|
|
@ -380,7 +380,7 @@ public: |
|
|
|
|
|
|
|
|
|
|
|
/**@brief Creates the HOG descriptor and detector with default params.
|
|
|
|
/**@brief Creates the HOG descriptor and detector with default params.
|
|
|
|
|
|
|
|
|
|
|
|
aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9, 1 ) |
|
|
|
aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 ) |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), |
|
|
|
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), |
|
|
|
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), |
|
|
|
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), |
|
|
@ -414,7 +414,7 @@ public: |
|
|
|
{} |
|
|
|
{} |
|
|
|
|
|
|
|
|
|
|
|
/** @overload
|
|
|
|
/** @overload
|
|
|
|
@param filename the file name containing HOGDescriptor properties and coefficients of the trained classifier |
|
|
|
@param filename The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier. |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
CV_WRAP HOGDescriptor(const String& filename) |
|
|
|
CV_WRAP HOGDescriptor(const String& filename) |
|
|
|
{ |
|
|
|
{ |
|
|
@ -448,28 +448,28 @@ public: |
|
|
|
/**@example samples/cpp/peopledetect.cpp
|
|
|
|
/**@example samples/cpp/peopledetect.cpp
|
|
|
|
*/ |
|
|
|
*/ |
|
|
|
/**@brief Sets coefficients for the linear SVM classifier.
|
|
|
|
/**@brief Sets coefficients for the linear SVM classifier.
|
|
|
|
@param _svmdetector coefficients for the linear SVM classifier. |
|
|
|
@param svmdetector coefficients for the linear SVM classifier. |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
CV_WRAP virtual void setSVMDetector(InputArray _svmdetector); |
|
|
|
CV_WRAP virtual void setSVMDetector(InputArray svmdetector); |
|
|
|
|
|
|
|
|
|
|
|
/** @brief Reads HOGDescriptor parameters from a file node.
|
|
|
|
/** @brief Reads HOGDescriptor parameters from a cv::FileNode.
|
|
|
|
@param fn File node |
|
|
|
@param fn File node |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
virtual bool read(FileNode& fn); |
|
|
|
virtual bool read(FileNode& fn); |
|
|
|
|
|
|
|
|
|
|
|
/** @brief Stores HOGDescriptor parameters in a file storage.
|
|
|
|
/** @brief Stores HOGDescriptor parameters in a cv::FileStorage.
|
|
|
|
@param fs File storage |
|
|
|
@param fs File storage |
|
|
|
@param objname Object name |
|
|
|
@param objname Object name |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
virtual void write(FileStorage& fs, const String& objname) const; |
|
|
|
virtual void write(FileStorage& fs, const String& objname) const; |
|
|
|
|
|
|
|
|
|
|
|
/** @brief loads coefficients for the linear SVM classifier from a file
|
|
|
|
/** @brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
|
|
|
|
@param filename Name of the file to read. |
|
|
|
@param filename Path of the file to read. |
|
|
|
@param objname The optional name of the node to read (if empty, the first top-level node will be used). |
|
|
|
@param objname The optional name of the node to read (if empty, the first top-level node will be used). |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
CV_WRAP virtual bool load(const String& filename, const String& objname = String()); |
|
|
|
CV_WRAP virtual bool load(const String& filename, const String& objname = String()); |
|
|
|
|
|
|
|
|
|
|
|
/** @brief saves coefficients for the linear SVM classifier to a file
|
|
|
|
/** @brief saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
|
|
|
|
@param filename File name |
|
|
|
@param filename File name |
|
|
|
@param objname Object name |
|
|
|
@param objname Object name |
|
|
|
*/ |
|
|
|
*/ |
|
|
@ -505,7 +505,7 @@ public: |
|
|
|
@param padding Padding |
|
|
|
@param padding Padding |
|
|
|
@param searchLocations Vector of Point includes set of requested locations to be evaluated. |
|
|
|
@param searchLocations Vector of Point includes set of requested locations to be evaluated. |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, |
|
|
|
CV_WRAP virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations, |
|
|
|
CV_OUT std::vector<double>& weights, |
|
|
|
CV_OUT std::vector<double>& weights, |
|
|
|
double hitThreshold = 0, Size winStride = Size(), |
|
|
|
double hitThreshold = 0, Size winStride = Size(), |
|
|
|
Size padding = Size(), |
|
|
|
Size padding = Size(), |
|
|
@ -521,7 +521,7 @@ public: |
|
|
|
@param padding Padding |
|
|
|
@param padding Padding |
|
|
|
@param searchLocations Vector of Point includes locations to search. |
|
|
|
@param searchLocations Vector of Point includes locations to search. |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, |
|
|
|
virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations, |
|
|
|
double hitThreshold = 0, Size winStride = Size(), |
|
|
|
double hitThreshold = 0, Size winStride = Size(), |
|
|
|
Size padding = Size(), |
|
|
|
Size padding = Size(), |
|
|
|
const std::vector<Point>& searchLocations=std::vector<Point>()) const; |
|
|
|
const std::vector<Point>& searchLocations=std::vector<Point>()) const; |
|
|
@ -570,7 +570,7 @@ public: |
|
|
|
@param paddingTL Padding from top-left |
|
|
|
@param paddingTL Padding from top-left |
|
|
|
@param paddingBR Padding from bottom-right |
|
|
|
@param paddingBR Padding from bottom-right |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs, |
|
|
|
CV_WRAP virtual void computeGradient(InputArray img, InputOutputArray grad, InputOutputArray angleOfs, |
|
|
|
Size paddingTL = Size(), Size paddingBR = Size()) const; |
|
|
|
Size paddingTL = Size(), Size paddingBR = Size()) const; |
|
|
|
|
|
|
|
|
|
|
|
/** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows).
