parent
bc6ed1467b
commit
ab4d375349
13 changed files with 839 additions and 41 deletions
@ -0,0 +1,69 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
''' |
||||
camera calibration for distorted images with chess board samples |
||||
reads distorted images, calculates the calibration and write undistorted images |
||||
''' |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
|
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
class calibration_test(NewOpenCVTests): |
||||
|
||||
def test_calibration(self): |
||||
|
||||
from glob import glob |
||||
|
||||
img_mask = '../../../samples/data/left*.jpg' # default |
||||
img_names = glob(img_mask) |
||||
|
||||
square_size = 1.0 |
||||
pattern_size = (9, 6) |
||||
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32) |
||||
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2) |
||||
pattern_points *= square_size |
||||
|
||||
obj_points = [] |
||||
img_points = [] |
||||
h, w = 0, 0 |
||||
img_names_undistort = [] |
||||
for fn in img_names: |
||||
img = cv2.imread(fn, 0) |
||||
if img is None: |
||||
continue |
||||
|
||||
h, w = img.shape[:2] |
||||
found, corners = cv2.findChessboardCorners(img, pattern_size) |
||||
if found: |
||||
term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1) |
||||
cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term) |
||||
|
||||
if not found: |
||||
continue |
||||
|
||||
img_points.append(corners.reshape(-1, 2)) |
||||
obj_points.append(pattern_points) |
||||
|
||||
# calculate camera distortion |
||||
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None, flags = 0) |
||||
|
||||
eps = 0.01 |
||||
normCamEps = 10.0 |
||||
normDistEps = 0.01 |
||||
|
||||
cameraMatrixTest = [[ 532.80992189, 0., 342.4952186 ], |
||||
[ 0., 532.93346422, 233.8879292 ], |
||||
[ 0., 0., 1. ]] |
||||
|
||||
distCoeffsTest = [ -2.81325576e-01, 2.91130406e-02, |
||||
1.21234330e-03, -1.40825372e-04, 1.54865844e-01] |
||||
|
||||
self.assertLess(abs(rms - 0.196334638034), eps) |
||||
self.assertLess(cv2.norm(camera_matrix - cameraMatrixTest, cv2.NORM_L1), normCamEps) |
||||
self.assertLess(cv2.norm(dist_coefs - distCoeffsTest, cv2.NORM_L1), normDistEps) |
@ -0,0 +1,197 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
''' |
||||
SVM and KNearest digit recognition. |
||||
|
||||
Sample loads a dataset of handwritten digits from '../data/digits.png'. |
||||
Then it trains a SVM and KNearest classifiers on it and evaluates |
||||
their accuracy. |
||||
|
||||
Following preprocessing is applied to the dataset: |
||||
- Moment-based image deskew (see deskew()) |
||||
- Digit images are split into 4 10x10 cells and 16-bin |
||||
histogram of oriented gradients is computed for each |
||||
cell |
||||
- Transform histograms to space with Hellinger metric (see [1] (RootSIFT)) |
||||
|
||||
|
||||
[1] R. Arandjelovic, A. Zisserman |
||||
"Three things everyone should know to improve object retrieval" |
||||
http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf |
||||
|
||||
''' |
||||
|
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
# built-in modules |
||||
from multiprocessing.pool import ThreadPool |
||||
|
||||
import cv2 |
||||
|
||||
import numpy as np |
||||
from numpy.linalg import norm |
||||
|
||||
|
||||
SZ = 20 # size of each digit is SZ x SZ |
||||
CLASS_N = 10 |
||||
DIGITS_FN = '../../../samples/data/digits.png' |
||||
|
||||
def split2d(img, cell_size, flatten=True): |
||||
h, w = img.shape[:2] |
||||
sx, sy = cell_size |
||||
cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)] |
||||
cells = np.array(cells) |
