parent
4b1724aeb9
commit
ab20da0f53
12 changed files with 133 additions and 33 deletions
@ -1 +1 @@ |
||||
See http://opencv.willowgarage.com/wiki/Android |
||||
See http://code.opencv.org/projects/opencv/wiki/OpenCV4Android |
||||
|
After Width: | Height: | Size: 704 KiB |
@ -0,0 +1,78 @@ |
||||
''' |
||||
Neural network digit recognition sample. |
||||
Usage: |
||||
digits.py |
||||
|
||||
Sample loads a dataset of handwritten digits from 'digits.png'. |
||||
Then it trains a neural network classifier on it and evaluates |
||||
its classification accuracy. |
||||
''' |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
from common import mosaic |
||||
|
||||
def unroll_responses(responses, class_n): |
||||
'''[1, 0, 2, ...] -> [[0, 1, 0], [1, 0, 0], [0, 0, 1], ...]''' |
||||
sample_n = len(responses) |
||||
new_responses = np.zeros((sample_n, class_n), np.float32) |
||||
new_responses[np.arange(sample_n), responses] = 1 |
||||
return new_responses |
||||
|
||||
|
||||
SZ = 20 # size of each digit is SZ x SZ |
||||
CLASS_N = 10 |
||||
digits_img = cv2.imread('digits.png', 0) |
||||
|
||||
# prepare dataset |
||||
h, w = digits_img.shape |
||||
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)] |
||||
digits = np.float32(digits).reshape(-1, SZ*SZ) |
||||
N = len(digits) |
||||
labels = np.repeat(np.arange(CLASS_N), N/CLASS_N) |
||||
|
||||
# split it onto train and test subsets |
||||
shuffle = np.random.permutation(N) |
||||
train_n = int(0.9*N) |
||||
digits_train, digits_test = np.split(digits[shuffle], [train_n]) |
||||
labels_train, labels_test = np.split(labels[shuffle], [train_n]) |
||||
|
||||
# train model |
||||
model = cv2.ANN_MLP() |
||||
layer_sizes = np.int32([SZ*SZ, 25, CLASS_N]) |
||||
model.create(layer_sizes) |
||||
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 100, 0.01), |
||||
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP, |
||||
bp_dw_scale = 0.001, |
||||
bp_moment_scale = 0.0 ) |
||||
print 'training...' |
||||
labels_train_unrolled = unroll_responses(labels_train, CLASS_N) |
||||
model.train(digits_train, labels_train_unrolled, None, params=params) |
||||
model.save('dig_nn.dat') |
||||
model.load('dig_nn.dat') |
||||
|
||||
def evaluate(model, samples, labels): |
||||
'''Evaluates classifier preformance on a given labeled samples set.''' |
||||
ret, resp = model.predict(samples) |
||||
resp = resp.argmax(-1) |
||||
error_mask = (resp == labels) |
||||
accuracy = error_mask.mean() |
||||
return accuracy, error_mask |
||||
|
||||
# evaluate model |
||||
train_accuracy, _ = evaluate(model, digits_train, labels_train) |
||||
print 'train accuracy: ', train_accuracy |
||||
test_accuracy, test_error_mask = evaluate(model, digits_test, labels_test) |
||||
print 'test accuracy: ', test_accuracy |
||||
|
||||
# visualize test results |
||||
vis = [] |
||||
for img, flag in zip(digits_test, test_error_mask): |
||||
img = np.uint8(img).reshape(SZ, SZ) |
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
||||
if not flag: |
||||
img[...,:2] = 0 |
||||
vis.append(img) |
||||
vis = mosaic(25, vis) |
||||
cv2.imshow('test', vis) |
||||
cv2.waitKey() |
Loading…
Reference in new issue