Merge pull request #11781 from dkurt:dnn_uint8_inputs

pull/12022/head
Alexander Alekhin 7 years ago
commit ab9b6e806c
  1. 36
      modules/dnn/include/opencv2/dnn/dnn.hpp
  2. 262
      modules/dnn/src/dnn.cpp
  3. 50
      modules/dnn/src/op_inf_engine.cpp
  4. 10
      modules/dnn/src/op_inf_engine.hpp
  5. 10
      modules/dnn/test/test_halide_layers.cpp
  6. 76
      modules/dnn/test/test_layers.cpp
  7. 40
      modules/dnn/test/test_misc.cpp

@ -46,9 +46,9 @@
#include <opencv2/core.hpp>
#if !defined CV_DOXYGEN && !defined CV_DNN_DONT_ADD_EXPERIMENTAL_NS
#define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_v5 {
#define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_v6 {
#define CV__DNN_EXPERIMENTAL_NS_END }
namespace cv { namespace dnn { namespace experimental_dnn_v5 { } using namespace experimental_dnn_v5; }}
namespace cv { namespace dnn { namespace experimental_dnn_v6 { } using namespace experimental_dnn_v6; }}
#else
#define CV__DNN_EXPERIMENTAL_NS_BEGIN
#define CV__DNN_EXPERIMENTAL_NS_END
@ -487,14 +487,19 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
*/
CV_WRAP void setPreferableTarget(int targetId);
/** @brief Sets the new value for the layer output blob
* @param name descriptor of the updating layer output blob.
* @param blob new blob.
/** @brief Sets the new input value for the network
* @param blob A new blob. Should have CV_32F or CV_8U depth.
* @param name A name of input layer.
* @param scalefactor An optional normalization scale.
* @param mean An optional mean subtraction values.
* @see connect(String, String) to know format of the descriptor.
* @note If updating blob is not empty then @p blob must have the same shape,
* because network reshaping is not implemented yet.
*
* If scale or mean values are specified, a final input blob is computed
* as:
* \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f]
*/
CV_WRAP void setInput(InputArray blob, const String& name = "");
CV_WRAP void setInput(InputArray blob, const String& name = "",
double scalefactor = 1.0, const Scalar& mean = Scalar());
/** @brief Sets the new value for the learned param of the layer.
* @param layer name or id of the layer.
@ -805,13 +810,15 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @param crop flag which indicates whether image will be cropped after resize or not
* @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
* @returns 4-dimensional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(),
const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true,
int ddepth=CV_32F);
/** @brief Creates 4-dimensional blob from image.
* @details This is an overloaded member function, provided for convenience.
@ -819,7 +826,7 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
*/
CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0,
const Size& size = Size(), const Scalar& mean = Scalar(),
bool swapRB=true, bool crop=true);
bool swapRB=true, bool crop=true, int ddepth=CV_32F);
/** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
@ -833,13 +840,15 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @param crop flag which indicates whether image will be cropped after resize or not
* @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
* @returns 4-dimansional Mat with NCHW dimensions order.
* @returns 4-dimensional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0,
Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true,
int ddepth=CV_32F);
/** @brief Creates 4-dimensional blob from series of images.
* @details This is an overloaded member function, provided for convenience.
@ -847,7 +856,8 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
*/
CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob,
double scalefactor=1.0, Size size = Size(),
const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true,
int ddepth=CV_32F);
/** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
* (std::vector<cv::Mat>).

