Merge pull request #20287 from hanliutong:dev-rvv-0.10

Optimization of DNN using native RISC-V vector intrinsics.

* Use RVV to optimize fastGEMM (FP32) in DNN.

* Use RVV to optimize fastGEMM1T in DNN.

* Use RVV to optimize fastConv in DNN.

* Use RVV to optimize fastDepthwiseConv in DNN.

* Vectorize tails using vl.

* Use "vl" instead of scalar to handle small block in fastConv.

* Fix memory access out of bound in "fastGEMM1T".

* Remove setvl.

* Remove useless initialization.

* Use loop unrolling to handle tail part instead of switch.
pull/20536/head
HAN Liutong 3 years ago committed by GitHub
parent 5e7f06397f
commit aaca4987c9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      modules/dnn/CMakeLists.txt
  2. 25
      modules/dnn/src/layers/convolution_layer.cpp
  3. 9
      modules/dnn/src/layers/fully_connected_layer.cpp
  4. 549
      modules/dnn/src/layers/layers_common.simd.hpp

@ -8,7 +8,7 @@ endif()
set(the_description "Deep neural network module. It allows to load models from different frameworks and to make forward pass")
ocv_add_dispatched_file_force_all("layers/layers_common" AVX AVX2 AVX512_SKX)
ocv_add_dispatched_file_force_all("layers/layers_common" AVX AVX2 AVX512_SKX RVV)
ocv_add_module(dnn opencv_core opencv_imgproc WRAP python java objc js)

@ -914,11 +914,12 @@ public:
bool useAVX;
bool useAVX2;
bool useAVX512;
bool useRVV;
int blk_size_cn;
ParallelConv()
: input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0),
biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false), useAVX512(false)
biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false), useAVX512(false), useRVV(false)
, blk_size_cn(0)
{}
@ -976,6 +977,7 @@ public:
p.useAVX = checkHardwareSupport(CPU_AVX) && isConv2D;
p.useAVX2 = checkHardwareSupport(CPU_AVX2) && isConv2D;
p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX && isConv2D;
p.useRVV = checkHardwareSupport(CPU_RVV) && isConv2D;
int kernel_d = isConv3D? kernel_size[0] : 1;
int kernel_h = isConv1D? 1 : kernel_size[kernel_size.size() - 2];
@ -1176,6 +1178,13 @@ public:
stride_h, stride_w, dilation_h, dilation_w, pad_t, pad_l,
biasptr, relu, inptr_, height, width, outptr_, out_d, outH, outW);
else
#endif
#if CV_TRY_RVV
if(useRVV)
opt_RVV::fastDepthwiseConv(wptr, kernel_h, kernel_w,
stride_h, stride_w, dilation_h, dilation_w, pad_t, pad_l,
biasptr, relu, inptr_, height, width, outptr_, out_d, outH, outW);
else
#endif
{
const float w00_ = wptr[0], w01_ = wptr[1], w02_ = wptr[2],
@ -1546,6 +1555,12 @@ public:
opt_AVX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
else
#endif
#if CV_TRY_RVV
if(useRVV)
opt_RVV::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
else
#endif
for( int i = 0; i < outCn; i += 2 )
{
@ -2297,6 +2312,7 @@ public:
useAVX = checkHardwareSupport(CPU_AVX);
useAVX2 = checkHardwareSupport(CPU_AVX2);
useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX;
useRVV = checkHardwareSupport(CPU_RVV);
}
void operator()(const Range& range_) const CV_OVERRIDE
@ -2328,6 +2344,12 @@ public:
if( useAVX )
opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
else
#endif
#if CV_TRY_RVV
if( useRVV ) {
opt_RVV::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
}
else
#endif
for( m = 0; m < mmax; m += 2 )
{
@ -2427,6 +2449,7 @@ public:
bool useAVX;
bool useAVX2;
bool useAVX512;
bool useRVV;
};
class Col2ImInvoker : public cv::ParallelLoopBody

@ -168,7 +168,7 @@ public:
class FullyConnected : public ParallelLoopBody
{
public:
FullyConnected() : srcMat(0), weights(0), biasMat(0), activ(0), dstMat(0), nstripes(0), useAVX(false), useAVX2(false), useAVX512(false) {}
FullyConnected() : srcMat(0), weights(0), biasMat(0), activ(0), dstMat(0), nstripes(0), useAVX(false), useAVX2(false), useAVX512(false), useRVV(false) {}
static void run(const Mat& srcMat, const Mat& weights, const Mat& biasMat,
Mat& dstMat, const ActivationLayer* activ, int nstripes)
@ -191,6 +191,7 @@ public:
p.useAVX = checkHardwareSupport(CPU_AVX);
p.useAVX2 = checkHardwareSupport(CPU_AVX2);
p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX;
p.useRVV = checkHardwareSupport(CPU_RVV);
parallel_for_(Range(0, nstripes), p, nstripes);
}
@ -239,6 +240,11 @@ public:
if( useAVX )
opt_AVX::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
#if CV_TRY_RVV
if( useRVV )
opt_RVV::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
else
#endif
{
int i = 0;
@ -293,6 +299,7 @@ public:
bool useAVX;
bool useAVX2;
bool useAVX512;
bool useRVV;
};
#ifdef HAVE_OPENCL