||||
if flatten: |
||||
cells = cells.reshape(-1, sy, sx) |
||||
return cells |
||||
|
||||
def load_digits(fn): |
||||
digits_img = cv2.imread(fn, 0) |
||||
digits = split2d(digits_img, (SZ, SZ)) |
||||
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N) |
||||
return digits, labels |
||||
|
||||
def deskew(img): |
||||
m = cv2.moments(img) |
||||
if abs(m['mu02']) < 1e-2: |
||||
return img.copy() |
||||
skew = m['mu11']/m['mu02'] |
||||
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]]) |
||||
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) |
||||
return img |
||||
|
||||
class StatModel(object): |
||||
def load(self, fn): |
||||
self.model.load(fn) # Known bug: https://github.com/Itseez/opencv/issues/4969 |
||||
def save(self, fn): |
||||
self.model.save(fn) |
||||
|
||||
class KNearest(StatModel): |
||||
def __init__(self, k = 3): |
||||
self.k = k |
||||
self.model = cv2.ml.KNearest_create() |
||||
|
||||
def train(self, samples, responses): |
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses) |
||||
|
||||
def predict(self, samples): |
||||
retval, results, neigh_resp, dists = self.model.findNearest(samples, self.k) |
||||
return results.ravel() |
||||
|
||||
class SVM(StatModel): |
||||
def __init__(self, C = 1, gamma = 0.5): |
||||
self.model = cv2.ml.SVM_create() |
||||
self.model.setGamma(gamma) |
||||
self.model.setC(C) |
||||
self.model.setKernel(cv2.ml.SVM_RBF) |
||||
self.model.setType(cv2.ml.SVM_C_SVC) |
||||
|
||||
def train(self, samples, responses): |
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses) |
||||
|
||||
def predict(self, samples): |
||||
return self.model.predict(samples)[1].ravel() |
||||
|
||||
|
||||
def evaluate_model(model, digits, samples, labels): |
||||
resp = model.predict(samples) |
||||
err = (labels != resp).mean() |
||||
|
||||
confusion = np.zeros((10, 10), np.int32) |
||||
for i, j in zip(labels, resp): |
||||
confusion[i, j] += 1 |
||||
|
||||
return err, confusion |
||||
|
||||
def preprocess_simple(digits): |
||||
return np.float32(digits).reshape(-1, SZ*SZ) / 255.0 |
||||
|
||||
def preprocess_hog(digits): |
||||
samples = [] |
||||
for img in digits: |
||||
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0) |
||||
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1) |
||||
mag, ang = cv2.cartToPolar(gx, gy) |
||||
bin_n = 16 |
||||
bin = np.int32(bin_n*ang/(2*np.pi)) |
||||
bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:] |
||||
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:] |
||||
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)] |
||||
hist = np.hstack(hists) |
||||
|
||||
# transform to Hellinger kernel |
||||
eps = 1e-7 |
||||
hist /= hist.sum() + eps |
||||
hist = np.sqrt(hist) |
||||
hist /= norm(hist) + eps |
||||
|
||||
samples.append(hist) |
||||
return np.float32(samples) |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
class digits_test(NewOpenCVTests): |
||||
|
||||
def test_digits(self): |
||||
|
||||
digits, labels = load_digits(DIGITS_FN) |
||||
|
||||
# shuffle digits |
||||
rand = np.random.RandomState(321) |
||||
shuffle = rand.permutation(len(digits)) |
||||
digits, labels = digits[shuffle], labels[shuffle] |
||||
|
||||
digits2 = list(map(deskew, digits)) |
||||
samples = preprocess_hog(digits2) |
||||
|
||||
train_n = int(0.9*len(samples)) |
||||
digits_train, digits_test = np.split(digits2, [train_n]) |
||||
samples_train, samples_test = np.split(samples, [train_n]) |
||||
labels_train, labels_test = np.split(labels, [train_n]) |
||||
errors = list() |
||||
confusionMatrixes = list() |