@ -97,35 +97,42 @@ namespace
}
Mat blobFromImage(InputArray image, double scalefactor, const Size& size,
const Scalar& mean, bool swapRB, bool crop)
const Scalar& mean, bool swapRB, bool crop, int ddepth)
{
CV_TRACE_FUNCTION();
Mat blob;
blobFromImage(image, blob, scalefactor, size, mean, swapRB, crop);
blobFromImage(image, blob, scalefactor, size, mean, swapRB, crop, ddepth);
return blob;
}
void blobFromImage(InputArray image, OutputArray blob, double scalefactor,
const Size& size, const Scalar& mean, bool swapRB, bool crop)
const Size& size, const Scalar& mean, bool swapRB, bool crop, int ddepth)
{
CV_TRACE_FUNCTION();
std::vector<Mat> images(1, image.getMat());
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop);
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
}
Mat blobFromImages(InputArrayOfArrays images, double scalefactor, Size size,
const Scalar& mean, bool swapRB, bool crop)
const Scalar& mean, bool swapRB, bool crop, int ddepth)
{
CV_TRACE_FUNCTION();
Mat blob;
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop);
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
return blob;
}
void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalefactor,
Size size, const Scalar& mean_, bool swapRB, bool crop)
Size size, const Scalar& mean_, bool swapRB, bool crop, int ddepth)
{
CV_TRACE_FUNCTION();
CV_CheckType(ddepth, ddepth == CV_32F || ddepth == CV_8U, "Blob depth should be CV_32F or CV_8U");
if (ddepth == CV_8U)
{
CV_CheckEQ(scalefactor, 1.0, "Scaling is not supported for CV_8U blob depth");
CV_Assert(mean_ == Scalar(), "Mean subtraction is not supported for CV_8U blob depth");
}
std::vector<Mat> images;
images_.getMatVector(images);
CV_Assert(!images.empty());
@ -149,7 +156,7 @@ void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalef
else
resize(images[i], images[i], size, 0, 0, INTER_LINEAR);
}
if(images[i].depth() == CV_8U)
if(images[i].depth() == CV_8U && ddepth == CV_32F)
images[i].convertTo(images[i], CV_32F);
Scalar mean = mean_;
if (swapRB)
@ -167,20 +174,20 @@ void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalef
if (nch == 3 || nch == 4)
{
int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
blob_.create(4, sz, CV_32F);
blob_.create(4, sz, ddepth);
Mat blob = blob_.getMat();
Mat ch[4];
for( i = 0; i < nimages; i++ )
{
image = images[i];
CV_Assert(image.depth() == CV_32F);
CV_Assert(image.depth() == blob_.depth());
nch = image.channels();
CV_Assert(image.dims == 2 && (nch == 3 || nch == 4));
CV_Assert(image.size() == image0.size());
for( int j = 0; j < nch; j++ )
ch[j] = Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, j));
ch[j] = Mat(image.rows, image.cols, ddepth, blob.ptr((int)i, j));
if(swapRB)
std::swap(ch[0], ch[2]);
split(image, ch);
@ -190,18 +197,18 @@ void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalef
{
CV_Assert(nch == 1);
int sz[] = { (int)nimages, 1, image0.rows, image0.cols };
blob_.create(4, sz, CV_32F);
blob_.create(4, sz, ddepth);
Mat blob = blob_.getMat();
for( i = 0; i < nimages; i++ )
{
Mat image = images[i];
CV_Assert(image.depth() == CV_32F);
CV_Assert(image.depth() == blob_.depth());
nch = image.channels();
CV_Assert(image.dims == 2 && (nch == 1));
CV_Assert(image.size() == image0.size());
image.copyTo(Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, 0)));
image.copyTo(Mat(image.rows, image.cols, ddepth, blob.ptr((int)i, 0)));
}
}
}
@ -408,7 +415,16 @@ struct LayerData
//fake layer containing network input blobs
struct DataLayer : public Layer
{
void finalize(const std::vector<Mat*>&, std::vector<Mat>&) CV_OVERRIDE {}
DataLayer() : Layer()
{
skip = false;
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_INFERENCE_ENGINE && inputsData.size() == 1;
}
void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) CV_OVERRIDE
{
@ -423,11 +439,36 @@ struct DataLayer : public Layer
void forward(std::vector<Mat*>&, std::vector<Mat>& outputs, std::vector<Mat> &) CV_OVERRIDE
{
// Supported modes:
// | Input type | Output type |
// | fp32 | fp32 |
// | uint8 | fp32 |
for (int i = 0; i < inputsData.size(); ++i)
{
if (inputsData[i].type() == CV_32F && outputs[i].type() == CV_16S)
double scale = scaleFactors[i];
Scalar& mean = means[i];
CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4,
outputs[i].type() == CV_32F);
bool singleMean = true;
for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j)
{
convertFp16(inputsData[i], outputs[i]);
singleMean = mean[j] == mean[j - 1];
}
if (singleMean)
{
inputsData[i].convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
}
else
{
for (int n = 0; n < inputsData[i].size[0]; ++n)
for (int c = 0; c < inputsData[i].size[1]; ++c)
{
Mat inp = getPlane(inputsData[i], n, c);
Mat out = getPlane(outputs[i], n, c);
inp.convertTo(out, CV_32F, scale, -mean[c] * scale);
}
}
}
}
@ -435,13 +476,66 @@ struct DataLayer : public Layer
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
if (outputs_.depth() == CV_16S)
// Supported modes:
// | Input type | Output type |
// | fp32 | fp32 |
// | fp32 | fp16 |
// | uint8 | fp32 |
std::vector<UMat> outputs;
outputs_.getUMatVector(outputs);
for (int i = 0; i < inputsData.size(); ++i)
{
std::vector<UMat> outputs;
outputs_.getUMatVector(outputs);
for (int i = 0; i < inputsData.size(); ++i)
double scale = scaleFactors[i];
Scalar& mean = means[i];
CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4);
bool singleMean = true;
for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j)
{
convertFp16(inputsData[i], outputs[i]);
singleMean = mean[j] == mean[j - 1];
}
if (outputs_.depth() == CV_16S)
{
if (singleMean)
convertFp16(scale * (inputsData[i] - mean[0]), outputs[i]);
else
{
for (int n = 0; n < inputsData[i].size[0]; ++n)
for (int c = 0; c < inputsData[i].size[1]; ++c)
{
Mat inp = getPlane(inputsData[i], n, c);
std::vector<cv::Range> plane(4, Range::all());
plane[0] = Range(n, n + 1);
plane[1] = Range(c, c + 1);
UMat out = outputs[i](plane).reshape(1, inp.dims, inp.size);
convertFp16(scale * (inp - mean[c]), out);
}
}
}
else
{
CV_Assert(outputs_.depth() == CV_32F);
if (singleMean)
inputsData[i].convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
else
{
for (int n = 0; n < inputsData[i].size[0]; ++n)
for (int c = 0; c < inputsData[i].size[1]; ++c)
{
Mat inp = getPlane(inputsData[i], n, c);
std::vector<cv::Range> plane(4, Range::all());
plane[0] = Range(n, n + 1);
plane[1] = Range(c, c + 1);
UMat out = outputs[i](plane).reshape(1, inp.dims, inp.size);
inp.convertTo(out, CV_32F, scale, -mean[c] * scale);
}
}
}
}
return true;
@ -469,8 +563,61 @@ struct DataLayer : public Layer
return false;
}
void finalize(const std::vector<Mat*>&, std::vector<Mat>& outputs) CV_OVERRIDE
{
CV_Assert(outputs.size() == scaleFactors.size(), outputs.size() == means.size(),
inputsData.size() == outputs.size());
skip = true;
for (int i = 0; skip && i < inputsData.size(); ++i)
{
if (inputsData[i].data != outputs[i].data || scaleFactors[i] != 1.0 || means[i] != Scalar())
skip = false;
}
}
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
InferenceEngine::LayerParams lp;
lp.name = name;
lp.type = "ScaleShift";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp));
CV_Assert(inputsData.size() == 1, inputsData[0].dims == 4);
const size_t numChannels = inputsData[0].size[1];
CV_Assert(numChannels <= 4);
// Scale
auto weights = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
{numChannels});
weights->allocate();
weights->set(std::vector<float>(numChannels, scaleFactors[0]));
ieLayer->_weights = weights;
// Mean subtraction
auto biases = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
{numChannels});
biases->allocate();
std::vector<float> biasesVec(numChannels);
for (int i = 0; i < numChannels; ++i)
{
biasesVec[i] = -means[0][i] * scaleFactors[0];
}
biases->set(biasesVec);
ieLayer->_biases = biases;
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();
}
std::vector<String> outNames;
// Preprocessing parameters for each network's input.
