||||
nmixtures_ = nmixtures > 0 ? nmixtures : mog2::defaultNMixtures; |
||||
|
||||
history = mog2::defaultHistory; |
||||
varThreshold = mog2::defaultVarThreshold; |
||||
bShadowDetection = true; |
||||
|
||||
backgroundRatio = mog2::defaultBackgroundRatio; |
||||
fVarInit = mog2::defaultVarInit; |
||||
fVarMax = mog2::defaultVarMax; |
||||
fVarMin = mog2::defaultVarMin; |
||||
|
||||
varThresholdGen = mog2::defaultVarThresholdGen; |
||||
fCT = mog2::defaultfCT; |
||||
nShadowDetection = mog2::defaultnShadowDetection; |
||||
fTau = mog2::defaultfTau; |
||||
} |
||||
|
||||
void cv::gpu::MOG2_GPU::initialize(cv::Size frameSize, int frameType) |
||||
{ |
||||
using namespace cv::gpu::device::mog; |
||||
|
||||
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4); |
||||
|
||||
frameSize_ = frameSize; |
||||
frameType_ = frameType; |
||||
nframes_ = 0; |
||||
|
||||
int ch = CV_MAT_CN(frameType); |
||||
int work_ch = ch; |
||||
|
||||
// for each gaussian mixture of each pixel bg model we store ...
|
||||
// the mixture weight (w),
|
||||
// the mean (nchannels values) and
|
||||
// the covariance
|
||||
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
||||
variance_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
||||
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); |
||||
|
||||
//make the array for keeping track of the used modes per pixel - all zeros at start
|
||||
bgmodelUsedModes_.create(frameSize_, CV_8UC1); |
||||
bgmodelUsedModes_.setTo(cv::Scalar::all(0)); |
||||
|
||||
loadConstants(nmixtures_, varThreshold, backgroundRatio, varThresholdGen, fVarInit, fVarMin, fVarMax, fTau, nShadowDetection); |
||||
} |
||||
|
||||
void cv::gpu::MOG2_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate, Stream& stream) |
||||
{ |
||||
using namespace cv::gpu::device::mog; |
||||
|
||||
int ch = frame.channels(); |
||||
int work_ch = ch; |
||||
|
||||
if (nframes_ == 0 || learningRate >= 1.0f || frame.size() != frameSize_ || work_ch != mean_.channels()) |
||||
initialize(frame.size(), frame.type()); |
||||
|
||||
fgmask.create(frameSize_, CV_8UC1); |
||||
fgmask.setTo(cv::Scalar::all(0)); |
||||
|
||||
++nframes_; |
||||
learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(2 * nframes_, history); |
||||
CV_Assert(learningRate >= 0.0f); |
||||
|
||||
if (learningRate > 0.0f) |
||||
mog2_gpu(frame, frame.channels(), fgmask, bgmodelUsedModes_, weight_, variance_, mean_, learningRate, -learningRate * fCT, bShadowDetection, StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
void cv::gpu::MOG2_GPU::getBackgroundImage(GpuMat& backgroundImage, Stream& stream) const |
||||
{ |
||||
using namespace cv::gpu::device::mog; |
||||
|
||||
backgroundImage.create(frameSize_, frameType_); |
||||
|
||||
getBackgroundImage_gpu(backgroundImage.channels(), bgmodelUsedModes_, weight_, mean_, backgroundImage, StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
#endif |
@ -0,0 +1,703 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or bpied warranties, including, but not limited to, the bpied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
#include <stdio.h> |
||||
#include "opencv2/gpu/device/common.hpp" |
||||