||||
|
||||
model = KNearest(k=4) |
||||
model.train(samples_train, labels_train) |
||||
error, confusion = evaluate_model(model, digits_test, samples_test, labels_test) |
||||
errors.append(error) |
||||
confusionMatrixes.append(confusion) |
||||
|
||||
model = SVM(C=2.67, gamma=5.383) |
||||
model.train(samples_train, labels_train) |
||||
error, confusion = evaluate_model(model, digits_test, samples_test, labels_test) |
||||
errors.append(error) |
||||
confusionMatrixes.append(confusion) |
||||
|
||||
eps = 0.001 |
||||
normEps = len(samples_test) * 0.02 |
||||
|
||||
confusionKNN = [[45, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
||||
[ 0, 57, 0, 0, 0, 0, 0, 0, 0, 0], |
||||
[ 0, 0, 59, 1, 0, 0, 0, 0, 1, 0], |
||||
[ 0, 0, 0, 43, 0, 0, 0, 1, 0, 0], |
||||
[ 0, 0, 0, 0, 38, 0, 2, 0, 0, 0], |
||||
[ 0, 0, 0, 2, 0, 48, 0, 0, 1, 0], |
||||
[ 0, 1, 0, 0, 0, 0, 51, 0, 0, 0], |
||||
[ 0, 0, 1, 0, 0, 0, 0, 54, 0, 0], |
||||
[ 0, 0, 0, 0, 0, 1, 0, 0, 46, 0], |
||||
[ 1, 1, 0, 1, 1, 0, 0, 0, 2, 42]] |
||||
|
||||
confusionSVM = [[45, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
||||
[ 0, 57, 0, 0, 0, 0, 0, 0, 0, 0], |
||||
[ 0, 0, 59, 2, 0, 0, 0, 0, 0, 0], |
||||
[ 0, 0, 0, 43, 0, 0, 0, 1, 0, 0], |
||||
[ 0, 0, 0, 0, 40, 0, 0, 0, 0, 0], |
||||
[ 0, 0, 0, 1, 0, 50, 0, 0, 0, 0], |
||||
[ 0, 0, 0, 0, 1, 0, 51, 0, 0, 0], |
||||
[ 0, 0, 1, 0, 0, 0, 0, 54, 0, 0], |
||||
[ 0, 0, 0, 0, 0, 0, 0, 0, 47, 0], |
||||
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, 45]] |
||||
|
||||
self.assertLess(cv2.norm(confusionMatrixes[0] - confusionKNN, cv2.NORM_L1), normEps) |
||||
self.assertLess(cv2.norm(confusionMatrixes[1] - confusionSVM, cv2.NORM_L1), normEps) |
||||
|
||||
self.assertLess(errors[0] - 0.034, eps) |
||||
self.assertLess(errors[1] - 0.018, eps) |
@ -0,0 +1,102 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
''' |
||||
face detection using haar cascades |
||||
''' |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
|
||||
def intersectionRate(s1, s2): |
||||
|
||||
x1, y1, x2, y2 = s1 |
||||
s1 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ] |
||||
|
||||
x1, y1, x2, y2 = s2 |
||||
s2 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ] |
||||
|
||||
area, intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2)) |
||||
return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2))) |
||||
|
||||
def detect(img, cascade): |
||||
rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), |
||||
flags=cv2.CASCADE_SCALE_IMAGE) |
||||
if len(rects) == 0: |
||||
return [] |
||||
rects[:,2:] += rects[:,:2] |
||||
return rects |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
class facedetect_test(NewOpenCVTests): |
||||
|
||||
def test_facedetect(self): |
||||
import sys, getopt |
||||
|
||||
cascade_fn = "../../../data/haarcascades/haarcascade_frontalface_alt.xml" |
||||
nested_fn = "../../../data/haarcascades/haarcascade_eye.xml" |
||||
|
||||
cascade = cv2.CascadeClassifier(cascade_fn) |
||||
nested = cv2.CascadeClassifier(nested_fn) |
||||
|
||||
dirPath = '../../../samples/data/' |
||||
samples = ['lena.jpg', 'kate.jpg'] |
||||
|
||||
faces = [] |
||||
eyes = [] |
||||
|
||||
testFaces = [ |
||||
#lena |
||||
[[218, 200, 389, 371], |
||||
[ 244, 240, 294, 290], |
||||
[ 309, 246, 352, 289]], |
||||
|
||||
#kate |
||||
[[207, 89, 436, 318], |
||||
[245, 161, 294, 210], |
||||
[343, 139, 389, 185]] |
||||
] |
||||
|
||||
for sample in samples: |
||||
|
||||
img = cv2.imread(dirPath + sample) |
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
||||
gray = cv2.GaussianBlur(gray, (3, 3), 1.1) |