std::vector<double> scaleFactors;
std::vector<Scalar> means;
std::vector<Mat> inputsData;
bool skip;
};
struct BlobManager
@ -739,7 +886,7 @@ struct Net::Impl
netInputLayer = Ptr<DataLayer>(new DataLayer());
LayerData &inpl = layers.insert( make_pair(0, LayerData()) ).first->second;
inpl.id = 0;
inpl.name = "_input";
netInputLayer->name = inpl.name = "_input";
inpl.type = "__NetInputLayer__";
inpl.layerInstance = netInputLayer;
layerNameToId.insert(std::make_pair(inpl.name, inpl.id));
@ -930,6 +1077,11 @@ struct Net::Impl
clear();
allocateLayers(blobsToKeep_);
MapIdToLayerData::iterator it = layers.find(0);
CV_Assert(it != layers.end());
it->second.skip = netInputLayer->skip;
initBackend();
if (!netWasAllocated )
@ -1179,6 +1331,29 @@ struct Net::Impl
MapIdToLayerData::iterator it;
Ptr<InfEngineBackendNet> net;
for (it = layers.begin(); it != layers.end(); ++it)
{
LayerData &ld = it->second;
if (ld.id == 0)
{
CV_Assert((netInputLayer->outNames.empty() && ld.outputBlobsWrappers.size() == 1) ||
(netInputLayer->outNames.size() == ld.outputBlobsWrappers.size()));
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.outputBlobsWrappers[i]);
dataPtr->name = netInputLayer->outNames.empty() ? ld.name : netInputLayer->outNames[i];
}
}
else
{
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.outputBlobsWrappers[i]);
dataPtr->name = ld.name;
}
}
}
if (skipInfEngineInit)
{
Ptr<BackendNode> node = layers[lastLayerId].backendNodes[preferableBackend];
@ -1190,11 +1365,21 @@ struct Net::Impl
for (it = layers.begin(); it != layers.end(); ++it)
{
LayerData &ld = it->second;
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
if (ld.id == 0)
{
InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.outputBlobsWrappers[i]);
dataPtr->name = ld.id == 0 ? netInputLayer->outNames[i] : ld.name;
for (int i = 0; i < ld.inputBlobsWrappers.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.inputBlobsWrappers[i]);
dataPtr->name = netInputLayer->outNames[i];
}
}
else
{
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.outputBlobsWrappers[i]);
dataPtr->name = ld.name;
}
}
ieNode->net->addBlobs(ld.inputBlobsWrappers);
ieNode->net->addBlobs(ld.outputBlobsWrappers);
@ -1210,11 +1395,11 @@ struct Net::Impl
// some of layers is not implemented.
// Set of all input and output blobs wrappers for current network.
std::map<int, Ptr<BackendWrapper> > netBlobsWrappers;
std::map<LayerPin, Ptr<BackendWrapper> > netBlobsWrappers;
for (it = layers.begin(); it != layers.end(); ++it)
{
LayerData &ld = it->second;
if (ld.id == 0)
if (ld.id == 0 && ld.skip)
continue;
bool fused = ld.skip;
@ -1251,20 +1436,17 @@ struct Net::Impl
// So we need to rewrap all the external blobs.