@ -737,5 +737,554 @@ void fastGEMM( const float* aptr, size_t astep, const float* bptr,
#endif // CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
#if !defined(CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY) && CV_RVV
void fastGEMM( const float* aptr, size_t astep, const float* bptr,
size_t bstep, float* cptr, size_t cstep,
int ma, int na, int nb )
{
int n = 0;
size_t vl = 8;
size_t mvl0 = 8;
size_t mvl1 = 8;
for( ; n < nb; n += 16 )
{
if ( n + 16 > nb) {
mvl0 = nb - n;
mvl1 = (nb - n -8) > 0 ? (nb - n -8) : 0;
}
for( int m = 0; m < ma; m += 4 )
{
const float* aptr0 = aptr + astep*m;
const float* aptr1 = aptr + astep*std::min(m+1, ma-1);
const float* aptr2 = aptr + astep*std::min(m+2, ma-1);
const float* aptr3 = aptr + astep*std::min(m+3, ma-1);
float* cptr0 = cptr + cstep*m;
float* cptr1 = cptr + cstep*std::min(m+1, ma-1);
float* cptr2 = cptr + cstep*std::min(m+2, ma-1);
float* cptr3 = cptr + cstep*std::min(m+3, ma-1);
vfloat32m2_t d00 = vfmv_v_f_f32m2(0, vl), d01 = vfmv_v_f_f32m2(0, vl);
vfloat32m2_t d10 = vfmv_v_f_f32m2(0, vl), d11 = vfmv_v_f_f32m2(0, vl);
vfloat32m2_t d20 = vfmv_v_f_f32m2(0, vl), d21 = vfmv_v_f_f32m2(0, vl);
vfloat32m2_t d30 = vfmv_v_f_f32m2(0, vl), d31 = vfmv_v_f_f32m2(0, vl);
for( int k = 0; k < na; k++ )
{
vfloat32m2_t a0 = vfmv_v_f_f32m2(aptr0[k], vl);
vfloat32m2_t a1 = vfmv_v_f_f32m2(aptr1[k], vl);
vfloat32m2_t a2 = vfmv_v_f_f32m2(aptr2[k], vl);
vfloat32m2_t a3 = vfmv_v_f_f32m2(aptr3[k], vl);
vfloat32m2_t b0 = vle32_v_f32m2(bptr + k*bstep + n, mvl0);
vfloat32m2_t b1 = vle32_v_f32m2(bptr + k*bstep + n + 8, mvl1);
d00 = vfmacc_vv_f32m2(d00, a0, b0, mvl0);
d01 = vfmacc_vv_f32m2(d01, a0, b1, mvl1);
d10 = vfmacc_vv_f32m2(d10, a1, b0, mvl0);
d11 = vfmacc_vv_f32m2(d11, a1, b1, mvl1);
d20 = vfmacc_vv_f32m2(d20, a2, b0, mvl0);
d21 = vfmacc_vv_f32m2(d21, a2, b1, mvl1);
d30 = vfmacc_vv_f32m2(d30, a3, b0, mvl0);
d31 = vfmacc_vv_f32m2(d31, a3, b1, mvl1);
}
vse32_v_f32m2(cptr0 + n, d00, mvl0);
vse32_v_f32m2(cptr1 + n, d10, mvl0);
vse32_v_f32m2(cptr2 + n, d20, mvl0);
vse32_v_f32m2(cptr3 + n, d30, mvl0);
vse32_v_f32m2(cptr0 + n + 8, d01, mvl1);
vse32_v_f32m2(cptr1 + n + 8, d11, mvl1);
vse32_v_f32m2(cptr2 + n + 8, d21, mvl1);
vse32_v_f32m2(cptr3 + n + 8, d31, mvl1);
}
}
}
void fastGEMM1T( const float* vec, const float* weights,
size_t wstep, const float* bias,
float* dst, int nvecs, int vecsize )
{
int i = 0;
size_t vl = 8;
for( ; i <= nvecs - 8; i += 8 )
{
const float* wptr = weights + i*wstep;
vfloat32m2_t vs0 = vfmv_v_f_f32m2(0, vl), vs1 = vfmv_v_f_f32m2(0, vl),
vs2 = vfmv_v_f_f32m2(0, vl), vs3 = vfmv_v_f_f32m2(0, vl),
vs4 = vfmv_v_f_f32m2(0, vl), vs5 = vfmv_v_f_f32m2(0, vl),
vs6 = vfmv_v_f_f32m2(0, vl), vs7 = vfmv_v_f_f32m2(0, vl);
for( int k = 0; k < vecsize; k += 8, wptr += 8 )
{
vfloat32m2_t v = vle32_v_f32m2(vec + k, vl);