||||
|
||||
rects = detect(gray, cascade) |
||||
faces.append(rects) |
||||
|
||||
if not nested.empty(): |
||||
for x1, y1, x2, y2 in rects: |
||||
roi = gray[y1:y2, x1:x2] |
||||
subrects = detect(roi.copy(), nested) |
||||
|
||||
for rect in subrects: |
||||
rect[0] += x1 |
||||
rect[2] += x1 |
||||
rect[1] += y1 |
||||
rect[3] += y1 |
||||
|
||||
eyes.append(subrects) |
||||
|
||||
faces_matches = 0 |
||||
eyes_matches = 0 |
||||
|
||||
eps = 0.8 |
||||
|
||||
for i in range(len(faces)): |
||||
for j in range(len(testFaces)): |
||||
if intersectionRate(faces[i][0], testFaces[j][0]) > eps: |
||||
faces_matches += 1 |
||||
#check eyes |
||||
if len(eyes[i]) == 2: |
||||
if intersectionRate(eyes[i][0], testFaces[j][1]) > eps and intersectionRate(eyes[i][1], testFaces[j][2]): |
||||
eyes_matches += 1 |
||||
elif intersectionRate(eyes[i][1], testFaces[j][1]) > eps and intersectionRate(eyes[i][0], testFaces[j][2]): |
||||
eyes_matches += 1 |
||||
|
||||
self.assertEqual(faces_matches, 2) |
||||
self.assertEqual(eyes_matches, 2) |
@ -0,0 +1,66 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
''' |
||||
Robust line fitting. |
||||
================== |
||||
|
||||
Example of using cv2.fitLine function for fitting line |
||||
to points in presence of outliers. |
||||
|
||||
Switch through different M-estimator functions and see, |
||||
how well the robust functions fit the line even |
||||
in case of ~50% of outliers. |
||||
|
||||
''' |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
import sys |
||||
PY3 = sys.version_info[0] == 3 |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
w, h = 512, 256 |
||||
|
||||
def toint(p): |
||||
return tuple(map(int, p)) |
||||
|
||||
def sample_line(p1, p2, n, noise=0.0): |
||||
np.random.seed(10) |
||||
p1 = np.float32(p1) |
||||
t = np.random.rand(n,1) |
||||
return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise |
||||
|
||||
dist_func_names = ['DIST_L2', 'DIST_L1', 'DIST_L12', 'DIST_FAIR', 'DIST_WELSCH', 'DIST_HUBER'] |
||||
|
||||
class fitline_test(NewOpenCVTests): |
||||
|
||||
def test_fitline(self): |
||||
|
||||
noise = 5 |
||||
n = 200 |
||||
r = 5 / 100.0 |
||||
outn = int(n*r) |
||||
|
||||
p0, p1 = (90, 80), (w-90, h-80) |
||||
line_points = sample_line(p0, p1, n-outn, noise) |
||||
outliers = np.random.rand(outn, 2) * (w, h) |
||||
points = np.vstack([line_points, outliers]) |
||||
|
||||
lines = [] |
||||
|
||||
for name in dist_func_names: |
||||
func = getattr(cv2, name) |
||||
vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01) |
||||
line = [float(vx), float(vy), float(cx), float(cy)] |
||||
lines.append(line) |
||||
|
||||
eps = 0.05 |
||||
|
||||
refVec = (np.float32(p1) - p0) / cv2.norm(np.float32(p1) - p0) |
||||
|
||||
for i in range(len(lines)): |
||||
self.assertLessEqual(cv2.norm(refVec - lines[i][0:2], cv2.NORM_L2), eps) |
@ -0,0 +1,60 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
import sys |
||||
PY3 = sys.version_info[0] == 3 |
||||
|
||||
if PY3: |
||||
xrange = range |
||||
|
||||
import numpy as np |
||||
from numpy import random |
||||
import cv2 |
||||
|
||||
def make_gaussians(cluster_n, img_size): |
||||
points = [] |
||||
ref_distrs = [] |
||||
for i in xrange(cluster_n): |
||||
mean = (0.1 + 0.8*random.rand(2)) * img_size |
||||
a = (random.rand(2, 2)-0.5)*img_size*0.1 |
||||
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2) |
||||
n = 100 + random.randint(900) |
||||
pts = random.multivariate_normal(mean, cov, n) |
||||
points.append( pts ) |
||||
ref_distrs.append( (mean, cov) ) |
||||
