|
|
|
@ -48,12 +48,86 @@ |
|
|
|
|
namespace cv |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
#if CV_AVX |
|
|
|
|
// load three 8-packed float vector and deinterleave
|
|
|
|
|
// probably it's better to write down somewhere else
|
|
|
|
|
static inline void load_deinterleave(const float* ptr, __m256& a, __m256& b, __m256& c) |
|
|
|
|
{ |
|
|
|
|
__m256 s0 = _mm256_loadu_ps(ptr); // a0, b0, c0, a1, b1, c1, a2, b2,
|
|
|
|
|
__m256 s1 = _mm256_loadu_ps(ptr + 8); // c2, a3, b3, c3, a4, b4, c4, a5,
|
|
|
|
|
__m256 s2 = _mm256_loadu_ps(ptr + 16); // b5, c5, a6, b6, c6, a7, b7, c7,
|
|
|
|
|
__m256 s3 = _mm256_permute2f128_ps(s1, s2, 0x21); // a4, b4, c4, a5, b5, c5, a6, b6,
|
|
|
|
|
__m256 s4 = _mm256_permute2f128_ps(s2, s2, 0x33); // c6, a7, b7, c7, c6, a7, b7, c7,
|
|
|
|
|
|
|
|
|
|
__m256 v00 = _mm256_unpacklo_ps(s0, s3); // a0, a4, b0, b4, b1, b5, c1, c5,
|
|
|
|
|
__m256 v01 = _mm256_unpackhi_ps(s0, s3); // c0, c4, a1, a5, a2, a6, b2, b6,
|
|
|
|
|
__m256 v02 = _mm256_unpacklo_ps(s1, s4); // c2, c6, a3, a7, x, x, x, x,
|
|
|
|
|
__m256 v03 = _mm256_unpackhi_ps(s1, s4); // b3, b7, c3, c7, x, x, x, x,
|
|
|
|
|
__m256 v04 = _mm256_permute2f128_ps(v02, v03, 0x20); // c2, c6, a3, a7, b3, b7, c3, c7,
|
|
|
|
|
__m256 v05 = _mm256_permute2f128_ps(v01, v03, 0x21); // a2, a6, b2, b6, b3, b7, c3, c7,
|
|
|
|
|
|
|
|
|
|
__m256 v10 = _mm256_unpacklo_ps(v00, v05); // a0, a2, a4, a6, b1, b3, b5, b7,
|
|
|
|
|
__m256 v11 = _mm256_unpackhi_ps(v00, v05); // b0, b2, b4, b6, c1, c3, c5, c7,
|
|
|
|
|
__m256 v12 = _mm256_unpacklo_ps(v01, v04); // c0, c2, c4, c6, x, x, x, x,
|
|
|
|
|
__m256 v13 = _mm256_unpackhi_ps(v01, v04); // a1, a3, a5, a7, x, x, x, x,
|
|
|
|
|
__m256 v14 = _mm256_permute2f128_ps(v11, v12, 0x20); // b0, b2, b4, b6, c0, c2, c4, c6,
|
|
|
|
|
__m256 v15 = _mm256_permute2f128_ps(v10, v11, 0x31); // b1, b3, b5, b7, c1, c3, c5, c7,
|
|
|
|
|
|
|
|
|
|
__m256 v20 = _mm256_unpacklo_ps(v14, v15); // b0, b1, b2, b3, c0, c1, c2, c3,
|
|
|
|
|
__m256 v21 = _mm256_unpackhi_ps(v14, v15); // b4, b5, b6, b7, c4, c5, c6, c7,
|
|
|
|
|
__m256 v22 = _mm256_unpacklo_ps(v10, v13); // a0, a1, a2, a3, x, x, x, x,
|
|
|
|
|
__m256 v23 = _mm256_unpackhi_ps(v10, v13); // a4, a5, a6, a7, x, x, x, x,
|
|
|
|
|
|
|
|
|
|
a = _mm256_permute2f128_ps(v22, v23, 0x20); // a0, a1, a2, a3, a4, a5, a6, a7,
|
|
|
|
|
b = _mm256_permute2f128_ps(v20, v21, 0x20); // b0, b1, b2, b3, b4, b5, b6, b7,