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
int lid = ld.inputBlobsId[i].lid;
LayerData &inpLd = layers[lid];
auto it = netBlobsWrappers.find(lid);
LayerPin inPin = ld.inputBlobsId[i];
auto it = netBlobsWrappers.find(inPin);
if (it == netBlobsWrappers.end())
{
ld.inputBlobsWrappers[i] = wrap(*ld.inputBlobs[i]);
auto dataPtr = infEngineDataNode(ld.inputBlobsWrappers[i]);
dataPtr->name = inpLd.name;
netBlobsWrappers[lid] = ld.inputBlobsWrappers[i];
ld.inputBlobsWrappers[i] = InfEngineBackendWrapper::create(ld.inputBlobsWrappers[i]);
netBlobsWrappers[inPin] = ld.inputBlobsWrappers[i];
}
else
ld.inputBlobsWrappers[i] = it->second;
}
netBlobsWrappers[ld.id] = ld.outputBlobsWrappers[0];
netBlobsWrappers[LayerPin(ld.id, 0)] = ld.outputBlobsWrappers[0];
Ptr<BackendNode> node;
if (!net.empty())
@ -2343,7 +2525,7 @@ void Net::setInputsNames(const std::vector<String> &inputBlobNames)
impl->netInputLayer->setNames(inputBlobNames);
}
void Net::setInput(InputArray blob, const String& name)
void Net::setInput(InputArray blob, const String& name, double scalefactor, const Scalar& mean)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
@ -2360,6 +2542,8 @@ void Net::setInput(InputArray blob, const String& name)
ld.outputBlobs.resize(numInputs);
ld.outputBlobsWrappers.resize(numInputs);
impl->netInputLayer->inputsData.resize(numInputs);
impl->netInputLayer->scaleFactors.resize(numInputs);
impl->netInputLayer->means.resize(numInputs);
MatShape prevShape = shape(impl->netInputLayer->inputsData[pin.oid]);
Mat blob_ = blob.getMat();
@ -2378,6 +2562,8 @@ void Net::setInput(InputArray blob, const String& name)
{
ld.outputBlobsWrappers[pin.oid]->setHostDirty();
}
impl->netInputLayer->scaleFactors[pin.oid] = scalefactor;
impl->netInputLayer->means[pin.oid] = mean;
impl->netWasAllocated = impl->netWasAllocated && oldShape;
}

@ -68,19 +68,32 @@ static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std:
{
std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
std::reverse(reversedShape.begin(), reversedShape.end());
return InferenceEngine::DataPtr(
new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32, estimateLayout(m))
);
if (m.type() == CV_32F)
return InferenceEngine::DataPtr(
new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32, estimateLayout(m))
);
else if (m.type() == CV_8U)
return InferenceEngine::DataPtr(
new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::U8, estimateLayout(m))
);
else
CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type()));
}
InferenceEngine::TBlob<float>::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape,
InferenceEngine::Layout layout)
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape,
InferenceEngine::Layout layout)
{
return InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
layout, shape, (float*)m.data);
if (m.type() == CV_32F)
return InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
layout, shape, (float*)m.data);
else if (m.type() == CV_8U)
return InferenceEngine::make_shared_blob<uint8_t>(InferenceEngine::Precision::U8,
layout, shape, (uint8_t*)m.data);
else
CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type()));
}
InferenceEngine::TBlob<float>::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout)
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout)
{
std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
std::reverse(reversedShape.begin(), reversedShape.end());
@ -102,6 +115,24 @@ InfEngineBackendWrapper::InfEngineBackendWrapper(int targetId, const cv::Mat& m)
blob = wrapToInfEngineBlob(m, estimateLayout(m));
}
InfEngineBackendWrapper::InfEngineBackendWrapper(Ptr<BackendWrapper> wrapper)
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, wrapper->targetId)
{
Ptr<InfEngineBackendWrapper> ieWrapper = wrapper.dynamicCast<InfEngineBackendWrapper>();
CV_Assert(!ieWrapper.empty());
InferenceEngine::DataPtr srcData = ieWrapper->dataPtr;
dataPtr = InferenceEngine::DataPtr(
new InferenceEngine::Data(srcData->name, srcData->dims, srcData->precision,
srcData->layout)
);
blob = ieWrapper->blob;
}
Ptr<BackendWrapper> InfEngineBackendWrapper::create(Ptr<BackendWrapper> wrapper)
{
return Ptr<BackendWrapper>(new InfEngineBackendWrapper(wrapper));
}
InfEngineBackendWrapper::~InfEngineBackendWrapper()
{
@ -329,6 +360,7 @@ void InfEngineBackendNet::init(int targetId)
{
CV_Assert(allBlobs.find(it.first) != allBlobs.end());
inpBlobs[it.first] = allBlobs[it.first];
it.second->setPrecision(inpBlobs[it.first]->precision());
}
// Set up output blobs.