vs0 = vfmacc_vv_f32m2(vs0, vle32_v_f32m2(wptr, vl), v, vl);
vs1 = vfmacc_vv_f32m2(vs1, vle32_v_f32m2(wptr + wstep, vl), v, vl);
vs2 = vfmacc_vv_f32m2(vs2, vle32_v_f32m2(wptr + wstep*2, vl), v, vl);
vs3 = vfmacc_vv_f32m2(vs3, vle32_v_f32m2(wptr + wstep*3, vl), v, vl);
vs4 = vfmacc_vv_f32m2(vs4, vle32_v_f32m2(wptr + wstep*4, vl), v, vl);
vs5 = vfmacc_vv_f32m2(vs5, vle32_v_f32m2(wptr + wstep*5, vl), v, vl);
vs6 = vfmacc_vv_f32m2(vs6, vle32_v_f32m2(wptr + wstep*6, vl), v, vl);
vs7 = vfmacc_vv_f32m2(vs7, vle32_v_f32m2(wptr + wstep*7, vl), v, vl);
}
// Calculate the sum of each vector
vfloat32m1_t zero = vfmv_v_f_f32m1(0, vl);
vfloat32m1_t temp0 = vfredsum_vs_f32m2_f32m1(temp0, vs0, zero, vl);
vfloat32m1_t temp1 = vfredsum_vs_f32m2_f32m1(temp1, vs1, zero, vl);
vfloat32m1_t temp2 = vfredsum_vs_f32m2_f32m1(temp2, vs2, zero, vl);
vfloat32m1_t temp3 = vfredsum_vs_f32m2_f32m1(temp3, vs3, zero, vl);
vfloat32m1_t temp4 = vfredsum_vs_f32m2_f32m1(temp4, vs4, zero, vl);
vfloat32m1_t temp5 = vfredsum_vs_f32m2_f32m1(temp5, vs5, zero, vl);
vfloat32m1_t temp6 = vfredsum_vs_f32m2_f32m1(temp6, vs6, zero, vl);
vfloat32m1_t temp7 = vfredsum_vs_f32m2_f32m1(temp7, vs7, zero, vl);
float32_t sum[8];
sum[0] = vfmv_f_s_f32m1_f32(temp0);
sum[1] = vfmv_f_s_f32m1_f32(temp1);
sum[2] = vfmv_f_s_f32m1_f32(temp2);
sum[3] = vfmv_f_s_f32m1_f32(temp3);
sum[4] = vfmv_f_s_f32m1_f32(temp4);
sum[5] = vfmv_f_s_f32m1_f32(temp5);
sum[6] = vfmv_f_s_f32m1_f32(temp6);
sum[7] = vfmv_f_s_f32m1_f32(temp7);
vfloat32m2_t s0 = vfadd_vv_f32m2(vle32_v_f32m2(sum, vl), vle32_v_f32m2(bias + i, vl), vl);
vse32_v_f32m2(dst + i, s0, vl);
}
int mvl = nvecs - i;
if (mvl > 0)
{
const float* wptr = weights + i*wstep;
vfloat32m2_t vs0 = vfmv_v_f_f32m2(0, vl), vs1 = vfmv_v_f_f32m2(0, vl),
vs2 = vfmv_v_f_f32m2(0, vl), vs3 = vfmv_v_f_f32m2(0, vl),
vs4 = vfmv_v_f_f32m2(0, vl), vs5 = vfmv_v_f_f32m2(0, vl),
vs6 = vfmv_v_f_f32m2(0, vl), vs7 = vfmv_v_f_f32m2(0, vl);
int k = 0;
for( ; k <= vecsize - 8; k += 8, wptr += 8 )
{
vfloat32m2_t v = vle32_v_f32m2(vec + k, vl);
vs0 = vfmacc_vv_f32m2(vs0, vle32_v_f32m2(wptr, vl), v, vl);
vs1 = vfmacc_vv_f32m2(vs1, vle32_v_f32m2(wptr + wstep*std::min(1, mvl-1), vl), v, vl);
vs2 = vfmacc_vv_f32m2(vs2, vle32_v_f32m2(wptr + wstep*std::min(2, mvl-1), vl), v, vl);
vs3 = vfmacc_vv_f32m2(vs3, vle32_v_f32m2(wptr + wstep*std::min(3, mvl-1), vl), v, vl);
vs4 = vfmacc_vv_f32m2(vs4, vle32_v_f32m2(wptr + wstep*std::min(4, mvl-1), vl), v, vl);
vs5 = vfmacc_vv_f32m2(vs5, vle32_v_f32m2(wptr + wstep*std::min(5, mvl-1), vl), v, vl);
vs6 = vfmacc_vv_f32m2(vs6, vle32_v_f32m2(wptr + wstep*std::min(6, mvl-1), vl), v, vl);
}
int kvl = vecsize - k;
if (kvl > 0) {
vfloat32m2_t v = vle32_v_f32m2(vec + k, kvl);
vs0 = vfmacc_vv_f32m2(vs0, vle32_v_f32m2(wptr, kvl), v, kvl);