#include "opencv2/gpu/device/vec_traits.hpp" |
||||
#include "opencv2/gpu/device/vec_math.hpp" |
||||
#include "opencv2/gpu/device/limits.hpp" |
||||
|
||||
namespace cv { namespace gpu { namespace device |
||||
{ |
||||
namespace mog |
||||
{ |
||||
/////////////////////////////////////////////////////////////// |
||||
// Utility |
||||
|
||||
__device__ __forceinline__ float cvt(uchar val) |
||||
{ |
||||
return val; |
||||
} |
||||
__device__ __forceinline__ float3 cvt(const uchar3& val) |
||||
{ |
||||
return make_float3(val.x, val.y, val.z); |
||||
} |
||||
__device__ __forceinline__ float4 cvt(const uchar4& val) |
||||
{ |
||||
return make_float4(val.x, val.y, val.z, val.w); |
||||
} |
||||
|
||||
__device__ __forceinline__ float sqr(float val) |
||||
{ |
||||
return val * val; |
||||
} |
||||
__device__ __forceinline__ float sqr(const float3& val) |
||||
{ |
||||
return val.x * val.x + val.y * val.y + val.z * val.z; |
||||
} |
||||
__device__ __forceinline__ float sqr(const float4& val) |
||||
{ |
||||
return val.x * val.x + val.y * val.y + val.z * val.z; |
||||
} |
||||
|
||||
__device__ __forceinline__ float sum(float val) |
||||
{ |
||||
return val; |
||||
} |
||||
__device__ __forceinline__ float sum(const float3& val) |
||||
{ |
||||
return val.x + val.y + val.z; |
||||
} |
||||
__device__ __forceinline__ float sum(const float4& val) |
||||
{ |
||||
return val.x + val.y + val.z; |
||||
} |
||||
|
||||
__device__ __forceinline__ float clamp(float var, float learningRate, float diff, float minVar) |
||||
{ |
||||
return ::fmaxf(var + learningRate * (diff * diff - var), minVar); |
||||
} |
||||
__device__ __forceinline__ float3 clamp(const float3& var, float learningRate, const float3& diff, float minVar) |
||||
{ |
||||
return make_float3(::fmaxf(var.x + learningRate * (diff.x * diff.x - var.x), minVar), |
||||
::fmaxf(var.y + learningRate * (diff.y * diff.y - var.y), minVar), |
||||
::fmaxf(var.z + learningRate * (diff.z * diff.z - var.z), minVar)); |
||||
} |
||||
__device__ __forceinline__ float4 clamp(const float4& var, float learningRate, const float4& diff, float minVar) |
||||
{ |
||||
return make_float4(::fmaxf(var.x + learningRate * (diff.x * diff.x - var.x), minVar), |
||||
::fmaxf(var.y + learningRate * (diff.y * diff.y - var.y), minVar), |
||||
::fmaxf(var.z + learningRate * (diff.z * diff.z - var.z), minVar), |
||||
0.0f); |
||||
} |
||||
|
||||
template <class Ptr2D> |
||||
__device__ __forceinline__ void swap(Ptr2D& ptr, int x, int y, int k, int rows) |
||||
{ |
||||
typename Ptr2D::elem_type val = ptr(k * rows + y, x); |
||||
ptr(k * rows + y, x) = ptr((k + 1) * rows + y, x); |
||||
ptr((k + 1) * rows + y, x) = val; |
||||
} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
// MOG without learning |
||||
|
||||
template <typename SrcT, typename WorkT> |
||||
__global__ void mog_withoutLearning(const DevMem2D_<SrcT> frame, PtrStepb fgmask, |
||||
const PtrStepf gmm_weight, const PtrStep_<WorkT> gmm_mean, const PtrStep_<WorkT> gmm_var, |
||||
const int nmixtures, const float varThreshold, const float backgroundRatio) |
||||
{ |
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (x >= frame.cols || y >= frame.rows) |
||||
return; |