@ -427,7 +459,7 @@ void InfEngineBackendNet::addBlobs(const std::vector<Ptr<BackendWrapper> >& ptrs
auto wrappers = infEngineWrappers(ptrs);
for (const auto& wrapper : wrappers)
{
allBlobs[wrapper->dataPtr->name] = wrapper->blob;
allBlobs.insert({wrapper->dataPtr->name, wrapper->blob});
}
}

@ -115,19 +115,23 @@ class InfEngineBackendWrapper : public BackendWrapper
public:
InfEngineBackendWrapper(int targetId, const Mat& m);
InfEngineBackendWrapper(Ptr<BackendWrapper> wrapper);
~InfEngineBackendWrapper();
static Ptr<BackendWrapper> create(Ptr<BackendWrapper> wrapper);
virtual void copyToHost() CV_OVERRIDE;
virtual void setHostDirty() CV_OVERRIDE;
InferenceEngine::DataPtr dataPtr;
InferenceEngine::TBlob<float>::Ptr blob;
InferenceEngine::Blob::Ptr blob;
};
InferenceEngine::TBlob<float>::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout = InferenceEngine::Layout::ANY);
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout = InferenceEngine::Layout::ANY);
InferenceEngine::TBlob<float>::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape, InferenceEngine::Layout layout);
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape, InferenceEngine::Layout layout);
InferenceEngine::DataPtr infEngineDataNode(const Ptr<BackendWrapper>& ptr);

@ -107,12 +107,10 @@ TEST_P(Convolution, Accuracy)
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD)
throw SkipTestException("");
// TODO: unstable test cases
if (backendId == DNN_BACKEND_OPENCV && (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) &&
inChannels == 6 && outChannels == 9 && group == 1 && inSize == Size(5, 6) &&
kernel == Size(3, 1) && stride == Size(1, 1) && pad == Size(0, 1) && dilation == Size(1, 1) &&
hasBias)
throw SkipTestException("");
if (cvtest::skipUnstableTests && backendId == DNN_BACKEND_OPENCV &&
(targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) &&
kernel == Size(3, 1) && stride == Size(1, 1) && pad == Size(0, 1))
throw SkipTestException("Skip unstable test");
int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width};
Mat weights(4, &sz[0], CV_32F);

@ -291,7 +291,7 @@ TEST_P(Test_Caffe_layers, Fused_Concat)
TEST_P(Test_Caffe_layers, Eltwise)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
throw SkipTestException("");
testLayerUsingCaffeModels("layer_eltwise");
}
@ -939,6 +939,25 @@ TEST(Layer_Test_Convolution_DLDT, Accuracy)
ASSERT_EQ(net.getLayer(outLayers[0])->type, "Concat");
}
TEST(Layer_Test_Convolution_DLDT, setInput_uint8)
{
Mat inp = blobFromNPY(_tf("blob.npy"));
Mat inputs[] = {Mat(inp.dims, inp.size, CV_8U), Mat()};
randu(inputs[0], 0, 255);
inputs[0].convertTo(inputs[1], CV_32F);
Mat outs[2];
for (int i = 0; i < 2; ++i)
{
Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin"));
net.setInput(inputs[i]);
outs[i] = net.forward();
ASSERT_EQ(outs[i].type(), CV_32F);
}
normAssert(outs[0], outs[1]);
}
// 1. Create a .prototxt file with the following network:
// layer {
// type: "Input" name: "data" top: "data"
@ -961,22 +980,65 @@ TEST(Layer_Test_Convolution_DLDT, Accuracy)
// net.save('/path/to/caffemodel')
//
// 3. Convert using ModelOptimizer.