|
|
|
|
/** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows).
|
|
|
@ -639,7 +639,7 @@ public: |
|
|
|
@param winStride winStride |
|
|
|
@param winStride winStride |
|
|
|
@param padding padding |
|
|
|
@param padding padding |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations, |
|
|
|
virtual void detectROI(InputArray img, const std::vector<cv::Point> &locations, |
|
|
|
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences, |
|
|
|
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences, |
|
|
|
double hitThreshold = 0, cv::Size winStride = Size(), |
|
|
|
double hitThreshold = 0, cv::Size winStride = Size(), |
|
|
|
cv::Size padding = Size()) const; |
|
|
|
cv::Size padding = Size()) const; |
|
|
@ -652,17 +652,12 @@ public: |
|
|
|
in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
|
|
|
in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
|
|
|
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it. |
|
|
|
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it. |
|
|
|
*/ |
|
|
|
*/ |
|
|
|
virtual void detectMultiScaleROI(const cv::Mat& img, |
|
|
|
virtual void detectMultiScaleROI(InputArray img, |
|
|
|
CV_OUT std::vector<cv::Rect>& foundLocations, |
|
|
|
CV_OUT std::vector<cv::Rect>& foundLocations, |
|
|
|
std::vector<DetectionROI>& locations, |
|
|
|
std::vector<DetectionROI>& locations, |
|
|
|
double hitThreshold = 0, |
|
|
|
double hitThreshold = 0, |
|
|
|
int groupThreshold = 0) const; |
|
|
|
int groupThreshold = 0) const; |
|
|
|
|
|
|
|
|
|
|
|
/** @brief read/parse Dalal's alt model file
|
|
|
|
|
|
|
|
@param modelfile Path of Dalal's alt model file. |
|
|
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
void readALTModel(String modelfile); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/** @brief Groups the object candidate rectangles.
|
|
|
|
/** @brief Groups the object candidate rectangles.
|
|
|
|
@param rectList Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.) |
|
|
|
@param rectList Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.) |
|
|
|
@param weights Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.) |
|
|
|
@param weights Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.) |
|
|
@ -688,7 +683,7 @@ protected: |
|
|
|
}; |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
/** @brief Detect QR code in image and return minimum area of quadrangle that describes QR code.
|
|
|
|
/** @brief Detect QR code in image and return minimum area of quadrangle that describes QR code.
|
|
|
|
@param in Matrix of the type CV_8UC1 containing an image where QR code are detected. |
|
|
|
@param in Matrix of the type CV_8U containing an image where QR code are detected. |
|
|
|
@param points Output vector of vertices of a quadrangle of minimal area that describes QR code. |
|
|
|
@param points Output vector of vertices of a quadrangle of minimal area that describes QR code. |
|
|
|
@param eps_x Epsilon neighborhood, which allows you to determine the horizontal pattern of the scheme 1:1:3:1:1 according to QR code standard. |
|
|
|
@param eps_x Epsilon neighborhood, which allows you to determine the horizontal pattern of the scheme 1:1:3:1:1 according to QR code standard. |
|
|
|
@param eps_y Epsilon neighborhood, which allows you to determine the vertical pattern of the scheme 1:1:3:1:1 according to QR code standard. |
|
|
|
@param eps_y Epsilon neighborhood, which allows you to determine the vertical pattern of the scheme 1:1:3:1:1 according to QR code standard. |
|
|
|