||||
|
||||
WorkT pix = cvt(frame(y, x)); |
||||
|
||||
int kHit = -1; |
||||
int kForeground = -1; |
||||
|
||||
for (int k = 0; k < nmixtures; ++k) |
||||
{ |
||||
if (gmm_weight(k * frame.rows + y, x) < numeric_limits<float>::epsilon()) |
||||
break; |
||||
|
||||
WorkT mu = gmm_mean(k * frame.rows + y, x); |
||||
WorkT var = gmm_var(k * frame.rows + y, x); |
||||
|
||||
WorkT diff = pix - mu; |
||||
|
||||
if (sqr(diff) < varThreshold * sum(var)) |
||||
{ |
||||
kHit = k; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
if (kHit >= 0) |
||||
{ |
||||
float wsum = 0.0f; |
||||
for (int k = 0; k < nmixtures; ++k) |
||||
{ |
||||
wsum += gmm_weight(k * frame.rows + y, x); |
||||
|
||||
if (wsum > backgroundRatio) |
||||
{ |
||||
kForeground = k + 1; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
|
||||
fgmask(y, x) = (uchar) (-(kHit < 0 || kHit >= kForeground)); |
||||
} |
||||
|
||||
template <typename SrcT, typename WorkT> |
||||
void mog_withoutLearning_caller(DevMem2Db frame, DevMem2Db fgmask, DevMem2Df weight, DevMem2Db mean, DevMem2Db var, |
||||
int nmixtures, float varThreshold, float backgroundRatio, cudaStream_t stream) |
||||
{ |
||||
dim3 block(32, 8); |
||||
dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y)); |
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(mog_withoutLearning<SrcT, WorkT>, cudaFuncCachePreferL1) ); |
||||
|
||||
mog_withoutLearning<SrcT, WorkT><<<grid, block, 0, stream>>>((DevMem2D_<SrcT>) frame, fgmask, |
||||
weight, (DevMem2D_<WorkT>) mean, (DevMem2D_<WorkT>) var, |
||||
nmixtures, varThreshold, backgroundRatio); |
||||
|
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
// MOG with learning |
||||
|
||||
template <typename SrcT, typename WorkT> |
||||
__global__ void mog_withLearning(const DevMem2D_<SrcT> frame, PtrStepb fgmask, |
||||
PtrStepf gmm_weight, PtrStepf gmm_sortKey, PtrStep_<WorkT> gmm_mean, PtrStep_<WorkT> gmm_var, |
||||
const int nmixtures, const float varThreshold, const float backgroundRatio, const float learningRate, const float minVar) |
||||
{ |
||||
const float w0 = 0.05f; |
||||
const float sk0 = w0 / (30.0f * 0.5f * 2.0f); |
||||
const float var0 = 30.0f * 0.5f * 30.0f * 0.5f * 4.0f; |
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (x >= frame.cols || y >= frame.rows) |
||||
return; |
||||
|
||||
WorkT pix = cvt(frame(y, x)); |
||||
|
||||
float wsum = 0.0f; |
||||
int kHit = -1; |
||||
int kForeground = -1; |
||||
|
||||
int k = 0; |
||||
for (; k < nmixtures; ++k) |
||||
{ |
||||
float w = gmm_weight(k * frame.rows + y, x); |
||||
wsum += w; |
||||
|
||||
if (w < numeric_limits<float>::epsilon()) |
||||
break; |
||||
|
||||
WorkT mu = gmm_mean(k * frame.rows + y, x); |
||||
WorkT var = gmm_var(k * frame.rows + y, x); |
||||
|
||||
WorkT diff = pix - mu; |
||||
|
||||
if (sqr(diff) < varThreshold * sum(var)) |
||||
{ |
||||
wsum -= w; |
||||
float dw = learningRate * (1.0f - w); |
||||
|
||||
var = clamp(var, learningRate, diff, minVar); |
||||
|
||||
float sortKey_prev = w / ::sqrtf(sum(var)); |
||||
gmm_sortKey(k * frame.rows + y, x) = sortKey_prev; |
||||
|
||||
float weight_prev = w + dw; |
||||
gmm_weight(k * frame.rows + y, x) = weight_prev; |