|
|
|
|
|
c = _mm256_permute2f128_ps(v20, v21, 0x31); // c0, c1, c2, c3, c4, c5, c6, c7,
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// realign four 3-packed vector to three 4-packed vector
|
|
|
|
|
static inline void v_pack4x3to3x4(const __m128i& s0, const __m128i& s1, const __m128i& s2, const __m128i& s3, __m128i& d0, __m128i& d1, __m128i& d2) |
|
|
|
|
{ |
|
|
|
|
d0 = _mm_or_si128(s0, _mm_slli_si128(s1, 12)); |
|
|
|
|
d1 = _mm_or_si128(_mm_srli_si128(s1, 4), _mm_slli_si128(s2, 8)); |
|
|
|
|
d2 = _mm_or_si128(_mm_srli_si128(s2, 8), _mm_slli_si128(s3, 4)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// separate high and low 128 bit and cast to __m128i
|
|
|
|
|
static inline void v_separate_lo_hi(const __m256& src, __m128i& lo, __m128i& hi) |
|
|
|
|
{ |
|
|
|
|
lo = _mm_castps_si128(_mm256_castps256_ps128(src)); |
|
|
|
|
hi = _mm_castps_si128(_mm256_extractf128_ps(src, 1)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// interleave three 8-float vector and store
|
|
|
|
|
static inline void store_interleave(float* ptr, const __m256& a, const __m256& b, const __m256& c) |
|
|
|
|
{ |
|
|
|
|
__m128i a0, a1, b0, b1, c0, c1; |
|
|
|
|
v_separate_lo_hi(a, a0, a1); |
|
|
|
|
v_separate_lo_hi(b, b0, b1); |
|
|
|
|
v_separate_lo_hi(c, c0, c1); |
|
|
|
|
|
|
|
|
|
v_uint32x4 z = v_setzero_u32(); |
|
|
|
|
v_uint32x4 u0, u1, u2, u3; |
|
|
|
|
v_transpose4x4(v_uint32x4(a0), v_uint32x4(b0), v_uint32x4(c0), z, u0, u1, u2, u3); |
|
|
|
|
v_pack4x3to3x4(u0.val, u1.val, u2.val, u3.val, a0, b0, c0); |
|
|
|
|
v_transpose4x4(v_uint32x4(a1), v_uint32x4(b1), v_uint32x4(c1), z, u0, u1, u2, u3); |
|
|
|
|
v_pack4x3to3x4(u0.val, u1.val, u2.val, u3.val, a1, b1, c1); |
|
|
|
|
|
|
|
|
|
_mm256_storeu_ps(ptr, _mm256_setr_m128(_mm_castsi128_ps(a0), _mm_castsi128_ps(b0))); |
|
|
|
|
_mm256_storeu_ps(ptr + 8, _mm256_setr_m128(_mm_castsi128_ps(c0), _mm_castsi128_ps(a1))); |
|
|
|
|
_mm256_storeu_ps(ptr + 16, _mm256_setr_m128(_mm_castsi128_ps(b1), _mm_castsi128_ps(c1))); |
|
|
|
|
} |
|
|
|
|
#endif // CV_AVX
|
|
|
|
|
|
|
|
|
|
static void calcMinEigenVal( const Mat& _cov, Mat& _dst ) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
Size size = _cov.size(); |
|
|
|
|
#if CV_AVX |
|
|
|
|
bool haveAvx = checkHardwareSupport(CV_CPU_AVX); |
|
|
|
|
#endif |
|
|
|
|
#if CV_SIMD128 |
|
|
|
|
bool simd = hasSIMD128(); |
|
|
|
|
bool haveSimd = hasSIMD128(); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