points = np.float32( np.vstack(points) ) |
||||
return points, ref_distrs |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
class gaussian_mix_test(NewOpenCVTests): |
||||
|
||||
def test_gaussian_mix(self): |
||||
|
||||
np.random.seed(10) |
||||
cluster_n = 5 |
||||
img_size = 512 |
||||
|
||||
points, ref_distrs = make_gaussians(cluster_n, img_size) |
||||
|
||||
em = cv2.ml.EM_create() |
||||
em.setClustersNumber(cluster_n) |
||||
em.setCovarianceMatrixType(cv2.ml.EM_COV_MAT_GENERIC) |
||||
em.trainEM(points) |
||||
means = em.getMeans() |
||||
covs = em.getCovs() # Known bug: https://github.com/Itseez/opencv/pull/4232 |
||||
found_distrs = zip(means, covs) |
||||
|
||||
matches_count = 0 |
||||
|
||||
meanEps = 0.05 |
||||
covEps = 0.1 |
||||
|
||||
for i in range(cluster_n): |
||||
for j in range(cluster_n): |
||||
if (cv2.norm(means[i] - ref_distrs[j][0], cv2.NORM_L2) / cv2.norm(ref_distrs[j][0], cv2.NORM_L2) < meanEps and |
||||
cv2.norm(covs[i] - ref_distrs[j][1], cv2.NORM_L2) / cv2.norm(ref_distrs[j][1], cv2.NORM_L2) < covEps): |
||||
matches_count += 1 |
||||
|
||||
self.assertEqual(matches_count, cluster_n) |
@ -0,0 +1,57 @@ |
||||
#!/usr/bin/python |
||||
|
||||
''' |
||||
This example illustrates how to use cv2.HoughCircles() function. |
||||
''' |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
import cv2 |
||||
import numpy as np |
||||
import sys |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
class houghcircles_test(NewOpenCVTests): |
||||
|
||||
def test_houghcircles(self): |
||||
|
||||
fn = "../../../samples/data/board.jpg" |
||||
|
||||
src = cv2.imread(fn, 1) |
||||
img = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) |
||||
img = cv2.medianBlur(img, 5) |
||||
|
||||
circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)[0] |
||||
|
||||
testCircles = [[38, 181, 17.6], |
||||
[99.7, 166, 13.12], |
||||
[142.7, 160, 13.52], |
||||
[223.6, 110, 8.62], |
||||
[79.1, 206.7, 8.62], |
||||
[47.5, 351.6, 11.64], |
||||
[189.5, 354.4, 11.64], |
||||
[189.8, 298.9, 10.64], |
||||
[189.5, 252.4, 14.62], |
||||
[252.5, 393.4, 15.62], |
||||
[602.9, 467.5, 11.42], |
||||
[222, 210.4, 9.12], |
||||
[263.1, 216.7, 9.12], |
||||
[359.8, 222.6, 9.12], |
||||
[518.9, 120.9, 9.12], |
||||
[413.8, 113.4, 9.12], |
||||
[489, 127.2, 9.12], |
||||
[448.4, 121.3, 9.12], |
||||
[384.6, 128.9, 8.62]] |
||||
|
||||
eps = 7 |
||||
matches_counter = 0 |
||||
|
||||
for i in range(len(testCircles)): |
||||
for j in range(len(circles)): |
||||
if cv2.norm(testCircles[i] - circles[j], cv2.NORM_L2) < eps: |
||||
matches_counter += 1 |
||||
|
||||
self.assertGreater(float(matches_counter) / len(testCircles), .5) |
||||
self.assertLess(float(len(circles) - matches_counter) / len(circles), .7) |
@ -0,0 +1,65 @@ |
||||
#!/usr/bin/python |
||||
|
||||
''' |
||||
This example illustrates how to use Hough Transform to find lines |
||||
''' |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
import cv2 |
||||
import numpy as np |
||||
import sys |
||||
import math |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
def linesDiff(line1, line2): |
||||
|
||||
norm1 = cv2.norm(line1 - line2, cv2.NORM_L2) |
||||
line3 = line1[2:4] + line1[0:2] |
||||
norm2 = cv2.norm(line3 - line2, cv2.NORM_L2) |
||||
|
||||
return min(norm1, norm2) |
||||
|
||||
class houghlines_test(NewOpenCVTests): |
||||
|
||||
def test_houghlines(self): |
||||
|
||||
fn = "../../../samples/data/pic1.png" |
||||
|
||||
src = cv2.imread(fn) |
||||
dst = cv2.Canny(src, 50, 200) |
||||
|
||||
lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)[:,0,:] |
