|
|
|
@ -52,7 +52,6 @@ public: |
|
|
|
|
outputs.assign(1, inputs[0]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
|
|
|
{ |
|
|
|
|
CV_TRACE_FUNCTION(); |
|
|
|
@ -66,43 +65,31 @@ public: |
|
|
|
|
|
|
|
|
|
CV_CheckEQ(inputs.size(), (size_t)2, ""); |
|
|
|
|
CV_CheckEQ(outputs.size(), (size_t)1, ""); |
|
|
|
|
CV_CheckTypeEQ(inputs[0].type(), outputs[0].type(), ""); |
|
|
|
|
|
|
|
|
|
const Mat& inp = inputs[0]; |
|
|
|
|
|
|
|
|
|
int indicesType = inputs[1].type(); |
|
|
|
|
CV_CheckType(indicesType, indicesType == CV_32SC1 || indicesType == CV_64SC1, ""); |
|
|
|
|
Mat indices32S; |
|
|
|
|
if (indicesType == CV_64SC1) |
|
|
|
|
{ |
|
|
|
|
inputs[1].convertTo(indices32S, CV_32S); |
|
|
|
|
} |
|
|
|
|
if (inputs[1].type() == CV_32SC1) |
|
|
|
|
forward_impl<int32_t>(inputs[0], inputs[1], outputs[0]); |
|
|
|
|
else if (inputs[1].type() == CV_64SC1) |
|
|
|
|
forward_impl<int64_t>(inputs[0], inputs[1], outputs[0]); |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
indices32S = inputs[1]; |
|
|
|
|
} |
|
|
|
|
const size_t indices_total = indices32S.total(); |
|
|
|
|
indices32S = indices32S.reshape(1, indices_total); |
|
|
|
|
|
|
|
|
|
Mat& out = outputs[0]; |
|
|
|
|
CV_CheckType(inputs[1].type(), inputs[1].type() == CV_32SC1 || inputs[1].type() == CV_64SC1, ""); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CV_CheckTypeEQ(inp.type(), out.type(), ""); |
|
|
|
|
CV_CheckTypeEQ(indices32S.type(), CV_32SC1, ""); |
|
|
|
|
template<typename T_INDEX> |
|
|
|
|
void forward_impl(const Mat& inp, const Mat& indices, Mat& out) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
const size_t indices_total = indices.total(); |
|
|
|
|
const int axis = normalize_axis(m_axis, shape(inp)); |
|
|
|
|
|
|
|
|
|
// FIXIT: why should we work with non-normalized input? it should be handled in importer or layers's output generator
|
|
|
|
|
const int axis_size = (int)inp.size[axis]; |
|
|
|
|
for (size_t j = 0 ; j < indices_total; ++j) |
|
|
|
|
{ |
|
|
|
|
int& idx = indices32S.at<int>(j); |
|
|
|
|
idx = normalize_axis(idx, axis_size); // validate and normalize indices
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const size_t outer_size = axis == 0 ? inp.total() : inp.step1(axis - 1); |
|
|
|
|
const size_t outer_dims = inp.total() / outer_size; |
|
|
|
|
const size_t inner_size = inp.step1(axis); |
|
|
|
|
|
|
|
|
|
const int* idx = indices32S.ptr<int>(); |
|
|
|
|
const T_INDEX* idx = indices.ptr<T_INDEX>(); |
|
|
|
|
const char* src = inp.ptr<const char>(); |
|
|
|
|
char* dst = out.ptr<char>(); |
|
|
|
|
CV_CheckEQ(out.total(), outer_dims * indices_total * inner_size, ""); |
|
|
|
@ -115,7 +102,7 @@ public: |
|
|
|
|
const size_t src_offset = i * outer_size; |
|
|
|
|
for (size_t j = 0 ; j < indices_total; ++j) |
|
|
|
|
{ |
|
|
|
|
const int index = idx[j]; |
|
|
|
|
const int index = normalize_axis(idx[j], axis_size); |
|
|
|
|
CV_DbgCheck(index, index >= 0 && index < axis_size, ""); |
|
|
|
|
const size_t new_offset = src_offset + index * inner_size; |
|
|
|
|
std::memcpy(dst, src + new_offset * es, inner_bytes); |
|
|
|
|