vs1 = vfmacc_vv_f32m2(vs1, vle32_v_f32m2(wptr + wstep*std::min(1, mvl-1), kvl), v, kvl);
vs2 = vfmacc_vv_f32m2(vs2, vle32_v_f32m2(wptr + wstep*std::min(2, mvl-1), kvl), v, kvl);
vs3 = vfmacc_vv_f32m2(vs3, vle32_v_f32m2(wptr + wstep*std::min(3, mvl-1), kvl), v, kvl);
vs4 = vfmacc_vv_f32m2(vs4, vle32_v_f32m2(wptr + wstep*std::min(4, mvl-1), kvl), v, kvl);
vs5 = vfmacc_vv_f32m2(vs5, vle32_v_f32m2(wptr + wstep*std::min(5, mvl-1), kvl), v, kvl);
vs6 = vfmacc_vv_f32m2(vs6, vle32_v_f32m2(wptr + wstep*std::min(6, mvl-1), kvl), v, kvl);
}
// Calculate the sum of each vector
vfloat32m1_t zero = vfmv_v_f_f32m1(0, vl);
vfloat32m1_t temp0 = vfmv_v_f_f32m1(0, 4), temp1 = vfmv_v_f_f32m1(0, 4),
temp2 = vfmv_v_f_f32m1(0, 4), temp3 = vfmv_v_f_f32m1(0, 4),
temp4 = vfmv_v_f_f32m1(0, 4), temp5 = vfmv_v_f_f32m1(0, 4),
temp6 = vfmv_v_f_f32m1(0, 4), temp7 = vfmv_v_f_f32m1(0, 4);
temp0 = vfredsum_vs_f32m2_f32m1(temp0, vs0, zero, vl);
temp1 = vfredsum_vs_f32m2_f32m1(temp1, vs1, zero, vl);
temp2 = vfredsum_vs_f32m2_f32m1(temp2, vs2, zero, vl);
temp3 = vfredsum_vs_f32m2_f32m1(temp3, vs3, zero, vl);
temp4 = vfredsum_vs_f32m2_f32m1(temp4, vs4, zero, vl);
temp5 = vfredsum_vs_f32m2_f32m1(temp5, vs5, zero, vl);
temp6 = vfredsum_vs_f32m2_f32m1(temp6, vs6, zero, vl);
temp7 = vfredsum_vs_f32m2_f32m1(temp7, vs7, zero, vl);
float32_t sum[8];
sum[0] = vfmv_f_s_f32m1_f32(temp0);
sum[1] = vfmv_f_s_f32m1_f32(temp1);
sum[2] = vfmv_f_s_f32m1_f32(temp2);
sum[3] = vfmv_f_s_f32m1_f32(temp3);
sum[4] = vfmv_f_s_f32m1_f32(temp4);
sum[5] = vfmv_f_s_f32m1_f32(temp5);
sum[6] = vfmv_f_s_f32m1_f32(temp6);
sum[7] = vfmv_f_s_f32m1_f32(temp7);
vfloat32m2_t s0 = vfadd_vv_f32m2(vle32_v_f32m2(sum, mvl), vle32_v_f32m2(bias + i, mvl), mvl);
vse32_v_f32m2(dst + i, s0, mvl);
}
}
enum { FASCONV_BASE_VECSZ = 4 }; // TODO: Large base size.
void fastConv( const float* weights, size_t wstep, const float* bias,
const float* rowbuf, float* output, const int* outShape,
int blockSize, int vecsize, int vecsize_aligned,
const float* relu, bool initOutput )
{
int vl = 4;
int outCn = outShape[1];
size_t outPlaneSize = outShape[2]*outShape[3];
float r0 = 1.f, r1 = 1.f, r2 = 1.f;
vfloat32m1_t vr0 = vfmv_v_f_f32m1(1, vl), vr1 = vfmv_v_f_f32m1(1, vl), vr2 = vfmv_v_f_f32m1(1, vl);
int maskbuf[FASCONV_BASE_VECSZ] = {0};
int rsz = blockSize % FASCONV_BASE_VECSZ;
for( int i = 0; i < rsz; i++ )
maskbuf[FASCONV_BASE_VECSZ - i - 1] = -1;
vint32m1_t vmaskbuf = vle32_v_i32m1(maskbuf ,vl);
vbool32_t mask = vmslt_vx_i32m1_b32(vmaskbuf, 0, vl); // mask for tail
// now compute dot product of the weights
// and im2row-transformed part of the tensor
for( int i = 0; i < outCn; i += 3 )
{
const float* wptr0 = weights + i*wstep;
const float* wptr1 = wptr0 + wstep;
const float* wptr2 = wptr1 + wstep;
float* outptr0 = output + i*outPlaneSize;
float* outptr1 = outptr0 + outPlaneSize;