if( _cov.isContinuous() && _dst.isContinuous() ) |
|
|
|
@ -67,8 +141,25 @@ static void calcMinEigenVal( const Mat& _cov, Mat& _dst ) |
|
|
|
|
const float* cov = _cov.ptr<float>(i); |
|
|
|
|
float* dst = _dst.ptr<float>(i); |
|
|
|
|
j = 0; |
|
|
|
|
#if CV_SIMD128 |
|
|
|
|
if( simd ) |
|
|
|
|
#if CV_AVX |
|
|
|
|
if( haveAvx ) |
|
|
|
|
{ |
|
|
|
|
__m256 half = _mm256_set1_ps(0.5f); |
|
|
|
|
for( ; j <= size.width - 8; j += 8 ) |
|
|
|
|
{ |
|
|
|
|
__m256 v_a, v_b, v_c, v_t; |
|
|
|
|
load_deinterleave(cov + j*3, v_a, v_b, v_c); |
|
|
|
|
v_a = _mm256_mul_ps(v_a, half); |
|
|
|
|
v_c = _mm256_mul_ps(v_c, half); |
|
|
|
|
v_t = _mm256_sub_ps(v_a, v_c); |
|
|
|
|
v_t = _mm256_add_ps(_mm256_mul_ps(v_b, v_b), _mm256_mul_ps(v_t, v_t)); |
|
|
|
|
_mm256_storeu_ps(dst + j, _mm256_sub_ps(_mm256_add_ps(v_a, v_c), _mm256_sqrt_ps(v_t))); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#endif // CV_AVX
|
|
|
|
|
|
|
|
|
|
#if CV_SIMD128 |
|
|
|
|
if( haveSimd ) |
|
|
|
|
{ |
|
|
|
|
v_float32x4 half = v_setall_f32(0.5f); |
|
|
|
|
for( ; j <= size.width - v_float32x4::nlanes; j += v_float32x4::nlanes ) |
|
|
|
@ -82,7 +173,8 @@ static void calcMinEigenVal( const Mat& _cov, Mat& _dst ) |
|
|
|
|
v_store(dst + j, (v_a + v_c) - v_sqrt(v_t)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
#endif // CV_SIMD128
|
|
|
|
|
|
|
|
|
|
for( ; j < size.width; j++ ) |
|
|
|
|
{ |
|
|
|
|
float a = cov[j*3]*0.5f; |
|
|
|
@ -98,8 +190,11 @@ static void calcHarris( const Mat& _cov, Mat& _dst, double k ) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
Size size = _cov.size(); |
|
|
|
|
#if CV_AVX |
|
|
|
|
bool haveAvx = checkHardwareSupport(CV_CPU_AVX); |
|
|
|
|
#endif |
|
|
|
|
#if CV_SIMD128 |
|
|
|
|
bool simd = hasSIMD128(); |
|
|
|
|
bool haveSimd = hasSIMD128(); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
if( _cov.isContinuous() && _dst.isContinuous() ) |
|
|
|
@ -114,8 +209,26 @@ static void calcHarris( const Mat& _cov, Mat& _dst, double k ) |
|
|
|
|
float* dst = _dst.ptr<float>(i); |
|
|
|
|
j = 0; |
|
|
|
|
|
|
|
|
|
#if CV_SIMD128 |
|
|
|
|
if( simd ) |
|
|
|
|
#if CV_AVX |
|
|
|
|
if( haveAvx ) |
|
|
|
|
{ |
|
|
|
|
__m256 v_k = _mm256_set1_ps((float)k); |
|
|
|
|
|
|
|
|
|
for( ; j <= size.width - 8; j += 8 ) |
|
|
|
|
{ |
|
|
|
|
__m256 v_a, v_b, v_c; |
|
|
|
|
load_deinterleave(cov + j * 3, v_a, v_b, v_c); |
|
|
|
|
