|
|
@ -68,12 +68,10 @@ using cv::gpu::GpuMat; |
|
|
|
INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params); \
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params); \
|
|
|
|
void fixture##_##name::body() |
|
|
|
void fixture##_##name::body() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace { |
|
|
|
|
|
|
|
|
|
|
|
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t; |
|
|
|
typedef cv::gpu::SoftCascade::Detection Detection; |
|
|
|
|
|
|
|
|
|
|
|
struct SoftCascadeTest : public ::testing::TestWithParam<roi_fixture_t> |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
typedef cv::gpu::SoftCascade::Detection detection_t; |
|
|
|
|
|
|
|
static cv::Rect getFromTable(int idx) |
|
|
|
static cv::Rect getFromTable(int idx) |
|
|
|
{ |
|
|
|
{ |
|
|
|
static const cv::Rect rois[] = |
|
|
|
static const cv::Rect rois[] = |
|
|
@ -114,7 +112,7 @@ struct SoftCascadeTest : public ::testing::TestWithParam<roi_fixture_t> |
|
|
|
return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png"; |
|
|
|
return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png"; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static void print(std::ostream &out, const detection_t& d) |
|
|
|
static void print(std::ostream &out, const Detection& d) |
|
|
|
{ |
|
|
|
{ |
|
|
|
out << "\x1b[32m[ detection]\x1b[0m (" |
|
|
|
out << "\x1b[32m[ detection]\x1b[0m (" |
|
|
|
<< std::setw(4) << d.x |
|
|
|
<< std::setw(4) << d.x |
|
|
@ -131,7 +129,7 @@ struct SoftCascadeTest : public ::testing::TestWithParam<roi_fixture_t> |
|
|
|
|
|
|
|
|
|
|
|
static void printTotal(std::ostream &out, int detbytes) |
|
|
|
static void printTotal(std::ostream &out, int detbytes) |
|
|
|
{ |
|
|
|
{ |
|
|
|
out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(detection_t)) << std::endl; |
|
|
|
out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(Detection)) << std::endl; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static void writeResult(const cv::Mat& result, const int level) |
|
|
|
static void writeResult(const cv::Mat& result, const int level) |
|
|
@ -140,24 +138,27 @@ struct SoftCascadeTest : public ::testing::TestWithParam<roi_fixture_t> |
|
|
|
cv::imwrite(path, result); |
|
|
|
cv::imwrite(path, result); |
|
|
|
std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl; |
|
|
|
std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl; |
|
|
|
} |
|
|
|
} |
|
|
|
}; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
GPU_TEST_P(SoftCascadeTest, detectInROI, |
|
|
|
typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SoftCascadeTestRoi; |
|
|
|
|
|
|
|
GPU_TEST_P(SoftCascadeTestRoi, detect, |
|
|
|
testing::Combine( |
|
|
|
testing::Combine( |
|
|
|
|
|
|
|
ALL_DEVICES, |
|
|
|
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
|
|
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
|
|
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
|
|
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
|
|
testing::Range(0, 5))) |
|
|
|
testing::Range(0, 5))) |
|
|
|
{ |
|
|
|
{ |
|
|
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(1)); |
|
|
|
cv::gpu::setDevice(GET_PARAM(0).deviceID()); |
|
|
|
|
|
|
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2)); |
|
|
|
ASSERT_FALSE(coloredCpu.empty()); |
|
|
|
ASSERT_FALSE(coloredCpu.empty()); |
|
|
|
|
|
|
|
|
|
|
|
cv::gpu::SoftCascade cascade; |
|
|
|