float* outptr2 = outptr1 + outPlaneSize;
float bias0 = bias[i], bias1 = bias[i+1], bias2 = bias[i+2];
if( i+2 >= outCn )
{
wptr2 = wptr1;
outptr2 = outptr1;
bias2 = bias1;
if( i+1 >= outCn )
{
wptr2 = wptr1 = wptr0;
outptr2 = outptr1 = outptr0;
bias2 = bias1 = bias0;
}
}
if( relu )
{
r0 = relu[i]; r1 = relu[i+1]; r2 = relu[i+2];
if( i+2 >= outCn )
{
r2 = r1;
if( i+1 >= outCn )
r2 = r1 = r0;
}
vr0 = vfmv_v_f_f32m1(r0, vl);
vr1 = vfmv_v_f_f32m1(r1, vl);
vr2 = vfmv_v_f_f32m1(r2, vl);
}
int j = 0;
for( ; j < blockSize; j += FASCONV_BASE_VECSZ )
{
bool tail = false;
if (j + FASCONV_BASE_VECSZ > blockSize)
{
if (j == 0) {
vl = blockSize;
}
else {
j = blockSize - FASCONV_BASE_VECSZ;
tail = true;
}
}
int k = 0;
const float* rptr = rowbuf + j*vecsize_aligned;
int vlm2 = 8;
vfloat32m2_t vs00 = vfmv_v_f_f32m2(0, vlm2), vs01 = vfmv_v_f_f32m2(0, vlm2),
vs02 = vfmv_v_f_f32m2(0, vlm2), vs03 = vfmv_v_f_f32m2(0, vlm2),
vs10 = vfmv_v_f_f32m2(0, vlm2), vs11 = vfmv_v_f_f32m2(0, vlm2),
vs12 = vfmv_v_f_f32m2(0, vlm2), vs13 = vfmv_v_f_f32m2(0, vlm2),
vs20 = vfmv_v_f_f32m2(0, vlm2), vs21 = vfmv_v_f_f32m2(0, vlm2),
vs22 = vfmv_v_f_f32m2(0, vlm2), vs23 = vfmv_v_f_f32m2(0, vlm2);
for (; k < vecsize; k += 8, rptr += 8 )
{
if (k+8 >= vecsize) {
vlm2 = vecsize - k;
}
vfloat32m2_t w0 = vle32_v_f32m2(wptr0 + k, vlm2);
vfloat32m2_t w1 = vle32_v_f32m2(wptr1 + k, vlm2);
vfloat32m2_t w2 = vle32_v_f32m2(wptr2 + k, vlm2);
vfloat32m2_t r0 = vle32_v_f32m2(rptr, vlm2);
vs00 = vfmacc_vv_f32m2(vs00, w0, r0, vlm2);
vs10 = vfmacc_vv_f32m2(vs10, w1, r0, vlm2);
vs20 = vfmacc_vv_f32m2(vs20, w2, r0, vlm2);
r0 = vle32_v_f32m2(rptr + vecsize_aligned, vlm2);
vs01 = vfmacc_vv_f32m2(vs01, w0, r0, vlm2);
vs11 = vfmacc_vv_f32m2(vs11, w1, r0, vlm2);
vs21 = vfmacc_vv_f32m2(vs21, w2, r0, vlm2);
r0 = vle32_v_f32m2(rptr + vecsize_aligned*2, vlm2);
vs02 = vfmacc_vv_f32m2(vs02, w0, r0, vlm2);
vs12 = vfmacc_vv_f32m2(vs12, w1, r0, vlm2);
vs22 = vfmacc_vv_f32m2(vs22, w2, r0, vlm2);
r0 = vle32_v_f32m2(rptr + vecsize_aligned*3, vlm2);
vs03 = vfmacc_vv_f32m2(vs03, w0, r0, vlm2);
vs13 = vfmacc_vv_f32m2(vs13, w1, r0, vlm2);
vs23 = vfmacc_vv_f32m2(vs23, w2, r0, vlm2);
}
vfloat32m1_t s0, s1, s2;
if( initOutput )
{
s0 = vfmv_v_f_f32m1(bias0, vl);
s1 = vfmv_v_f_f32m1(bias1, vl);
s2 = vfmv_v_f_f32m1(bias2, vl);
}
else
{
s0 = vle32_v_f32m1(outptr0 + j, vl);
s1 = vle32_v_f32m1(outptr1 + j, vl);
s2 = vle32_v_f32m1(outptr2 + j, vl);
}
// compute sum of each vs
vfloat32m1_t zero = vfmv_v_f_f32m1(0, vl);
vfloat32m1_t temp00 = vfredsum_vs_f32m2_f32m1(temp00, vs00, zero, 8);
vfloat32m1_t temp01 = vfredsum_vs_f32m2_f32m1(temp01, vs01, zero, 8);
vfloat32m1_t temp02 = vfredsum_vs_f32m2_f32m1(temp02, vs02, zero, 8);
vfloat32m1_t temp03 = vfredsum_vs_f32m2_f32m1(temp03, vs03, zero, 8);
vfloat32m1_t temp10 = vfredsum_vs_f32m2_f32m1(temp10, vs10, zero, 8);