||||
|
||||
WorkT mean_prev = mu + learningRate * diff; |
||||
gmm_mean(k * frame.rows + y, x) = mean_prev; |
||||
|
||||
WorkT var_prev = var; |
||||
gmm_var(k * frame.rows + y, x) = var_prev; |
||||
|
||||
int k1 = k - 1; |
||||
|
||||
if (k1 >= 0) |
||||
{ |
||||
float sortKey_next = gmm_sortKey(k1 * frame.rows + y, x); |
||||
float weight_next = gmm_weight(k1 * frame.rows + y, x); |
||||
WorkT mean_next = gmm_mean(k1 * frame.rows + y, x); |
||||
WorkT var_next = gmm_var(k1 * frame.rows + y, x); |
||||
|
||||
for (; sortKey_next < sortKey_prev && k1 >= 0; --k1) |
||||
{ |
||||
gmm_sortKey(k1 * frame.rows + y, x) = sortKey_prev; |
||||
gmm_sortKey((k1 + 1) * frame.rows + y, x) = sortKey_next; |
||||
|
||||
gmm_weight(k1 * frame.rows + y, x) = weight_prev; |
||||
gmm_weight((k1 + 1) * frame.rows + y, x) = weight_next; |
||||
|
||||
gmm_mean(k1 * frame.rows + y, x) = mean_prev; |
||||
gmm_mean((k1 + 1) * frame.rows + y, x) = mean_next; |
||||
|
||||
gmm_var(k1 * frame.rows + y, x) = var_prev; |
||||
gmm_var((k1 + 1) * frame.rows + y, x) = var_next; |
||||
|
||||
sortKey_prev = sortKey_next; |
||||
sortKey_next = k1 > 0 ? gmm_sortKey((k1 - 1) * frame.rows + y, x) : 0.0f; |
||||
|
||||
weight_prev = weight_next; |
||||
weight_next = k1 > 0 ? gmm_weight((k1 - 1) * frame.rows + y, x) : 0.0f; |
||||
|
||||
mean_prev = mean_next; |
||||
mean_next = k1 > 0 ? gmm_mean((k1 - 1) * frame.rows + y, x) : VecTraits<WorkT>::all(0.0f); |
||||
|
||||
var_prev = var_next; |
||||
var_next = k1 > 0 ? gmm_var((k1 - 1) * frame.rows + y, x) : VecTraits<WorkT>::all(0.0f); |
||||
} |
||||
} |
||||
|
||||
kHit = k1 + 1; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
if (kHit < 0) |
||||
{ |
||||
// no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one |
||||
kHit = k = ::min(k, nmixtures - 1); |
||||
wsum += w0 - gmm_weight(k * frame.rows + y, x); |
||||
|
||||
gmm_weight(k * frame.rows + y, x) = w0; |
||||
gmm_mean(k * frame.rows + y, x) = pix; |
||||
gmm_var(k * frame.rows + y, x) = VecTraits<WorkT>::all(var0); |
||||
gmm_sortKey(k * frame.rows + y, x) = sk0; |
||||
} |
||||
else |
||||
{ |
||||
for( ; k < nmixtures; k++) |
||||
wsum += gmm_weight(k * frame.rows + y, x); |
||||
} |
||||
|
||||
float wscale = 1.0f / wsum; |
||||
wsum = 0; |
||||
for (k = 0; k < nmixtures; ++k) |
||||
{ |
||||
float w = gmm_weight(k * frame.rows + y, x); |
||||
wsum += w *= wscale; |
||||
|
||||
gmm_weight(k * frame.rows + y, x) = w; |
||||
gmm_sortKey(k * frame.rows + y, x) *= wscale; |
||||
|
||||
if (wsum > backgroundRatio && kForeground < 0) |
||||
kForeground = k + 1; |
||||
} |
||||
|
||||
fgmask(y, x) = (uchar)(-(kHit >= kForeground)); |
||||
} |
||||
|
||||
template <typename SrcT, typename WorkT> |
||||
void mog_withLearning_caller(DevMem2Db frame, DevMem2Db fgmask, DevMem2Df weight, DevMem2Df sortKey, DevMem2Db mean, DevMem2Db var, |
||||
int nmixtures, float varThreshold, float backgroundRatio, float learningRate, float minVar, |
||||
cudaStream_t stream) |
||||
{ |
||||
dim3 block(32, 8); |
||||
dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y)); |
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(mog_withLearning<SrcT, WorkT>, cudaFuncCachePreferL1) ); |