||||
|
||||
eps = 5 |
||||
testLines = [ |
||||
#rect1 |
||||
[ 232, 25, 43, 25], |
||||
[ 43, 129, 232, 129], |
||||
[ 43, 129, 43, 25], |
||||
[232, 129, 232, 25], |
||||
#rect2 |
||||
[251, 86, 314, 183], |
||||
[252, 86, 323, 40], |
||||
[315, 183, 386, 137], |
||||
[324, 40, 386, 136], |
||||
#triangle |
||||
[245, 205, 377, 205], |
||||
[244, 206, 305, 278], |
||||
[306, 279, 377, 205], |
||||
#rect3 |
||||
[153, 177, 196, 177], |
||||
[153, 277, 153, 179], |
||||
[153, 277, 196, 277], |
||||
[196, 177, 196, 277]] |
||||
|
||||
matches_counter = 0 |
||||
|
||||
for i in range(len(testLines)): |
||||
for j in range(len(lines)): |
||||
if linesDiff(testLines[i], lines[j]) < eps: |
||||
matches_counter += 1 |
||||
|
||||
self.assertGreater(float(matches_counter) / len(testLines), .7) |
@ -0,0 +1,96 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
''' |
||||
Simple "Square Detector" program. |
||||
|
||||
Loads several images sequentially and tries to find squares in each image. |
||||
''' |
||||
|
||||
# Python 2/3 compatibility |
||||
import sys |
||||
PY3 = sys.version_info[0] == 3 |
||||
|
||||
if PY3: |
||||
xrange = range |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
|
||||
|
||||
def angle_cos(p0, p1, p2): |
||||
d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float') |
||||
return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) ) |
||||
|
||||
def find_squares(img): |
||||
img = cv2.GaussianBlur(img, (5, 5), 0) |
||||
squares = [] |
||||
for gray in cv2.split(img): |
||||
for thrs in xrange(0, 255, 26): |
||||
if thrs == 0: |
||||
bin = cv2.Canny(gray, 0, 50, apertureSize=5) |
||||
bin = cv2.dilate(bin, None) |
||||
else: |
||||
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY) |
||||
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) |
||||
for cnt in contours: |
||||
cnt_len = cv2.arcLength(cnt, True) |
||||
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True) |
||||
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt): |
||||
cnt = cnt.reshape(-1, 2) |
||||
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)]) |
||||
if max_cos < 0.1 and filterSquares(squares, cnt): |
||||
squares.append(cnt) |
||||
|
||||
return squares |
||||
|
||||
def intersectionRate(s1, s2): |
||||
area, intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2)) |
||||
return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2))) |
||||
|
||||
def filterSquares(squares, square): |
||||
|
||||
for i in range(len(squares)): |
||||
if intersectionRate(squares[i], square) > 0.95: |
||||
return False |
||||
|
||||
return True |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
class squares_test(NewOpenCVTests): |
||||
|
||||
def test_squares(self): |
||||
|
||||
img = cv2.imread('../../../samples/data/pic1.png') |
||||
squares = find_squares(img) |
||||
|
||||
testSquares = [ |
||||
[[43, 25], |
||||
[43, 129], |
||||
[232, 129], |
||||
[232, 25]], |
||||
|
||||
[[252, 87], |
||||
[324, 40], |
||||
[387, 137], |
||||
[315, 184]], |
||||
|
||||
[[154, 178], |
||||
[196, 180], |
||||
[198, 278], |
||||
[154, 278]], |
||||
|
||||
[[0, 0], |
||||
[400, 0], |
||||
[400, 300], |
||||
[0, 300]] |
||||
] |
||||
|
||||
matches_counter = 0 |
||||
for i in range(len(squares)): |
||||
for j in range(len(testSquares)): |
||||
if intersectionRate(squares[i], testSquares[j]) > 0.9: |
||||
matches_counter += 1 |
||||
|
||||
self.assertGreater(matches_counter / len(testSquares), 0.9) |
||||
self.assertLess( (len(squares) - matches_counter) / len(squares), 0.2) |