vfloat32m1_t temp11 = vfredsum_vs_f32m2_f32m1(temp11, vs11, zero, 8);
vfloat32m1_t temp12 = vfredsum_vs_f32m2_f32m1(temp12, vs12, zero, 8);
vfloat32m1_t temp13 = vfredsum_vs_f32m2_f32m1(temp13, vs13, zero, 8);
vfloat32m1_t temp20 = vfredsum_vs_f32m2_f32m1(temp20, vs20, zero, 8);
vfloat32m1_t temp21 = vfredsum_vs_f32m2_f32m1(temp21, vs21, zero, 8);
vfloat32m1_t temp22 = vfredsum_vs_f32m2_f32m1(temp22, vs22, zero, 8);
vfloat32m1_t temp23 = vfredsum_vs_f32m2_f32m1(temp23, vs23, zero, 8);
float32_t sum0[4], sum1[4], sum2[4];
sum0[0] = vfmv_f_s_f32m1_f32(temp00);
sum0[1] = vfmv_f_s_f32m1_f32(temp01);
sum0[2] = vfmv_f_s_f32m1_f32(temp02);
sum0[3] = vfmv_f_s_f32m1_f32(temp03);
sum1[0] = vfmv_f_s_f32m1_f32(temp10);
sum1[1] = vfmv_f_s_f32m1_f32(temp11);
sum1[2] = vfmv_f_s_f32m1_f32(temp12);
sum1[3] = vfmv_f_s_f32m1_f32(temp13);
sum2[0] = vfmv_f_s_f32m1_f32(temp20);
sum2[1] = vfmv_f_s_f32m1_f32(temp21);
sum2[2] = vfmv_f_s_f32m1_f32(temp22);
sum2[3] = vfmv_f_s_f32m1_f32(temp23);
s0 = vfadd_vv_f32m1(vle32_v_f32m1(sum0, vl), s0, vl);
s1 = vfadd_vv_f32m1(vle32_v_f32m1(sum1, vl), s1, vl);
s2 = vfadd_vv_f32m1(vle32_v_f32m1(sum2, vl), s2, vl);
if( relu )
{
vbool32_t m0 = vmfgt_vf_f32m1_b32(s0, 0, vl);
vbool32_t m1 = vmfgt_vf_f32m1_b32(s1, 0, vl);
vbool32_t m2 = vmfgt_vf_f32m1_b32(s2, 0, vl);
s0 = vmerge_vvm_f32m1(m0, vfmul_vv_f32m1(s0, vr0, vl), s0, vl);
s1 = vmerge_vvm_f32m1(m1, vfmul_vv_f32m1(s1, vr1, vl), s1, vl);
s2 = vmerge_vvm_f32m1(m2, vfmul_vv_f32m1(s2, vr2, vl), s2, vl);
}
if( tail )
{
s0 = vmerge_vvm_f32m1(mask, vle32_v_f32m1(outptr0 + j, vl), s0, vl);
s1 = vmerge_vvm_f32m1(mask, vle32_v_f32m1(outptr1 + j, vl), s1, vl);
s2 = vmerge_vvm_f32m1(mask, vle32_v_f32m1(outptr2 + j, vl), s2, vl);
}
vse32_v_f32m1(outptr0 + j, s0, vl);
vse32_v_f32m1(outptr1 + j, s1, vl);
vse32_v_f32m1(outptr2 + j, s2, vl);
}
}
}
/*
Example for load_deinterleave:
input: ptr[16] = {1,2,3, ... ,14,15,16}
output: a = {1, 3, 5, 7, 9, 11, 13, 15}
output: b = {2, 4, 6, 8,10, 12, 14, 16}
*/
static inline void vfloat32m2_load_deinterleave(const float* ptr, vfloat32m2_t& a, vfloat32m2_t& b)
{
int vl = 8;
uint32_t masks[] = {1,1,1,1,0,0,0,0};
vuint32m2_t vm = vle32_v_u32m2(masks,vl);
vbool16_t mask01 = vmseq_vx_u32m2_b16 (vm, 0, vl);
vbool16_t mask10 = vmseq_vx_u32m2_b16 (vm, 1, vl);
vfloat32m2_t ta = vle32_v_f32m2(ptr, vl), tb = vle32_v_f32m2(ptr+8, vl);
uint idx[] = {0,2,4,6,1,3,5,7};
uint idxa[] = {0,0,0,0,0,1,2,3}, idxb[] = {4,5,6,7,0,0,0,0};
vuint32m2_t vidxa = vle32_v_u32m2(idxa, 8), vidxb = vle32_v_u32m2(idxb, 8);
vuint32m2_t vidx = vle32_v_u32m2(idx, 8);
vfloat32m2_t high = vfmv_v_f_f32m2(0, 8), low = vfmv_v_f_f32m2(0, 8);
high = vrgather_vv_f32m2(ta, vidx, 8);
low = vrgather_vv_f32m2(tb, vidx, 8);
a = vrgather_vv_f32m2_m(mask01, high, low, vidxa, 8);