||||
|
||||
mog_withLearning<SrcT, WorkT><<<grid, block, 0, stream>>>((DevMem2D_<SrcT>) frame, fgmask, |
||||
weight, sortKey, (DevMem2D_<WorkT>) mean, (DevMem2D_<WorkT>) var, |
||||
nmixtures, varThreshold, backgroundRatio, learningRate, minVar); |
||||
|
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
// MOG |
||||
|
||||
void mog_gpu(DevMem2Db frame, int cn, DevMem2Db fgmask, DevMem2Df weight, DevMem2Df sortKey, DevMem2Db mean, DevMem2Db var, int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma, cudaStream_t stream) |
||||
{ |
||||
typedef void (*withoutLearning_t)(DevMem2Db frame, DevMem2Db fgmask, DevMem2Df weight, DevMem2Db mean, DevMem2Db var, int nmixtures, float varThreshold, float backgroundRatio, cudaStream_t stream); |
||||
typedef void (*withLearning_t)(DevMem2Db frame, DevMem2Db fgmask, DevMem2Df weight, DevMem2Df sortKey, DevMem2Db mean, DevMem2Db var, int nmixtures, float varThreshold, float backgroundRatio, float learningRate, float minVar, cudaStream_t stream); |
||||
|
||||
static const withoutLearning_t withoutLearning[] = |
||||
{ |
||||
0, mog_withoutLearning_caller<uchar, float>, 0, mog_withoutLearning_caller<uchar3, float3>, mog_withoutLearning_caller<uchar4, float4> |
||||
}; |
||||
static const withLearning_t withLearning[] = |
||||
{ |
||||
0, mog_withLearning_caller<uchar, float>, 0, mog_withLearning_caller<uchar3, float3>, mog_withLearning_caller<uchar4, float4> |
||||
}; |
||||
|
||||
const float minVar = noiseSigma * noiseSigma; |
||||
|
||||
if (learningRate > 0.0f) |
||||
withLearning[cn](frame, fgmask, weight, sortKey, mean, var, nmixtures, varThreshold, backgroundRatio, learningRate, minVar, stream); |
||||
else |
||||
withoutLearning[cn](frame, fgmask, weight, mean, var, nmixtures, varThreshold, backgroundRatio, stream); |
||||
} |
||||
|
||||
/////////////////////////////////////////////////////////////// |
||||
// MOG2 |
||||
|
||||
__constant__ int c_nmixtures; |
||||
__constant__ float c_Tb; |
||||
__constant__ float c_TB; |
||||
__constant__ float c_Tg; |
||||
__constant__ float c_varInit; |
||||
__constant__ float c_varMin; |
||||
__constant__ float c_varMax; |
||||
__constant__ float c_tau; |
||||
__constant__ unsigned char c_shadowVal; |
||||
|
||||
void loadConstants(int nmixtures, float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal) |
||||
{ |
||||
varMin = ::fminf(varMin, varMax); |
||||
varMax = ::fmaxf(varMin, varMax); |
||||
|
||||
cudaSafeCall( cudaMemcpyToSymbol(c_nmixtures, &nmixtures, sizeof(int)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(c_Tb, &Tb, sizeof(float)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(c_TB, &TB, sizeof(float)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(c_Tg, &Tg, sizeof(float)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(c_varInit, &varInit, sizeof(float)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(c_varMin, &varMin, sizeof(float)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(c_varMax, &varMax, sizeof(float)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(c_tau, &tau, sizeof(float)) ); |
||||
cudaSafeCall( cudaMemcpyToSymbol(c_shadowVal, &shadowVal, sizeof(unsigned char)) ); |