@ -0,0 +1,52 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
''' |
||||
Texture flow direction estimation. |
||||
|
||||
Sample shows how cv2.cornerEigenValsAndVecs function can be used |
||||
to estimate image texture flow direction. |
||||
''' |
||||
|
||||
# Python 2/3 compatibility |
||||
from __future__ import print_function |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
import sys |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
|
||||
class texture_flow_test(NewOpenCVTests): |
||||
|
||||
def test_texture_flow(self): |
||||
|
||||
fn = '../../../samples/data/pic6.png' |
||||
img = cv2.imread(fn) |
||||
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
||||
h, w = img.shape[:2] |
||||
|
||||
eigen = cv2.cornerEigenValsAndVecs(gray, 15, 3) |
||||
eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2] |
||||
flow = eigen[:,:,2] |
||||
|
||||
vis = img.copy() |
||||
vis[:] = (192 + np.uint32(vis)) / 2 |
||||
d = 80 |
||||
points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2) |
||||
|
||||
textureVectors = [] |
||||
|
||||
for x, y in np.int32(points): |
||||
textureVectors.append(np.int32(flow[y, x]*d)) |
||||
|
||||
eps = 0.05 |
||||
|
||||
testTextureVectors = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], |
||||
[-38, 70], [-79, 3], [0, 0], [0, 0], [-39, 69], [-79, -1], |
||||
[0, 0], [0, 0], [0, -79], [17, -78], [-48, -63], [65, -46], |
||||
[-69, -39], [-48, -63], [-45, 66]] |
||||
|
||||
for i in range(len(textureVectors)): |
||||
self.assertLessEqual(cv2.norm(textureVectors[i] - testTextureVectors[i], cv2.NORM_L2), eps) |
@ -0,0 +1,56 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
from __future__ import print_function |
||||
|
||||
import unittest |
||||
import sys |
||||
import hashlib |
||||
import os |
||||
import numpy as np |
||||
import cv2 |
||||
|
||||
# Python 3 moved urlopen to urllib.requests |
||||
try: |
||||
from urllib.request import urlopen |
||||
except ImportError: |
||||
from urllib import urlopen |
||||
|
||||
class NewOpenCVTests(unittest.TestCase): |
||||
|
||||
# path to local repository folder containing 'samples' folder |
||||
repoPath = None |
||||
# github repository url |
||||
repoUrl = 'https://raw.github.com/Itseez/opencv/master' |
||||
|
||||
def get_sample(self, filename, iscolor = cv2.IMREAD_COLOR): |
||||
if not filename in self.image_cache: |
||||
filedata = None |
||||
if NewOpenCVTests.repoPath is not None: |
||||
candidate = NewOpenCVTests.repoPath + '/' + filename |
||||
if os.path.isfile(candidate): |
||||
with open(candidate, 'rb') as f: |
||||
filedata = f.read() |
||||
if filedata is None: |
||||
filedata = urlopen(NewOpenCVTests.repoUrl + '/' + filename).read() |
||||
self.image_cache[filename] = cv2.imdecode(np.fromstring(filedata, dtype=np.uint8), iscolor) |
||||
return self.image_cache[filename] |
||||
|
||||
def setUp(self): |
||||
self.image_cache = {} |
||||
|
||||
def hashimg(self, im): |
||||
""" Compute a hash for an image, useful for image comparisons """ |
||||
return hashlib.md5(im.tostring()).digest() |
||||
|
||||
if sys.version_info[:2] == (2, 6): |
||||
def assertLess(self, a, b, msg=None): |
||||
if not a < b: |
||||
self.fail('%s not less than %s' % (repr(a), repr(b))) |
||||
|
||||
def assertLessEqual(self, a, b, msg=None): |
||||
if not a <= b: |
||||
self.fail('%s not less than or equal to %s' % (repr(a), repr(b))) |
||||
|
||||
def assertGreater(self, a, b, msg=None): |
||||
if not a > b: |
||||
self.fail('%s not greater than %s' % (repr(a), repr(b))) |
After Width: | Height: | Size: 40 KiB |
Loading…
Reference in new issue