parent
4b1724aeb9
commit
ab20da0f53
12 changed files with 133 additions and 33 deletions
@ -1 +1 @@ |
|||||||
See http://opencv.willowgarage.com/wiki/Android |
See http://code.opencv.org/projects/opencv/wiki/OpenCV4Android |
||||||
|
After Width: | Height: | Size: 704 KiB |
@ -0,0 +1,78 @@ |
|||||||
|
''' |
||||||
|
Neural network digit recognition sample. |
||||||
|
Usage: |
||||||
|
digits.py |
||||||
|
|
||||||
|
Sample loads a dataset of handwritten digits from 'digits.png'. |
||||||
|
Then it trains a neural network classifier on it and evaluates |
||||||
|
its classification accuracy. |
||||||
|
''' |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
import cv2 |
||||||
|
from common import mosaic |
||||||
|
|
||||||
|
def unroll_responses(responses, class_n): |
||||||
|
'''[1, 0, 2, ...] -> [[0, 1, 0], [1, 0, 0], [0, 0, 1], ...]''' |
||||||
|
sample_n = len(responses) |
||||||
|
new_responses = np.zeros((sample_n, class_n), np.float32) |
||||||
|
new_responses[np.arange(sample_n), responses] = 1 |
||||||
|
return new_responses |
||||||
|
|
||||||
|
|
||||||
|
SZ = 20 # size of each digit is SZ x SZ |
||||||
|
CLASS_N = 10 |
||||||
|
digits_img = cv2.imread('digits.png', 0) |
||||||
|
|
||||||
|
# prepare dataset |
||||||
|
h, w = digits_img.shape |
||||||
|
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)] |
||||||
|
digits = np.float32(digits).reshape(-1, SZ*SZ) |
||||||
|
N = len(digits) |
||||||
|
labels = np.repeat(np.arange(CLASS_N), N/CLASS_N) |
||||||
|
|
||||||
|
# split it onto train and test subsets |
||||||
|
shuffle = np.random.permutation(N) |
||||||
|
train_n = int(0.9*N) |
||||||
|
digits_train, digits_test = np.split(digits[shuffle], [train_n]) |
||||||
|
labels_train, labels_test = np.split(labels[shuffle], [train_n]) |
||||||
|
|
||||||
|
# train model |
||||||
|
model = cv2.ANN_MLP() |
||||||
|
layer_sizes = np.int32([SZ*SZ, 25, CLASS_N]) |
||||||
|
model.create(layer_sizes) |
||||||
|
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 100, 0.01), |
||||||
|
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP, |
||||||
|
bp_dw_scale = 0.001, |
||||||
|
bp_moment_scale = 0.0 ) |
||||||
|
print 'training...' |
||||||
|
labels_train_unrolled = unroll_responses(labels_train, CLASS_N) |
||||||
|
model.train(digits_train, labels_train_unrolled, None, params=params) |
||||||
|
model.save('dig_nn.dat') |
||||||
|
model.load('dig_nn.dat') |
||||||
|
|
||||||
|
def evaluate(model, samples, labels): |
||||||
|
'''Evaluates classifier preformance on a given labeled samples set.''' |
||||||
|
ret, resp = model.predict(samples) |
||||||
|
resp = resp.argmax(-1) |
||||||
|
error_mask = (resp == labels) |
||||||
|
accuracy = error_mask.mean() |
||||||
|
return accuracy, error_mask |
||||||
|
|
||||||
|
# evaluate model |
||||||
|
train_accuracy, _ = evaluate(model, digits_train, labels_train) |
||||||
|
print 'train accuracy: ', train_accuracy |
||||||
|
test_accuracy, test_error_mask = evaluate(model, digits_test, labels_test) |
||||||
|
print 'test accuracy: ', test_accuracy |
||||||
|
|
||||||
|
# visualize test results |
||||||
|
vis = [] |
||||||
|
for img, flag in zip(digits_test, test_error_mask): |
||||||
|
img = np.uint8(img).reshape(SZ, SZ) |
||||||
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
||||||
|
if not flag: |
||||||
|
img[...,:2] = 0 |
||||||
|
vis.append(img) |
||||||
|
vis = mosaic(25, vis) |
||||||
|
cv2.imshow('test', vis) |
||||||
|
cv2.waitKey() |
Loading…
Reference in new issue