||||
} |
||||
|
||||
template <bool detectShadows, typename SrcT, typename WorkT> |
||||
__global__ void mog2(const DevMem2D_<SrcT> frame, PtrStepb fgmask, PtrStepb modesUsed, |
||||
PtrStepf gmm_weight, PtrStepf gmm_variance, PtrStep_<WorkT> gmm_mean, |
||||
const float alphaT, const float alpha1, const float prune) |
||||
{ |
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (x >= frame.cols || y >= frame.rows) |
||||
return; |
||||
|
||||
WorkT pix = cvt(frame(y, x)); |
||||
|
||||
//calculate distances to the modes (+ sort) |
||||
//here we need to go in descending order!!! |
||||
|
||||
bool background = false; // true - the pixel classified as background |
||||
|
||||
//internal: |
||||
|
||||
bool fitsPDF = false; //if it remains zero a new GMM mode will be added |
||||
|
||||
int nmodes = modesUsed(y, x); |
||||
int nNewModes = nmodes; //current number of modes in GMM |
||||
|
||||
float totalWeight = 0.0f; |
||||
|
||||
//go through all modes |
||||
|
||||
for (int mode = 0; mode < nmodes; ++mode) |
||||
{ |
||||
//need only weight if fit is found |
||||
float weight = alpha1 * gmm_weight(mode * frame.rows + y, x) + prune; |
||||
|
||||
//fit not found yet |
||||
if (!fitsPDF) |
||||
{ |
||||
//check if it belongs to some of the remaining modes |
||||
float var = gmm_variance(mode * frame.rows + y, x); |
||||
|
||||
WorkT mean = gmm_mean(mode * frame.rows + y, x); |
||||
|
||||
//calculate difference and distance |
||||
WorkT diff = mean - pix; |
||||
float dist2 = sqr(diff); |
||||
|
||||
//background? - Tb - usually larger than Tg |
||||
if (totalWeight < c_TB && dist2 < c_Tb * var) |
||||
background = true; |
||||
|
||||
//check fit |
||||
if (dist2 < c_Tg * var) |
||||
{ |
||||
//belongs to the mode |
||||
fitsPDF = true; |
||||
|
||||
//update distribution |
||||
|
||||
//update weight |
||||
weight += alphaT; |
||||
float k = alphaT / weight; |
||||
|
||||
//update mean |
||||
gmm_mean(mode * frame.rows + y, x) = mean - k * diff; |
||||
|
||||
//update variance |
||||
float varnew = var + k * (dist2 - var); |
||||
|
||||
//limit the variance |
||||
varnew = ::fmaxf(varnew, c_varMin); |
||||
varnew = ::fminf(varnew, c_varMax); |
||||
|
||||
gmm_variance(mode * frame.rows + y, x) = varnew; |
||||
|
||||
//sort |
||||
//all other weights are at the same place and |
||||
//only the matched (iModes) is higher -> just find the new place for it |
||||
|
||||
for (int i = mode; i > 0; --i) |
||||
{ |
||||
//check one up |
||||
if (weight < gmm_weight((i - 1) * frame.rows + y, x)) |
||||
break; |
||||
|
||||
//swap one up |
||||
swap(gmm_weight, x, y, i - 1, frame.rows); |
||||
swap(gmm_variance, x, y, i - 1, frame.rows); |
||||
swap(gmm_mean, x, y, i - 1, frame.rows); |
||||
} |
||||
|
||||
//belongs to the mode - bFitsPDF becomes 1 |
||||
} |
||||
} // !fitsPDF |
||||
|
||||
//check prune |
||||
if (weight < -prune) |
||||
{ |
||||
weight = 0.0; |
||||
nmodes--; |
||||
} |
||||
|
||||
gmm_weight(mode * frame.rows + y, x) = weight; //update weight by the calculated value |
||||
totalWeight += weight; |
||||
} |
||||
|
||||
//renormalize weights |
||||
|
||||
totalWeight = 1.f / totalWeight; |
||||
for (int mode = 0; mode < nmodes; ++mode) |