|
|
|
|
|
__m256 v_ac_bb = _mm256_sub_ps(_mm256_mul_ps(v_a, v_c), _mm256_mul_ps(v_b, v_b)); |
|
|
|
|
__m256 v_ac = _mm256_add_ps(v_a, v_c); |
|
|
|
|
__m256 v_dst = _mm256_sub_ps(v_ac_bb, _mm256_mul_ps(v_k, _mm256_mul_ps(v_ac, v_ac))); |
|
|
|
|
_mm256_storeu_ps(dst + j, v_dst); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#endif // CV_AVX
|
|
|
|
|
|
|
|
|
|
#if CV_SIMD128 |
|
|
|
|
if( haveSimd ) |
|
|
|
|
{ |
|
|
|
|
v_float32x4 v_k = v_setall_f32((float)k); |
|
|
|
|
|
|
|
|
@ -130,7 +243,7 @@ static void calcHarris( const Mat& _cov, Mat& _dst, double k ) |
|
|
|
|
v_store(dst + j, v_dst); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
#endif // CV_SIMD128
|
|
|
|
|
|
|
|
|
|
for( ; j < size.width; j++ ) |
|
|
|
|
{ |
|
|
|
@ -231,6 +344,9 @@ cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size, |
|
|
|
|
if (tegra::useTegra() && tegra::cornerEigenValsVecs(src, eigenv, block_size, aperture_size, op_type, k, borderType)) |
|
|
|
|
return; |
|
|
|
|
#endif |
|
|
|
|
#if CV_AVX |
|
|
|
|
bool haveAvx = checkHardwareSupport(CV_CPU_AVX); |
|
|
|
|
#endif |
|
|
|
|
#if CV_SIMD128 |
|
|
|
|
bool haveSimd = hasSIMD128(); |
|
|
|
|
#endif |
|
|
|
@ -268,8 +384,26 @@ cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size, |
|
|
|
|
const float* dydata = Dy.ptr<float>(i); |
|
|
|
|
j = 0; |
|
|
|
|
|
|
|
|
|
#if CV_SIMD128 |
|
|
|
|
if (haveSimd) |
|
|
|
|
#if CV_AVX |
|
|
|
|
if( haveAvx ) |
|
|
|
|
{ |
|
|
|
|
for( ; j <= size.width - 8; j += 8 ) |
|
|
|
|
{ |
|
|
|
|
__m256 v_dx = _mm256_loadu_ps(dxdata + j); |
|
|
|
|
__m256 v_dy = _mm256_loadu_ps(dydata + j); |
|
|
|
|
|
|
|
|
|
__m256 v_dst0, v_dst1, v_dst2; |
|
|
|
|
v_dst0 = _mm256_mul_ps(v_dx, v_dx); |
|
|
|
|
v_dst1 = _mm256_mul_ps(v_dx, v_dy); |
|
|
|
|
v_dst2 = _mm256_mul_ps(v_dy, v_dy); |
|
|
|
|
|
|
|
|
|
store_interleave(cov_data + j * 3, v_dst0, v_dst1, v_dst2); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#endif // CV_AVX
|
|
|
|
|
|
|
|
|
|
#if CV_SIMD128 |
|
|
|
|
if( haveSimd ) |
|
|
|
|
{ |
|
|
|
|
for( ; j <= size.width - v_float32x4::nlanes; j += v_float32x4::nlanes ) |
|
|
|
|
{ |
|
|
|
@ -284,7 +418,7 @@ cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size, |
|
|
|
|
v_store_interleave(cov_data + j * 3, v_dst0, v_dst1, v_dst2); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
#endif // CV_SIMD128
|
|
|
|
|
|
|
|
|
|
for( ; j < size.width; j++ ) |
|
|
|
|
{ |
|
|
|
|