b = vrgather_vv_f32m2_m(mask10, low, high, vidxb, 8);
}
void fastDepthwiseConv( const float* wptr,
int kernel_h, int kernel_w,
int stride_h, int stride_w,
int dilation_h, int dilation_w,
int pad_t, int pad_l,
const float* biasptr, const float* relu,
const float* inptr_,
int height, int width,
float* outptr_,
int out_d, int outH, int outW )
{
int vl = 8;
const float w00_ = wptr[0], w01_ = wptr[1], w02_ = wptr[2],
w10 = wptr[3], w11 = wptr[4], w12 = wptr[5],
w20_ = wptr[6], w21_ = wptr[7], w22_ = wptr[8];
int outW1 = std::min(outW, (width - dilation_w*(kernel_w - 1) + pad_l)/stride_w);
float relu_coeff = relu ? relu[out_d] : 1.f, bias = biasptr[out_d];
for (int out_i = 0; out_i < outH; out_i++)
{
int in_i = out_i * stride_h - pad_t, out_j = 0;
const float* imgptr0 = inptr_ + in_i*width;
const float* imgptr1 = imgptr0 + dilation_h*width;
const float* imgptr2 = imgptr0 + (dilation_h*2)*width;
float out, w00 = w00_, w01 = w01_, w02 = w02_;
float w20 = w20_, w21 = w21_, w22 = w22_;
if (in_i < 0)
{
w00 = w01 = w02 = 0.f;
imgptr0 = imgptr1;
}
else if (in_i + dilation_h*(kernel_h-1) >= height)
{
w20 = w21 = w22 = 0.f;
imgptr2 = imgptr1;
}
float* outptr = outptr_ + out_i*outW;
if (pad_l > 0)
{
out = imgptr0[0]*w01 + imgptr0[dilation_w]*w02 +
imgptr1[0]*w11 + imgptr1[dilation_w]*w12 +
imgptr2[0]*w21 + imgptr2[dilation_w]*w22 + bias;
if (relu)
out = out > 0.f ? out : out*relu_coeff;
outptr[0] = out;
out_j = 1;
}
if (stride_w == 1 || (stride_w == 2 && dilation_w == 1))
{
const int VECSZ = 8;
vfloat32m2_t vw00 = vfmv_v_f_f32m2(w00, vl), vw01 = vfmv_v_f_f32m2(w01, vl), vw02 = vfmv_v_f_f32m2(w02, vl),
vw10 = vfmv_v_f_f32m2(w10, vl), vw11 = vfmv_v_f_f32m2(w11, vl), vw12 = vfmv_v_f_f32m2(w12, vl),
vw20 = vfmv_v_f_f32m2(w20, vl), vw21 = vfmv_v_f_f32m2(w21, vl), vw22 = vfmv_v_f_f32m2(w22, vl);
vfloat32m2_t vbias = vfmv_v_f_f32m2(bias, vl), vrc = vfmv_v_f_f32m2(relu_coeff, vl);
if( stride_w == 1 )
for( ; out_j < outW1; out_j += VECSZ )
{
if (out_j + VECSZ > outW1 && out_j > pad_l)
out_j = outW1 - VECSZ;
int in_j = out_j * stride_w - pad_l;
vfloat32m2_t v00 = vle32_v_f32m2(imgptr0 + in_j, vl),
v01 = vle32_v_f32m2(imgptr0 + in_j + dilation_w, vl),
v02 = vle32_v_f32m2(imgptr0 + in_j + dilation_w*2, vl),
v10 = vle32_v_f32m2(imgptr1 + in_j, vl),
v11 = vle32_v_f32m2(imgptr1 + in_j + dilation_w, vl),
v12 = vle32_v_f32m2(imgptr1 + in_j + dilation_w*2, vl),
v20 = vle32_v_f32m2(imgptr2 + in_j, vl),
v21 = vle32_v_f32m2(imgptr2 + in_j + dilation_w, vl),
v22 = vle32_v_f32m2(imgptr2 + in_j + dilation_w*2, vl);
vfloat32m2_t vout0 = vfmacc_vv_f32m2(vbias, v00, vw00, vl);
vfloat32m2_t vout1 = vfmul_vv_f32m2(v01, vw01, vl);
vfloat32m2_t vout2 = vfmul_vv_f32m2(v02, vw02, vl);
vout0 = vfmacc_vv_f32m2(vout0, v10, vw10, vl);
vout1 = vfmacc_vv_f32m2(vout1, v11, vw11, vl);