||||
gmm_weight(mode * frame.rows + y, x) *= totalWeight; |
||||
|
||||
nmodes = nNewModes; |
||||
|
||||
//make new mode if needed and exit |
||||
|
||||
if (!fitsPDF) |
||||
{ |
||||
// replace the weakest or add a new one |
||||
int mode = nmodes == c_nmixtures ? c_nmixtures - 1 : nmodes++; |
||||
|
||||
if (nmodes == 1) |
||||
gmm_weight(mode * frame.rows + y, x) = 1.f; |
||||
else |
||||
{ |
||||
gmm_weight(mode * frame.rows + y, x) = alphaT; |
||||
|
||||
// renormalize all other weights |
||||
|
||||
for (int i = 0; i < nmodes - 1; ++i) |
||||
gmm_weight(i * frame.rows + y, x) *= alpha1; |
||||
} |
||||
|
||||
// init |
||||
|
||||
gmm_mean(mode * frame.rows + y, x) = pix; |
||||
gmm_variance(mode * frame.rows + y, x) = c_varInit; |
||||
|
||||
//sort |
||||
//find the new place for it |
||||
|
||||
for (int i = nmodes - 1; i > 0; --i) |
||||
{ |
||||
// check one up |
||||
if (alphaT < gmm_weight((i - 1) * frame.rows + y, x)) |
||||
break; |
||||
|
||||
//swap one up |
||||
swap(gmm_weight, x, y, i - 1, frame.rows); |
||||
swap(gmm_variance, x, y, i - 1, frame.rows); |
||||
swap(gmm_mean, x, y, i - 1, frame.rows); |
||||
} |
||||
} |
||||
|
||||
//set the number of modes |
||||
modesUsed(y, x) = nmodes; |
||||
|
||||
bool isShadow = false; |
||||
if (detectShadows && !background) |
||||
{ |
||||
float tWeight = 0.0f; |
||||
|
||||
// check all the components marked as background: |
||||
for (int mode = 0; mode < nmodes; ++mode) |
||||
{ |
||||
WorkT mean = gmm_mean(mode * frame.rows + y, x); |
||||
|
||||
WorkT pix_mean = pix * mean; |
||||
|
||||
float numerator = sum(pix_mean); |
||||
float denominator = sqr(mean); |
||||
|
||||
// no division by zero allowed |
||||
if (denominator == 0) |
||||
break; |
||||
|
||||
// if tau < a < 1 then also check the color distortion |
||||
if (numerator <= denominator && numerator >= c_tau * denominator) |
||||
{ |
||||
float a = numerator / denominator; |
||||
|
||||
WorkT dD = a * mean - pix; |
||||
|
||||
if (sqr(dD) < c_Tb * gmm_variance(mode * frame.rows + y, x) * a * a) |
||||
{ |
||||
isShadow = true; |
||||
break; |
||||
} |
||||
}; |
||||
|
||||
tWeight += gmm_weight(mode * frame.rows + y, x); |
||||
if (tWeight > c_TB) |
||||
break; |
||||
}; |
||||
} |
||||
|
||||
fgmask(y, x) = background ? 0 : isShadow ? c_shadowVal : 255; |
||||
} |
||||
|
||||
template <typename SrcT, typename WorkT> |
||||
void mog2_caller(DevMem2Db frame, DevMem2Db fgmask, DevMem2Db modesUsed, DevMem2Df weight, DevMem2Df variance, DevMem2Db mean, |
||||
float alphaT, float prune, bool detectShadows, cudaStream_t stream) |
||||
{ |
||||
dim3 block(32, 8); |
||||
dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y)); |
||||
|
||||
const float alpha1 = 1.0f - alphaT; |
||||
|
||||
if (detectShadows) |
||||
{ |
||||
cudaSafeCall( cudaFuncSetCacheConfig(mog2<true, SrcT, WorkT>, cudaFuncCachePreferL1) ); |
||||
|
||||
mog2<true, SrcT, WorkT><<<grid, block, 0, stream>>>((DevMem2D_<SrcT>) frame, fgmask, modesUsed, |
||||
weight, variance, (DevMem2D_<WorkT>) mean, |
||||
alphaT, alpha1, prune); |
||||
} |
||||
else |
||||
{ |
||||
cudaSafeCall( cudaFuncSetCacheConfig(mog2<false, SrcT, WorkT>, cudaFuncCachePreferL1) ); |