TEST(Test_DLDT, two_inputs)
typedef testing::TestWithParam<tuple<int, int> > Test_DLDT_two_inputs;
TEST_P(Test_DLDT_two_inputs, as_IR)
{
int firstInpType = get<0>(GetParam());
int secondInpType = get<1>(GetParam());
// TODO: It looks like a bug in Inference Engine.
if (secondInpType == CV_8U)
throw SkipTestException("");
Net net = readNet(_tf("net_two_inputs.xml"), _tf("net_two_inputs.bin"));
int inpSize[] = {1, 2, 3};
Mat firstInp(3, &inpSize[0], CV_32F);
Mat secondInp(3, &inpSize[0], CV_32F);
randu(firstInp, -1, 1);
randu(secondInp, -1, 1);
Mat firstInp(3, &inpSize[0], firstInpType);
Mat secondInp(3, &inpSize[0], secondInpType);
randu(firstInp, 0, 255);
randu(secondInp, 0, 255);
net.setInput(firstInp, "data");
net.setInput(secondInp, "second_input");
Mat out = net.forward();
normAssert(out, firstInp + secondInp);
Mat ref;
cv::add(firstInp, secondInp, ref, Mat(), CV_32F);
normAssert(out, ref);
}
TEST_P(Test_DLDT_two_inputs, as_backend)
{
static const float kScale = 0.5f;
static const float kScaleInv = 1.0f / kScale;
Net net;
LayerParams lp;
lp.type = "Eltwise";
lp.name = "testLayer";
lp.set("operation", "sum");
int eltwiseId = net.addLayerToPrev(lp.name, lp.type, lp); // connect to a first input
net.connect(0, 1, eltwiseId, 1); // connect to a second input
int inpSize[] = {1, 2, 3};
Mat firstInp(3, &inpSize[0], get<0>(GetParam()));
Mat secondInp(3, &inpSize[0], get<1>(GetParam()));
randu(firstInp, 0, 255);
randu(secondInp, 0, 255);
net.setInputsNames({"data", "second_input"});
net.setInput(firstInp, "data", kScale);
net.setInput(secondInp, "second_input", kScaleInv);
net.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE);
Mat out = net.forward();
Mat ref;
addWeighted(firstInp, kScale, secondInp, kScaleInv, 0, ref, CV_32F);
normAssert(out, ref);
}
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_two_inputs, Combine(
Values(CV_8U, CV_32F), Values(CV_8U, CV_32F)
));
class UnsupportedLayer : public Layer
{
public:

@ -138,4 +138,44 @@ TEST(LayerFactory, custom_layers)
LayerFactory::unregisterLayer("CustomType");
}
typedef testing::TestWithParam<tuple<float, Vec3f, int, tuple<Backend, Target> > > setInput;
TEST_P(setInput, normalization)
{
const float kScale = get<0>(GetParam());
const Scalar kMean = get<1>(GetParam());
const int dtype = get<2>(GetParam());
const int backend = get<0>(get<3>(GetParam()));
const int target = get<1>(get<3>(GetParam()));
const bool kSwapRB = true;
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && !checkMyriadTarget())
throw SkipTestException("Myriad is not available/disabled in OpenCV");
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16 && dtype != CV_32F)
throw SkipTestException("");
Mat inp(5, 5, CV_8UC3);
randu(inp, 0, 255);
Mat ref = blobFromImage(inp, kScale, Size(), kMean, kSwapRB, /*crop*/false);
LayerParams lp;
Net net;
net.addLayerToPrev("testLayer", "Identity", lp);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat blob = blobFromImage(inp, 1.0, Size(), Scalar(), kSwapRB, /*crop*/false, dtype);
ASSERT_EQ(blob.type(), dtype);
net.setInput(blob, "", kScale, kMean);
Mat out = net.forward();
ASSERT_EQ(out.type(), CV_32F);
normAssert(ref, out, "", 4e-4, 1e-3);
}
INSTANTIATE_TEST_CASE_P(/**/, setInput, Combine(
Values(1.0f, 1.0 / 127.5),
Values(Vec3f(), Vec3f(50, 50, 50), Vec3f(10, 50, 140)),
Values(CV_32F, CV_8U),
dnnBackendsAndTargets()
));
}} // namespace

Loading…
Cancel
Save