cv::gpu::SoftCascade cascade; |
|
|
|
ASSERT_TRUE(cascade.load(cvtest::TS::ptr()->get_data_path() + GET_PARAM(0))); |
|
|
|
ASSERT_TRUE(cascade.load(cvtest::TS::ptr()->get_data_path() + GET_PARAM(1))); |
|
|
|
|
|
|
|
|
|
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois; |
|
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois; |
|
|
|
rois.setTo(0); |
|
|
|
rois.setTo(0); |
|
|
|
|
|
|
|
|
|
|
|
int nroi = GET_PARAM(2); |
|
|
|
int nroi = GET_PARAM(3); |
|
|
|
cv::Mat result(coloredCpu); |
|
|
|
cv::Mat result(coloredCpu); |
|
|
|
cv::RNG rng; |
|
|
|
cv::RNG rng; |
|
|
|
for (int i = 0; i < nroi; ++i) |
|
|
|
for (int i = 0; i < nroi; ++i) |
|
|
@ -173,16 +174,15 @@ GPU_TEST_P(SoftCascadeTest, detectInROI, |
|
|
|
|
|
|
|
|
|
|
|
cascade.detectMultiScale(colored, trois, objectBoxes); |
|
|
|
cascade.detectMultiScale(colored, trois, objectBoxes); |
|
|
|
|
|
|
|
|
|
|
|
///
|
|
|
|
|
|
|
|
cv::Mat dt(objectBoxes); |
|
|
|
cv::Mat dt(objectBoxes); |
|
|
|
typedef cv::gpu::SoftCascade::Detection detection_t; |
|
|
|
typedef cv::gpu::SoftCascade::Detection Detection; |
|
|
|
|
|
|
|
|
|
|
|
detection_t* dts = (detection_t*)dt.data; |
|
|
|
Detection* dts = (Detection*)dt.data; |
|
|
|
|
|
|
|
|
|
|
|
printTotal(std::cout, dt.cols); |
|
|
|
printTotal(std::cout, dt.cols); |
|
|
|
for (int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i) |
|
|
|
for (int i = 0; i < (int)(dt.cols / sizeof(Detection)); ++i) |
|
|
|
{ |
|
|
|
{ |
|
|
|
detection_t d = dts[i]; |
|
|
|
Detection d = dts[i]; |
|
|
|
print(std::cout, d); |
|
|
|
print(std::cout, d); |
|
|
|
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1); |
|
|
|
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1); |
|
|
|
} |
|
|
|
} |
|
|
@ -190,39 +190,43 @@ GPU_TEST_P(SoftCascadeTest, detectInROI, |
|
|
|
SHOW(result); |
|
|
|
SHOW(result); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
GPU_TEST_P(SoftCascadeTest, detectInLevel, |
|
|
|
typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SoftCascadeTestLevel; |
|
|
|
|
|
|
|
GPU_TEST_P(SoftCascadeTestLevel, detect, |
|
|
|
testing::Combine( |
|
|
|
testing::Combine( |
|
|
|
|
|
|
|
ALL_DEVICES, |
|
|
|
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
|
|
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
|
|
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
|
|
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
|
|
testing::Range(0, 47) |
|
|
|
testing::Range(0, 47) |
|
|
|
)) |
|
|
|
)) |
|
|
|
{ |
|
|
|
{ |
|
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + GET_PARAM(0); |
|
|
|
cv::gpu::setDevice(GET_PARAM(0).deviceID()); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + GET_PARAM(1); |
|
|
|
cv::gpu::SoftCascade cascade; |
|
|
|
cv::gpu::SoftCascade cascade; |
|
|
|
ASSERT_TRUE(cascade.load(xml)); |
|
|
|
ASSERT_TRUE(cascade.load(xml)); |
|
|
|
|
|
|
|
|
|
|
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(1)); |
|
|
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2)); |
|
|
|
ASSERT_FALSE(coloredCpu.empty()); |
|
|
|
ASSERT_FALSE(coloredCpu.empty()); |
|
|
|
|
|
|
|
|
|
|
|
typedef cv::gpu::SoftCascade::Detection detection_t; |
|
|
|
typedef cv::gpu::SoftCascade::Detection Detection; |
|
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 100 * sizeof(detection_t), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); |
|