||||
|
||||
mog2<false, SrcT, WorkT><<<grid, block, 0, stream>>>((DevMem2D_<SrcT>) frame, fgmask, modesUsed, |
||||
weight, variance, (DevMem2D_<WorkT>) mean, |
||||
alphaT, alpha1, prune); |
||||
} |
||||
|
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
void mog2_gpu(DevMem2Db frame, int cn, DevMem2Db fgmask, DevMem2Db modesUsed, DevMem2Df weight, DevMem2Df variance, DevMem2Db mean, |
||||
float alphaT, float prune, bool detectShadows, cudaStream_t stream) |
||||
{ |
||||
typedef void (*func_t)(DevMem2Db frame, DevMem2Db fgmask, DevMem2Db modesUsed, DevMem2Df weight, DevMem2Df variance, DevMem2Db mean, float alphaT, float prune, bool detectShadows, cudaStream_t stream); |
||||
|
||||
static const func_t funcs[] = |
||||
{ |
||||
0, mog2_caller<uchar, float>, 0, mog2_caller<uchar3, float3>, mog2_caller<uchar4, float4> |
||||
}; |
||||
|
||||
funcs[cn](frame, fgmask, modesUsed, weight, variance, mean, alphaT, prune, detectShadows, stream); |
||||
} |
||||
|
||||
template <typename WorkT, typename OutT> |
||||
__global__ void getBackgroundImage(const DevMem2Db modesUsed, const PtrStepf gmm_weight, const PtrStep_<WorkT> gmm_mean, PtrStep_<OutT> dst) |
||||
{ |
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||
|
||||
if (x >= modesUsed.cols || y >= modesUsed.rows) |
||||
return; |
||||
|
||||
int nmodes = modesUsed(y, x); |
||||
|
||||
WorkT meanVal = VecTraits<WorkT>::all(0.0f); |
||||
float totalWeight = 0.0f; |
||||
|
||||
for (int mode = 0; mode < nmodes; ++mode) |
||||
{ |
||||
float weight = gmm_weight(mode * modesUsed.rows + y, x); |
||||
|
||||
WorkT mean = gmm_mean(mode * modesUsed.rows + y, x); |
||||
meanVal = meanVal + weight * mean; |
||||
|
||||
totalWeight += weight; |
||||
|
||||
if(totalWeight > c_TB) |
||||
break; |
||||
} |
||||
|
||||
meanVal = meanVal * (1.f / totalWeight); |
||||
|
||||
dst(y, x) = saturate_cast<OutT>(meanVal); |
||||
} |
||||
|
||||
template <typename WorkT, typename OutT> |
||||
void getBackgroundImage_caller(DevMem2Db modesUsed, DevMem2Df weight, DevMem2Db mean, DevMem2Db dst, cudaStream_t stream) |
||||
{ |
||||
dim3 block(32, 8); |
||||
dim3 grid(divUp(modesUsed.cols, block.x), divUp(modesUsed.rows, block.y)); |
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(getBackgroundImage<WorkT, OutT>, cudaFuncCachePreferL1) ); |
||||
|
||||
getBackgroundImage<WorkT, OutT><<<grid, block, 0, stream>>>(modesUsed, weight, (DevMem2D_<WorkT>) mean, (DevMem2D_<OutT>) dst); |
||||
cudaSafeCall( cudaGetLastError() ); |
||||
|
||||
if (stream == 0) |
||||
cudaSafeCall( cudaDeviceSynchronize() ); |
||||
} |
||||
|
||||
void getBackgroundImage_gpu(int cn, DevMem2Db modesUsed, DevMem2Df weight, DevMem2Db mean, DevMem2Db dst, cudaStream_t stream) |
||||
{ |
||||
typedef void (*func_t)(DevMem2Db modesUsed, DevMem2Df weight, DevMem2Db mean, DevMem2Db dst, cudaStream_t stream); |
||||
|
||||
static const func_t funcs[] = |
||||
{ |
||||
0, getBackgroundImage_caller<float, uchar>, 0, getBackgroundImage_caller<float3, uchar3>, getBackgroundImage_caller<float4, uchar4> |
||||
}; |
||||
|
||||
funcs[cn](modesUsed, weight, mean, dst, stream); |
||||
} |
||||
} |
||||
}}} |
Loading…
Reference in new issue