vout2 = vfmacc_vv_f32m2(vout2, v12, vw12, vl);
vout0 = vfmacc_vv_f32m2(vout0, v20, vw20, vl);
vout1 = vfmacc_vv_f32m2(vout1, v21, vw21, vl);
vout2 = vfmacc_vv_f32m2(vout2, v22, vw22, vl);
vout0 = vfadd_vv_f32m2(vfadd_vv_f32m2(vout0, vout1, vl), vout2, vl);
if (relu)
{
vbool16_t m = vmfgt_vf_f32m2_b16(vout0, 0, vl);
vout0 = vmerge_vvm_f32m2(m, vfmul_vv_f32m2(vout0, vrc, vl), vout0, vl);
}
vse32_v_f32m2(outptr + out_j, vout0, vl);
}
else
for( ; out_j < outW1; out_j += VECSZ )
{
if (out_j + VECSZ > outW1 && out_j > pad_l)
out_j = outW1 - VECSZ;
int in_j = out_j * stride_w - pad_l;
vfloat32m2_t v00, v01, v02, v10, v11, v12, v20, v21, v22, unused;
vfloat32m2_load_deinterleave(imgptr0 + in_j, v00, v01);
vfloat32m2_load_deinterleave(imgptr0 + in_j + 2, v02, unused);
vfloat32m2_load_deinterleave(imgptr1 + in_j, v10, v11);
vfloat32m2_load_deinterleave(imgptr1 + in_j + 2, v12, unused);
vfloat32m2_load_deinterleave(imgptr2 + in_j, v20, v21);
vfloat32m2_load_deinterleave(imgptr2 + in_j + 2, v22, unused);
vfloat32m2_t vout0 = vfmacc_vv_f32m2(vbias, v00, vw00, vl);
vfloat32m2_t vout1 = vfmul_vv_f32m2(v01, vw01, vl);
vfloat32m2_t vout2 = vfmul_vv_f32m2(v02, vw02, vl);
vout0 = vfmacc_vv_f32m2(vout0, v10, vw10, vl);
vout1 = vfmacc_vv_f32m2(vout1, v11, vw11, vl);
vout2 = vfmacc_vv_f32m2(vout2, v12, vw12, vl);
vout0 = vfmacc_vv_f32m2(vout0, v20, vw20, vl);
vout1 = vfmacc_vv_f32m2(vout1, v21, vw21, vl);
vout2 = vfmacc_vv_f32m2(vout2, v22, vw22, vl);
vout0 = vfadd_vv_f32m2(vfadd_vv_f32m2(vout0, vout1, vl), vout2, vl);
if (relu)
{
vbool16_t m = vmfgt_vf_f32m2_b16(vout0, 0, vl);
vout0 = vmerge_vvm_f32m2(m, vfmul_vv_f32m2(vout0, vrc, vl), vout0, vl);
}
vse32_v_f32m2(outptr + out_j, vout0, vl);
}
}
for (; out_j < outW1; out_j++)
{
int in_j = out_j * stride_w - pad_l;
out = imgptr0[in_j]*w00 + imgptr0[in_j + dilation_w]*w01 + imgptr0[in_j + dilation_w*2]*w02 +
imgptr1[in_j]*w10 + imgptr1[in_j + dilation_w]*w11 + imgptr1[in_j + dilation_w*2]*w12 +
imgptr2[in_j]*w20 + imgptr2[in_j + dilation_w]*w21 + imgptr2[in_j + dilation_w*2]*w22 + bias;
if (relu)
out = out > 0.f ? out : out*relu_coeff;
outptr[out_j] = out;
}
for (; out_j < outW; out_j++ )
{
int in_j0 = out_j * stride_w - pad_l, in_j1 = in_j0 + dilation_w, in_j2 = in_j0 + dilation_w*2;
float s0 = 1.f, s1 = 1.f, s2 = 1.f;
if (in_j0 >= width)
{
in_j0 = 0;
s0 = 0.f;
}
if (in_j1 >= width)
{
in_j1 = 0;
s1 = 0.f;
}
if (in_j2 >= width)
{
in_j2 = 0;
s2 = 0.f;
}
out = imgptr0[in_j0]*w00*s0 + imgptr0[in_j1]*w01*s1 + imgptr0[in_j2]*w02*s2 +
imgptr1[in_j0]*w10*s0 + imgptr1[in_j1]*w11*s1 + imgptr1[in_j2]*w12*s2 +
imgptr2[in_j0]*w20*s0 + imgptr2[in_j1]*w21*s1 + imgptr2[in_j2]*w22*s2 + bias;
if (relu)
out = out > 0.f ? out : out*relu_coeff;
outptr[out_j] = out;
}
}
}
#endif // CV_RVV
CV_CPU_OPTIMIZATION_NAMESPACE_END
}} // namespace

Loading…
Cancel
Save