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 100 * sizeof(Detection), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); |
|
|
|
rois.setTo(1); |
|
|
|
rois.setTo(1); |
|
|
|
|
|
|
|
|
|
|
|
cv::gpu::GpuMat trois; |
|
|
|
cv::gpu::GpuMat trois; |
|
|
|
cv::gpu::transpose(rois, trois); |
|
|
|
cv::gpu::transpose(rois, trois); |
|
|
|
|
|
|
|
|
|
|
|
int level = GET_PARAM(2); |
|
|
|
int level = GET_PARAM(3); |
|
|
|
cascade.detectMultiScale(colored, trois, objectBoxes, 1, level); |
|
|
|
cascade.detectMultiScale(colored, trois, objectBoxes, 1, level); |
|
|
|
|
|
|
|
|
|
|
|
cv::Mat dt(objectBoxes); |
|
|
|
cv::Mat dt(objectBoxes); |
|
|
|
|
|
|
|
|
|
|
|
detection_t* dts = (detection_t*)dt.data; |
|
|
|
Detection* dts = (Detection*)dt.data; |
|
|
|
cv::Mat result(coloredCpu); |
|
|
|
cv::Mat result(coloredCpu); |
|
|
|
|
|
|
|
|
|
|
|
printTotal(std::cout, dt.cols); |
|
|
|
printTotal(std::cout, dt.cols); |
|
|
|
for (int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i) |
|
|
|
for (int i = 0; i < (int)(dt.cols / sizeof(Detection)); ++i) |
|
|
|
{ |
|
|
|
{ |
|
|
|
detection_t d = dts[i]; |
|
|
|
Detection d = dts[i]; |
|
|
|
print(std::cout, d); |
|
|
|
print(std::cout, d); |
|
|
|
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1); |
|
|
|
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1); |
|
|
|
} |
|
|
|
} |
|
|
@ -238,8 +242,12 @@ TEST(SoftCascadeTest, readCascade) |
|
|
|
ASSERT_TRUE(cascade.load(xml)); |
|
|
|
ASSERT_TRUE(cascade.load(xml)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
TEST(SoftCascadeTest, detect) |
|
|
|
typedef ::testing::TestWithParam<cv::gpu::DeviceInfo > SoftCascadeTestAll; |
|
|
|
|
|
|
|
GPU_TEST_P(SoftCascadeTestAll, detect, |
|
|
|
|
|
|
|
ALL_DEVICES |
|
|
|
|
|
|
|
) |
|
|
|
{ |
|
|
|
{ |
|
|
|
|
|
|
|
cv::gpu::setDevice(GetParam().deviceID()); |
|
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml"; |
|
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml"; |
|
|
|
cv::gpu::SoftCascade cascade; |
|
|
|
cv::gpu::SoftCascade cascade; |
|
|
|
ASSERT_TRUE(cascade.load(xml)); |
|
|
|
ASSERT_TRUE(cascade.load(xml)); |
|
|
@ -263,8 +271,11 @@ TEST(SoftCascadeTest, detect) |
|
|
|
ASSERT_EQ(detections.cols / sizeof(Detection) ,3670U); |
|
|
|
ASSERT_EQ(detections.cols / sizeof(Detection) ,3670U); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
TEST(SoftCascadeTest, detectOnIntegral) |
|
|
|
GPU_TEST_P(SoftCascadeTestAll, detectOnIntegral, |
|
|
|
|
|
|
|
ALL_DEVICES |
|
|
|
|
|
|
|
) |
|
|
|
{ |
|
|
|
{ |
|
|
|
|
|
|
|
cv::gpu::setDevice(GetParam().deviceID()); |
|
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml"; |
|
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml"; |
|
|
|
cv::gpu::SoftCascade cascade; |
|
|
|
cv::gpu::SoftCascade cascade; |
|
|
|
ASSERT_TRUE(cascade.load(xml)); |
|
|
|
ASSERT_TRUE(cascade.load(xml)); |
|
|
@ -277,7 +288,7 @@ TEST(SoftCascadeTest, detectOnIntegral) |
|
|
|
for (int i = 0; i < 10; ++i) |
|
|
|
for (int i = 0; i < 10; ++i) |
|
|
|
{ |
|
|
|
{ |
|
|
|
cv::Mat channel; |
|
|
|
cv::Mat channel; |
|
|
|
fs[std::string("channel") + SoftCascadeTest::itoa(i)] >> channel; |
|
|
|
fs[std::string("channel") + itoa(i)] >> channel; |
|
|
|
GpuMat gchannel(hogluv, cv::Rect(0, 121 * i, 161, 121)); |
|
|
|
GpuMat gchannel(hogluv, cv::Rect(0, 121 * i, 161, 121)); |
|
|
|
gchannel.upload(channel); |
|
|
|
gchannel.upload(channel); |
|
|
|
} |
|
|
|
} |
|
|
|